
Multi-Material Adaptive Volume Remesher

Noura Faraja, Jean-Marc Thierya, Tamy Boubekeura
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Abstract

We propose a practical iterative remeshing algorithm for multi-material tetrahedral meshes which is solely based on simple local
topological operations, such as edge collapse, flip, split and vertex smoothing. To do so, we exploit an intermediate implicit feature
complex which reconstructs piecewise smooth multi-material boundaries made of surface patches, feature edges and corner vertices.
Futhermore, we design specific feature-aware local remeshing rules which, combined with a moving least square projection, result
in high quality isotropic meshes representing the input mesh at a user defined resolution while preserving important features. Our
algorithm uses only topology-aware local operations, which allows to process difficult input meshes such as self-intersecting ones.
We evaluate our approach on a collection of examples and experimentally show that it is fast and scales well.
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1. Introduction

Multi-material volumetric datasets are widely used to study
physical phenomena, model physically-plausible shapes or fab-
ricate/print real objects from digital ones. For instance, a broad
range of medical simulations steam from the increasing num-
ber of available 3D anatomical images. Those datasets are typ-
ically composed of voxel grids acquired using Magnetic Res-
onance Imaging (MRI) or scanners and accurately labeled by
professionals - i.e., each voxel is assigned with a label repre-
senting a single material (e.g., organ). The union of these com-
ponents forms the simulation domain, where each material is
represented by a single subdomain. However, in practice, simu-
lations are often designed to run on a mesh of the input domain,
using Finite Elements Methods (FEM). Employing large poly-
hedra - typically tetrahedra - for constant material regions re-
duces drastically the computation costs while preserving a good
approximations. Indeed, the result of a simulation depends on
the domain representation accuracy and the quality on the input
mesh since its stability usually depends on the size and shape of
its tetrahedra [1]. For instance, tetrahedra with small dihedral
angles cause negative volumes under small perturbations, while
large angles strongly increase the simulation errors.

As the material is supposed constant within a subdomain,
the critical features to preserve during the meshing process re-
side at the interfaces between labels since they indicate the
shape boundaries and the junctions between subdomains. These
features can take three forms [2]: (i) the surfaces patches be-
tween two labels (2-junctions), (ii) the edges between three
or more labels (1-junctions) and (iii) the corner vertices be-
tween four or more labels (0-junctions). Generating tetrahe-
dral meshes at the suitable resolution for simulation while ac-
curately capturing such features is a tedious task. Ideally, one
could generate high-quality meshes at several resolutions, ex-
ploiting each time the previously finer meshes to generate the

coarser and trading feature preservation for regularization. In-
deed, a regularization process is unavoidable, as smooth bound-
aries are mandatory for visualization and stability purpose. As
the seminal discretization (e.g., from the input image) can fail
at meeting these constraints, a remeshing step (i. e. optimization
and/or simplification) is often necessary.

Contributions. We propose a simple and practical iterative re-
meshing algorithm for 3D triangulations, which provides high-
quality meshes at a chosen resolution while preserving features
such as multi-material boundaries. The user can efficiently reach
the desired resolution by adjusting the target edge length: in
particular, the mesh is processed iteratively until the size con-
straint is met without starting over from the input mesh, which
is essential during fine-tuning remeshing sessions. Our algo-
rithm allows generating uniform as well as adaptive meshes,
for which the spatially-varying resolution is driven by a sizing
(scalar) field that can be user-defined, e. g. to generate a dense
mesh in regions of interest, or based on a distance field. In
particular, such a field may be generated from the subdomain
boundaries, yelding elements with increasing size when located
away from the boundaries, therefore resulting in an isotropic
adaptive mesh. This is especially effective to minimize the
number of tetrahedra while preserving accurate boundaries.

In order to provide our algorithm with a structured decom-
position of the multi-material domain, we use a feature com-
plex, similar to the one proposed by Dey et al. [3], but equipped
with a Moving Least Square (MLS) geometric definition de-
rived from Hermite Point Set Surfaces [4]. Doing so, we decorel-
late the structured geometry of the domain from the mesh and
can perform feature-dependent topological operations coupled
with a hierarchical MLS smoothing. We can preserve additional
features which are either provided by the user, as a set of poly-
lines, or detected on the domain boundary (e.g., surface sharp
features). On the contrary to Delaunay-based methods, ours al-
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Figure 1: Our method remeshes complex multi-material tetrahedral meshes, with high geometric quality and exact topology preservation.

lows to efficiently generate meshes at any resolution by only
changing the target edge length since the MLS representation
of the feature complex enables us to mesh the domain geome-
try directly, even at low meshing resolution.

By using only topology-aware local operations, our tech-
nique can process difficult input meshes such as self-intersecting
ones, whereas Delaunay-based techniques will necessarily glue
intersecting parts. Last, our remeshing method can be used as a
complement to any existing meshing method in order to gener-
ate a mesh suited to the users needs. Therefore any structured
mesh can be processed with our algorithm. For instance, we
apply our method on trivial high-resolution tetrahedral mesh
generated from segmented voxel grids.

2. Background

The generation, simplification and refinement of high-quality
tetrahedral meshes are very active research fields. Here, we give
a non exhaustive overview of the existing methods and focus on
the ones that are able to handle multi-material inputs.

Meshing. We can group the meshing methods in three main
categories: Delaunay-based, lattice-based and variational.

Delaunay-based methods start by distributing a set of points
over the input domain. Then a Delaunay refinement process [5,
6, 7] is used to add Steiner points to the triangulation until the
input approximation, elements shape and quality criteria are
met. This process has first been proposed for domains bounded
by a smooth surface [8, 9] and further extended for piecewise
smooth boundaries [10]. In order to handle the input domain
sharp features, the authors propose to build a Piecewise Smooth
Complex (PSC), which is composed of surface patches, curves
(intersections of surface patches) and points (intersections of
curves). Protecting balls of varying size are defined around
the edges to preserve the features of this complex during the
refinement process [11, 12]. Building upon such a complex,
Tournois et al. [13] propose a method coupling refinement and
optimization strategies to guide the insertion of Steiner points
and directly obtain high-quality meshes. These principles are
extended to handle multi-material domains [14] and preserve
their 1- and 0-junctions using similar protecting balls [2]. More
recently, Dey et al. [3] propose a PSC composed of multi-mate-
rial junctions, and we use a similar complex to identify the
features to preserve. While those methods allow generating
high-quality meshes, the implementation of the protecting ball
paradigm remains highly non trivial in a multi-material setting.

Lattice-based meshing approaches are inspired by the March-
ing Cubes algorithm [15] applied to multi-material boundaries
[16]. An initial high resolution regular mesh is generated from
the volume data and the elements are split according to precom-
puted boundary configurations until the input domain is well
represented. Those methods tend to produce dense meshes and
ill-shaped tetrahedra near the boundaries. Furthermore, their
resolution depends on the input grid one. The isosurface stuff-
ing method [17] uses a similar paradigm to represent single ma-
terial domains but guarantees theoretical bounds on the tetra-
hedra’ dihedral angles. Inspired by this strategy, Bronson et
al. [18] offer similar guarantees for labeled volume data.

Variational approaches [19, 20, 21, 22] insert particles or an
initial mesh in the input domain and use a non-linear energy op-
timization to tailor the feature-aware point distribution. These
methods provide high-quality results but are strongly dependent
of the initial setting and are computationally expensive.

Poorly-shaped elements. Fig. 2 presents a common classifica-
tion of tetrahedral degenerencies. In 2D, the quality of the tri-
angle shape is defined as the ratio of the shortest and longest
edge because it relates to the minimum angle, but this property
is no longer true in 3D. A poorly-shaped tetrahedron can have
edges with similar length, e. g. for slivers, which are almost flat
tetrahedra. A tetrahedron’s quality is thus better described by
its minimal dihedral angle and its radius-ratio (the ratio between
the inscribed and circumscribed spheres’ radii). Note that a reg-
ular tetrahedron has dihedral angles equal to 70.5 degrees.

Remeshing and quality improvement. Since feature preserva-
tion and quality constraints are tedious to combine, ill-shaped
tetrahedra are likely to be generated during the meshing pro-
cess. For instance, Delaunay-based refinement processes do not
prevent the apparition of slivers - tetrahedra meeting the Delau-
nay constraints but with poor quality - and induce an unavoid-
able post-processing step. A first solution, called sliver exuda-
tion [23], turns the triangulation into a weighted Delaunay trian-
gulation to address this problem. An alternative approach is to

SliverCapWedgeNeedleSpindle

Figure 2: Ill-shaped tetrahedra: needles and wedges (large longest to shortest
edge ratio), caps (small radius-ratio and three large dihedral angle) and slivers
(almost flat but with edges of similar length).
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perturb slivers through vertex relocation and Delaunay connec-
tivity update [24]. In a more general setting, the quality can be
improved using optimization based-smoothing and local topo-
logical operations such as edge flip or removal [25]. This ap-
proach was further improved by Klingner et al. [26] through ad-
ditional operations such as vertex insertion, multi-face removal
and a roll back mechanism.

To cover a large range of resolutions and define more densely
meshed regions of interest, both simplification and refinement
schemes - generating high-quality meshes - are necessary when
remeshing. For visualization purposes, the simplification of
tetrahedral meshes is widely used through edge contraction [27,
28], similar to surface simplification techniques [29, 30] or point
sampling [31, 32]. Mesh adaptation is widely used to increase
simulation accuracy by improving the mesh quality to better
capture the studied physical phenomena. Local operations are
used in order to modify the mesh and satisfy a given mesh
metric field [33, 34, 35]. Unfortunately, only a limited num-
ber of methods are generalized to handle multi-material meshes
and 1- and 0-junctions. Cutler et al. [36] propose a method to
generate high-quality segmented meshes at different resolutions
by performing local topological operations to meet the quality
and edge length criteria. While this method allows preserving
boundary surfaces using a volume based error metric, 1- and 0-
junctions are not taken into account. To the best of our knowl-
edge, only the following ones account for 1- and 0-junctions
[37, 38]. The authors propose link conditions defining if an
edge can be collapsed without changing the topology of the fea-
tures of different degrees.

Similar issues are tackled for the remeshing of triangular
surface meshes. In particular, following [39, 40], Botsch and
Kobbelt [41] propose an iterative remeshing method to gener-
ate isotropic high-quality triangular meshes using simple local
operations performed in a predefined order.

As discussed in this section, no existing method allows gen-
erating high-quality meshes at various resolutions efficiently
while preserving multi-material features. Most existing mesh-
ing processes allow generating a mesh within several minutes or
hours, and in some cases to refine this mesh (Delaunay triangu-
lation), but not to simplify it. Simplification methods can pre-
serve these features but do not meet the quality requirements.

Beyond the contributions listed earlier, our volume remesh-
ing method builds upon several previous ideas. First, the core
of our approach is inspired from the surface remeshing method
of Botsch and Kobbelt [41], using local connectivity modifica-
tions only [39, 40] which have proved to be highly efficient in
the surface case. Second, we avoid self-intersections robustly
by adding imaginary tetrahedra to the triangulation [42]. Third,
to unify the local remeshing rules sustaining our algorithm, we
perform all operations on an extended complex by linking the
outer facets of the triangulation to a dummy vertex.

3. Our algorithm

3.1. Overview
Given a target edge length l, our remeshing method for multi-

domain tetrahedral meshes can be summarized as follows:

Preprocess detect the boundaries and features to preserve,
add imaginary tetrahedra to prevent self-intersections.

1 split any edge longer than emax,

2 collapse any edge shorter than emin,

3 flip edges to minimize the average valence and to opti-
mize locally the dihedral angle distribution,

4 filter to relocate vertices, taking features into account,

5 go to 1 unless the target resolution is reached,

Postprocess remove slivers and improve mesh quality.

For a target edge length, we use constant values emax = 4l/3
and emin = 4l/5. These thresholds avoid looping, and splitting
an edge verifying |emax − l| > | 12 emax − l| and collapsing an edge
verifying |emin − l| > | 32 emin − l| reduces the deviation from the
target length, see [43] for more details. Optionally, we can tailor
l in a spatially-varying fashion w.r.t. a sizing field capturing
either the distance to the boundary or user-defined regions of
interest. In the particular case of an input mesh having already
the aimed resolution and processed solely for regularization and
quality improvement purposes, the target length is set to a value
which is slightly lower than the current average edge length, to
introduce perturbations in the optimization [41].

3.2. Representation

We note the set of labels associated with either an input
multi-material 3D triangulation as L = {ln}n∈IL ⊂ Z. By con-
vention, null values represent the background, i.e., the parts of
the data that do not belong to the represented domain.

3.2.1. Labeled tetrahedral mesh
The mesh is noted M = {V, E,T } with V = {vi}i∈IV ⊂ R3 its

vertices, E = {ei j} its edges connecting adjacent vertices vi and
v j and T = {tk}k∈IT , its tetrahedra indexed over V . We call the
triangular faces of the tetrahedra facets. We note T1(vi) (resp.
F1(vi)) the set of tetrahedra (resp. facets) incident to a vertex
vi and T1(ei j) (resp. F1(ei j)) the set of tetrahedra (resp. facets)
around an edge ei j.

The input mesh is typically composed of n subdomains,
with L(tk) = li denoting the label associated with a given tetra-
hedron tk. We add a special imaginary subdomain to ensure
that the remeshing process will not introduce self-intersections
of the represented domain [42]. The additional imaginary tetra-
hedra have a null label L(tk) = 0 (i.e., background) and will
be processed like any other subdomain. As illustrated in Fig. 3,

Imaginary tetrahedra Unwanted 1-junctionsConvex Hull

Figure 3: Directly filling the space delimited by the convex hull and the mesh
boundaries with imaginary tetrahedra can create unwanted features.
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Convex hull

Imaginary tetrahedra

Offseted 
convex hull Dummy tetrahedra

Dummy 
vertex

Figure 4: Pre-processing. Addition of a layer of imaginary tetrahedra and
extension of the complex by connecting the outer facets to the dummy vertex.

naively filling the convex hull of the input vertices generates un-
wanted features. To tackle this issue, the input mesh is embed-
ded into an inflated convex hull to ensure that the input domain
is surrounded by at least one layer of tetrahedra (see Fig. 4).
To do so, we duplicate the elements of V laying on the convex
hull and displace them in their outer normal direction before
triangulating them, using a Restricted Delaunay Triangulation
preserving the original mesh outer boundary. The displace-
ment factor is typically set to 4% of the domain’s bounding
box. To process the outer boundary like any other, i. e. unifying
the representation of inter-domain boundaries and 3D surfaces,
we connect the outer boundary facets (i.e., of the offseted con-
vex hull) to a dummy vertex creating dummy tetrahedra marked
with a negative label.

3.3. Elements notations

Here, we define the simplices notations used in the remain-
der of the document (see Fig. 5). Facets shared by two tetra-
hedra that belong to different subdomains are boundary facets.
The vertices (resp. edges) of those facets are boundary vertices
(resp. boundary edges). For each vertex vi, we note S (vi) ⊂ L
the set of labels incident to vi:

S (vi) = {L(tk)tk∈T1(vi)}.

Similarly, we define S (ei j) for an edge. Volume (resp. bound-
ary) vertices verify |S (vi)| = 1 (resp. |S (vi)| > 1), except for the
dummy vertex. As shown in Fig. 5, we identify four types of
edges:

• volume edges connect two volume vertices (green, red),

• mixed edges connect a volume and a boundary vertex
(gray),

• boundary edges connect two boundary vertices and have
incident boundary facets (pink and blue),

• all other edges are critical edges (yellow).

Figure 5: Classification. (Left) Vertex types, (Center) Boundary and volume
edges and (Right) Mixed and critical edges.

Boundary facet Feature edge Corner Vertex

Figure 6: Feature elements of various dimension detected using solely incident
subdomain indices.

3.4. Feature detection

In order to conform to the input boundaries and perform
feature-aware operations, we identify feature elements of dif-
ferent dimensions that together form a feature complex similar
to a point-sampled cell complex [44] or a PSC [3].

Feature elements. The boundary facets, which are facets be-
tween tetrahedra of different labels, are the complex elements
of dimension 2. The feature edges, which are boundary edges
at the intersection of three or more labels (|S (ei j)| > 2) are the
elements of dimension 1. Vertices with three or more incident
labels (|S (vi)| > 3) and at least three feature edges in their one-
ring are corner vertices (see Fig. 6) and are 0-dimensional ele-
ments.

The input domain’s n-junctions - with n the dimension in
the feature complex - are represented in the mesh (see Fig. 7)
as follows:

• 2-junctions are sets of connected boundary facets located
at the interface between two subdomains. Each 2-junction
forms a triangle surface patch, where its orientation is de-
duced from one of its incident subdomains and delimited
by 1-junctions (if present in the data).

• 1-junctions are sets of connected feature edges sharing
the same set of incident subdomains. Each 1-junction
forms a polyline at the intersection of 2-junctions with
different subdomains pairs.

• 0-junctions are corner vertices and are located at the in-
tersection of 1-junctions.

We refer to boundary vertices that lie on 2-junctions but which
do not belong to a 1- or 0-junction as surface vertices. The
vertices that lie on 1-junctions and that are not corner vertices
are referred to as feature vertices. Additionally, boundary edges
linking two surface vertices are called surface edges. We do
not need to build the feature complex since the elements of the
feature complex are already present in the input mesh.

0-junction

2-junction

1-junction

Feature 
detection

Figure 7: Feature detection. The surface patches represent 2-junctions, the
polylines 1-junctions and the spheres 0-junctions.
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3.5. Smooth Modeling

We model piecewise smooth boundaries by fitting 2-junctions
with MLS surfaces. These implicit, meshless surfaces are de-
fined through a local operator allowing to project a 3D point on
a local surface reconstructed from unorganized point samples.
We use a classical Point Set Surface (PSS) definition, proposed
by Alexa et al. [45], to represent aliased boundaries and an Her-
mite Point Set Surfaces (HPSS) definition, proposed by Alexa
and Adamson which avoids shrinking of the input model [4],
otherwise. Any other definition can be used without any change
to our methodology. For instance, in the case of input meshes
with limited noise and relevant features, one might prefer a rep-
resentation handling sharp features [46]. We refer to [47] for
an excellent survey on MLS surfaces. We define the MLS sur-
face associated with each 2-junction using a dense, area-based,
consistently-oriented point sampling of it.

The MLS representation of the 2-junctions allows us to fil-
ter noise and acts as a regularizer at each step of our remeshing
algorithm. Storing it also allows us to recover fine geomet-
ric details, when navigating from a low-resolution to a high-
resolution version of the mesh during the remeshing session.

4. Operations

Special care needs to be taken when processing boundaries
since the used local operations, described in this section, do not
result in the preservation of the feature’s topology. Therefore,
following [36] and [37, 38], we define feature-aware rules and
conditions depending on the feature complex hierarchy. Indeed,
our rules assign a priority when processing the mesh elements
based on their type which defines a so-called hierarchy.

4.1. Classification

The main idea is that only interior vertices should be al-
lowed to be relocated freely in the volume, while n-junction
vertices should be moved along their n-junction, in order to
preserve the latter (the same idea was used in 2D for the tan-
gential Laplacian [43], resulting in the preservation of the sur-
face features). To fit these constraints, we define three different
conditions between the pairs of connected vertices leading to
different rules: similarity, inclusion and exclusion (see table 1).

• The similarity condition is met for vi and v j, that are not
corner vertices, if |S (vi)| = |S (v j)| and |S (ei j)| = |S (vi)|
- i.e., for volume vertices, surface vertices linked by a
surface edge, feature vertices linked by a surface edge
and feature vertices linked by a feature edge.

• The inclusion condition if |S (vi)| > |S (v j)| and |S (ei j)| =
|S (v j)| and v j is not a corner vertex - i.e., for mixed edges,
edges linking a surface vertex and a feature or corner ver-
tex and feature edges linking a feature and a corner ver-
tex.

• Otherwise, the exclusion condition is met - i.e., critical
edges, edges between feature or corner vertices not be-
longing to the same 1-junction or linking two 0-junctions.

Boundary facet
Feature edges Topology 

Change
Collapse

Topology 
Change

Collapse

Boundary edge

Figure 8: Topology exceptions. Additional tests to preserve the topology of
the 1- and 2-junctions in small tubular regions.

The pair of vertices meeting the similarity condition affect each
other. For the ones meeting the inclusion condition, only the
vertex with the highest dimensionality in the feature complex,
or the one not belonging to it, will be affected. And finally, for
the exclusion condition, none of the vertices will be affected
since it would create undesired merging of vertices that belong
to different 2- or 1-junctions and fail to preserve small local
features of the subdomains. Table 1 summarizes the conditions
and the derived rules. In practice, except for corner vertices, a
vertex vi will only be affected by the vertices v j of its one-ring
if |S (vi)| ≥ |S (v j)| and |S (ei j)| = |S (v j)|.

Unfortunately, these conditions do not prevent a change of
topology in the same tubular regions as illustrated in Fig. 8. The
three edges around the red facet meet the similarity condition
but a collapse operation would change the topology of the sub-
domains, creating a pinched boundary. Similarly, the collapse
of any of the three feature edges around the blue facet would
change the topology of the 1-junction. Therefore, we perform
two additional topology tests for boundary and feature edges
to detect these configurations and prevent the collapse in these
cases. A boundary edge is not collapsed if one of its incident
facets is not a boundary one but is composed of three boundary
edges. Similarly, a feature edge is not collapsed if one of its in-
cident facets is composed of three feature edges. Now that we
have defined the feature-aware rules, we describe our remesh-
ing process in the following.

4.2. Split edges
In the first step of our iterative procedure, all the edges with

a length superior to emax are split, i.e., a vertex vk is added at
their mid-point, dividing every tetrahedron around the edge into
two. Note that the two new tetrahedra are assigned with the
same label as the one they are subdividing. The set of labels of
the added vertex vk is the set of labels of the tetrahedra around
the current edge, i.e., S (vk) = S (ei j). As only insertions are
performed at this step, no feature preservation rule is required.

4.3. Collapse edges
Now that the long edges have been split, we remove short

edges in order to get a uniform edge length close to the tar-
get one. To do so, we collect all the edges to collapse with a
length smaller than emin, and proceed to perform the possible
collapses. At this point, our thorough classification becomes
instrumental, as not all edges can be collapsed without modi-
fying the topology of the subdomains, inverting tetrahedra or
even resulting in an invalid data structure [29, 48].

5



Condition Type of vi Type of v j Type of ei j |S (vi)| |S (v j)| |S (ei j)| # fi # f j Update vi Update v j

Similarity volume volume volume 1 1 1 n/a n/a yes yes

Similarity surface surface surface 2 2 2 - - yes yes
Similarity feature feature feature ni > 2 = ni = ni < 3 < 3 yes yes

Inclusion volume boundary mixed 1 > 1 1 - - yes no

Inclusion surface feature or corner surface 2 > 2 2 - - yes no
Inclusion feature corner feature ni > 2 n j > ni ni < 3 - yes no

Exclusion boundary boundary critical ni n j , min(ni, n j) - - no no
Exclusion feature feature or corner surface - - - > 2 - no no
Exclusion corner corner - - - - - > 2 no no

Table 1: Conditions and rules ensuring the preservation of the subdomains’ topology. All operations depend on the type of the edge and its vertices. We can
easily detect if the vertices will be affected during the current operation depending on their number of incident subdomains and of incident feature edges noted # fi,
i.e., on their dimension in the feature complex.

Feature preserving collapse. We start by evaluating which con-
dition the current edge meets in order to define which type of
collapse to perform, according to table 1:

• similarity: mid-point collapse (both vertices are affected),

• inclusion: toward the vertex with the highest number of
subdomains, i.e., with the lowest dimension in the feature
complex,

• exclusion: no collapse, since a contraction would change
the topology of the subdomains.

The tetrahedra incident to the affected vertex, or vertices, are
set to be updated, except the ones incident to the current edge,
which are set to be removed. In order to ensure the validity of
the operation, we perform the following tests:

1. all the updated tetrahedra have a positive volume,
2. all the new edges are shorter than emax,
3. no incident non boundary facet has three boundary edges,
4. no incident boundary facet has three feature edges.

The third (resp. fourth) topology test is performed for bound-
ary (resp. feature) edges. The operation is performed if these
four constraints are met. Some of the new edges, incident to the
remaining vertex, may be shorter than emin. Therefore, we eval-
uate their length and set the ones that do not respect the length
criteria to be collapsed. This process is repeated until all edges
are either smaller than emin or impossible to collapse.

Following Botsch and Kobbelt [41], once the overall edge
length is close enough to the target one, the local connectivity
is changed in order to minimize the average valence and opti-
mize locally the dihedral angle distribution, using an edge flip
operation described in the following.

4.4. Flip edges

Flipping an edge in a tetrahedral mesh induces far more
changes than for a triangular mesh. Indeed, the operation changes
the number of tetrahedra adjacent to the edge, except when
there are exactly two or four adjacent tetrahedra. It removes an

edge and replaces it with facets. The flip operation, also called
edge removal, has been first proposed in [49] and further stud-
ied in [25, 26], as a mesh improvement strategy. For each edge
ei j, we explore the space of possible flip operations and per-
form the one that offers the best quality for T1(ei j). Specifically,
it should maximize the worst dihedral angle for volume edges
and average the boundary vertices valences, i. e. minimize the
average boundary vertices valence’s deviation from 6 for sur-
face vertices and 4 for feature vertices. In the mean time, the
operation generating inverted tetrahedra or edges that already
exist are discarded. Recalling that boundary edges have exactly
two incident boundary facets, we preserve the 2-junctions by
flipping the edges towards one of the two boundary vertices of
these facets, enforcing a boundary edge in the new configura-
tion. Last, feature edges are not flipped since processing them
would fail to preserve 1-junctions.

4.5. Filtering
Once the connectivity has been updated to locally optimize

the dihedral angle distribution, we relocate the vertices to im-
prove their distribution (see Fig. 9). Each vertex is relocated
by averaging the subset of its one-ring vertices that meet the
similarity or inclusion condition (according to table 1) and, for
boundary vertices, that verify the topology tests. To prevent
the inversion of tetrahedra, first we smooth the feature vertices,
then the surface ones and finally the volume vertices.

Feature vertices. The feature vertices lie at the intersection of
three or more 2-junctions. For each adjacent 2-junction, we
perform a tangential Laplacian smoothing using the positions

Figure 9: Feature preserving smoothing. Using the feature complex, a feature
preserving hierarchical smoothing is performed.
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3-2 flip

3-2 flip

Face flip

Cap Sliver

Figure 10: Sliver removal. Optimization step to remove the remaining few
poorly-shaped tetrahedra: (Left) face flip, for cap tetrahedra, or (Right) edge
removal for other kinds of degeneracy.

of its neighbors on the related 1-junction and the vertex normal
corresponding to the current 2-junction, then project the result
on its MLS surface. The smoothed position is then obtained by
averaging the projected points.

Surface vertices. We perform a tangential Laplacian smooth-
ing by considering (i) the surface, updated feature and corner
vertices of its one ring, that verify the similarity or inclusion
condition and the topology tests, and (ii) the corresponding ver-
tex normals, which are computed using its adjacent boundary
facets. The smoothed position is then projected onto the MLS
surface modeling the related 2-junction.

Volume vertices. Finally, the vertices that do not belong to the
feature complex are smoothed by performing a Laplacian smoo-
thing using all its adjacent vertices, since they all verify the sim-
ilarity and inclusion conditions.

4.6. Quality improvement

After a few iterations (typically 5 to 10), the target resolu-
tion is usually reached and the overall mesh quality is improved.
However, we observed that performing a few cycles of smooth
and flip operations drastically improves the final quality.

A final optimization process might be necessary to remove
slivers or poorly-shaped tetrahedra. For each tetrahedron not
meeting the quality criteria, we identify its type of degeneracy
(see Fig. 2) and we perform the operation that improves the
local quality while respecting the previously prescribed rules.

First, needles or wedges, which have a large longest to short-
est edge ratio in addition to a small radius-ratio, are removed
by collapsing their first collapsable shorter edge improving the
local quality. Note that, since our method equalizes the edge
length, these types of elements are unlikely to appear. Then
the caps, which have a small radius-ratio and three large dihe-
dral angles, are removed by flipping the face opposite to the
three largest dihedral angles. Finally, for slivers, which have
two large and two small dihedral angles, we perform the flip of
one of the two edges, shared by the pairs of facets forming the
larger dihedral angles, that best improves the local quality (see
Fig. 10). Usually, a small number of tetrahedra do not meet the
quality criteria, and only a few iterations are required.

4.7. Adaptive sizing field

Our algorithm supports spatially-varying edge length tar-
gets. We present in this section results based on sizing fields

Boundary 
segmentation

Tetrahedra 
segmentation

Remeshing

New features

Figure 11: Closed surface features are detected on the outer boundary of the
represented domain, and are added to the feature complex by segmenting the
imaginary tetrahedra.

that we derive automatically from the input geometry. In partic-
ular, in order to get graded meshes of reduced size, we propose
to compute the sizing field based on a distance field from the
boundaries. This distance field is computed by first discretizing
the space inside the triangulation’s offseted bounding box, re-
sulting in a voxel grid of a user-defined resolution. In a second
step, each voxel is assigned the smallest distance from its center
to the set of boundary facets of the input model. These distances
are efficiently computed using an acceleration structure detailed
in section 5. Finally, the grid values are normalized. Given a
target length for the boundary edges lB and one for the volume
edges lV , the target length li j for the current edge ei j is given by:

li j = (lV − lB)D(mi j) + lB

with mi j the edge mid-point and D : R3 → R+ the normalized
distance field from the boundaries. Note that any user-defined
sizing field can be used to tailor the edge length and produce
dense meshes in regions of interests.

4.8. Additional feature preservation
The preserved 1- and 0- features stem from the multi-material

junctions. Nevertheless, the input domain’s sharp features are
not taken into account. In the following, we explain how to
preserve additional features by either segmenting the imagi-
nary tetrahedra, hence creating multi-material junctions, or by
explicitly tagging features edges and corner vertices to be pre-
served during the remeshing process.

Closed features. We propose to detect closed features on the
outer boundary of the represented domain, and to add them to
the feature complex by segmenting the imaginary tetrahedra.
To do so, the outer boundary facets - with one incident imagi-
nary tetrahedron - are clustered in surface patches with similar
normals delimited by closed feature lines using the Variational
Shape Approximation (VSA) method [50].

Detected feature lines represent sharp creases of the input
domain. In order to preserve them during the remeshing pro-
cess, we add them to the feature complex by propagating the
facet’s segmentation to the imaginary tetrahedra. The imagi-
nary tetrahedra are therefore labeled implicitly, creating 1-junc-
tions where the detected close features lie (see Fig. 11 for an il-
lustraton). In concave regions, facets belonging to two different
regions might be connected by critical edges (see Fig. 12). In
that case, performing a straightforward flood-filling, propagat-
ing the facet segmentation to the imaginary tetrahedra, induces
unconnected components, conflict regions and sparse 1- and 0-
junctions created on the boundaries (see Fig. 12). To overcome
this problem, we split imaginary critical edges as a pre-process.
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Figure 12: To overcome conflicts that can occur in concave regions, the imagi-
nary critical edges are split as a pre-process.

Marked features. The described feature detection and preser-
vation method is limited to closed junctions. However, not all
relevant feature lines (e.g., surface curvature-based ones) are
closed. Hence, we propose to preserve user-prescribed poly-
lines by adding (i) each polyline as a distinct 1-junction to the
feature complex and (ii) their end points and intersections as
corner vertices. The features are explicitly tagged and not im-
plicitly defined by the multi-material junctions. Hence when
splitting a feature edge, the two new edges and the inserted ver-
tex are tagged as features. Consequently, our conditions defini-
tions (see Table 1) still hold. Table 2 summarizes the specific
rules for this case: if the user wants to preserve the exact input
feature vertices, we set the feature polylines being smoothed by
the remeshing process as corner vertices.

Condition # fi # f j Is ei j feat. Update vi Update v j

Similarity 2 2 yes yes yes

Inclusion 0 >= 1 no yes no
Inclusion 2 1 or > 2 yes yes no

Exclusion > 0 > 0 no no no
Exclusion 1 or > 2 1 or > 2 - no no

Table 2: Feature-aware rules for tagged features.

5. Results and comparisons

Performances were measured on an Intel Core2 Duo (single
thread) at 2.4 GHz with 8GB of main memory. We used the
Computational Geometry Algorithms Library (CGAL) 3D tri-
angulation code as an underlying mesh structure and its Axis-
Aligned Bounding Box (AABB) tree implementation to effi-
ciently compute the adaptive sizing field. This tree is built using
the input mesh’s boundary facets and is used as an acceleration
structure to compute the distance field. Since the conditions are
evaluated using local adjacency information, we do not need to
build the feature complex explicitly in contrast to [3]. We only
store the list of labels incident to each vertex and construct the
MLS representation of the 2-junctions. Note that we tagged the
elements of the user-provided features. Our implementation is
robust to poorly-shaped tetrahedra with zero or negative vol-
ume. Furthermore, any type of triangulation can be remeshed
by our method, allowing us to process a wide range of input.
We demonstrate the validity of our approach on both synthetic
and acquired segmented voxel grids. We apply our method on
naive meshes generated from a segmented 3D voxel grid de-
fined through a five-cells decomposition of all the voxels con-
tained in the bounding box of the domain while unifying in-

Figure 13: Parameter space exploration. High-quality meshes generated for
each target length, in 5 iterations plus 2-3 flip and smooth cycles, with dihedral
angles between [21.1, 147.2], [21.8, 154.8] and [21.0, 148.5] for step 1, 2 and 3
respectively.

ternal and external boundaries. The resulting high-resolution
mesh reproduces the grid topology with aliased boundaries. As
explained in the previous section, our rules depend of the el-
ement’s dimension in the feature complex. For instance, we
start by flipping the boundary edges that improve the average
valence of the boundary vertices and then flip the volume edge
that locally maximizes the minimal dihedral angle. The MLS
representation of the surface patches allows smoothing noisy
boundaries and features. Furthermore, it allows refining as well
as simplifying the input mesh while preserving the boundaries’
shape, since the representation is independent from the current
mesh state. To evaluate the quality of the resulting meshes, we
report the dihedral angle distributions using green histograms
and the distributions of radius-ratio (multiplied by 3 for nor-
malization) using orange ones. Fig. 13 illustrates an interaction
session where the user navigates between different resolutions.
High-quality meshes are generated, within seconds, for three
different target lengths, in 5 iterations plus 2-3 flip and smooth
cycles. Even though no sliver removal step was performed, the
resulting meshes all have dihedral angles above 21 degrees.

Our approach is targeted but not limited to multi-material
input domains, and we evaluate our approach on single mate-
rial input meshes as well (see Fig. 1, 14, 15 and 16). We can
observe the good angle distribution and assess visually the over-
all mesh quality. We compare our method with state-of-the-art
single-material meshing techniques. In Fig. 15, the meshes of
the first row are generated from the same Sphere surface mesh
using the same size and quality parameters. The first mesh is
generated by a Delaunay Refinement process and the second
by using DelPSC [11]. The meshes of the second row are gen-
erated using the Refinement mesh as an input. We performed
our remeshing process, using 5 iterations and 3 flip-smooth cy-
cles, in 20 seconds and performed an ODT [51, 52] optimiza-
tion with the same time limit. We can see that our method does
not produce slivers since the smallest dihedral angle is 23.2 de-
grees, whereas other methods need an additional optimization

Figure 14: Kitten. High-quality isotropic and adaptive remeshing.
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Figure 15: Comparison. First row: Mesh generated from the same Sphere surface mesh using the same size and quality parameters. The first mesh is generated by
using DelPSC [11] and the second by a Delaunay Refinement process. Second row: Meshes generated using the Refinement mesh as an input.

Figure 16: Self intersecting mesh processing. Note that Delaunay-based techniques, such as ODT can not process self-intersecting surfaces. The green histograms
show the dihedral angle distributions.
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Model Input. sB − sV Output In complex Timing
#tet #tet #tet.

Spheres 3 999 1 20 062 6 165 8s
1-5 23 588 2 000 10s

0.6-5 44 784 10 669 31s

4 labels 750 000 2 85 853 30 834 1m24s
sphere 6 3 192 1 153 6s

4-5 5 470 2 074 20s

Hepatic 4 757 904 1.1-8 679 580 187 616 20m
Vessel 2.5-8 61 170 16 546 3m20s

Hand 4 158 720 2.4 - 8 3 717 750 88 167 8m38s
1.1 - 8 617 920 219 739 7m30s

Kitten 371 183 7.6 9 439 3 393 57s
7.6-8 6 291 856 2s
3.6 299 669 31 322 53s

1.1-13 784 717 244 424 14m08s

Table 3: Performances. The results are obtained by setting two scalars values
sB and sV for adaptive meshes, or a single scalar sB = sV for isotropic meshes,
defining the target edge lengths as lB = sB∗l0 for the boundaries and lV = sv∗lB
for the volume, l0 denoting the average input boundary edge length. Output
#tet is the number of tetrahedra in the triangulation and in complex and #tet
displays the number of tetrahedra that belong to the input domain, i. e. that are
not imaginary. Note that further increased performance is to be expected, if one
desires to ignore imaginary tetrahedra in the mesh.

step. Note that on a similar example, NODT [13] performs bet-
ter than ODT but also produces slivers. Our method prevents
the apparition of degenerated tetrahedra with a large longest to
shortest edge ratio, such as needles and wedges. Since the edge
lengths are equalized, most of the slivers and spindles are re-
moved on account of the angle-based flip and the remaining
few are taken out as a final process, along with the cap tetrahe-
dra (see Fig. 2). Note that this final step is often unnecessary.

Since only local topological operators are used, our method
allows processing self-intersecting volumes meshes. In Fig. 16,
we show (i) on the left results of a Delaunay-based meshing
method of a self-intersecting input domain creating holes in the
output mesh, (ii) in the middle the tetrahedral meshes gener-
ated by the method proposed by Sacht et al. [53] and (iii) on the
right our remeshing resulting using the later meshes as an input.
Note that the output of Sacht et al. [53] (Fig. 16) have been op-
timized in a different pose: they smooth the input surface until
intersections are resolved, triangulate the resulting smoothed
surface and only then put the triangulation in a geometric state
that is compatible with the input geometry of the surface. On
the contrary, we optimize the mesh in its input pose directly.

Last, we present additional synthetic results (see Fig. 17)
and apply our method on segmented medical images (see Fig. 1
and 17). Note that the extremely low dihedral angles (bot-
tom left mesh in Fig. 17) correspond to isolated tetrahedra or
small features w.r.t. the target edge length in the input. Our
method optimizes the geometry under the hard constraint of ex-
act feature preservation. Table 3 shows the performances for the
remeshing of the presented various input data sets. Note that
the performances strongly depend on the input and the edge
aimed length. Timings are obtained using the mesh resulting
from the previous remeshing session as an input, in order to
emphasize the dependance to the current state instead of the

input state. We made sure to present sessions where the reso-
lution was changed smoothly and others where the resolution
was changed arbitrarily, to balance illustration and fairness of
comparison with existing previous work.

6. Limitations & Future Work

Our feature-aware operations strictly preserve the input topol-
ogy, and this property may cause problems for noisy datasets.
Indeed, poorly-shaped tetrahedra are generated when the target
edge length is significantly larger than the size of the feature to
preserve. To tackle this issue, part of these feature-preserving
conditions could be relaxed or the target edge length could be
changed during a post-processing stage. Additionally, when
starting from a segmented voxel grid, a pre-processing step can
be performed to remove isolated voxels and small features as
well as merge corner vertices being too close [3]. More gen-
erally, groups of poorly-shaped tetrahedra could be removed
using a feature preserving version of the vertex insertion strat-
egy proposed in a single material setting [26]. These processes
can be combined with a roll back mechanism in order to cancel
the operations that did not improve the quality. Since we use
local topological operations only, our remeshing method can
be applied on a portion of the mesh using only local neighbor-
hood information. Therefore, based on the streaming algorithm
for compressing tetrahedral volume meshes proposed [28], an
extension of our method to model data that do not fit in main
memory seems foreseeable.

7. Conclusion

We have proposed a new efficient multi-domain adaptive
remesher for tetrahedral meshes. Our approach is based on lo-
cal operations which simultaneously refine or simplifying the
tetrahedra while improving the quality through local topology
changes and point relocations. Additionally, our framework
allows to preserve features detected on the outer boundary of
the domain as well as user-defined features. By decorrelating
the piecewise smooth boundary model from the mesh resolu-
tion using an MLS approach, our method provides high-quality
meshes at different resolutions using well known simple lo-
cal topological operators and is general enough to be applied
to any structured mesh. As a result, our high-quality adaptive
remesher can compete with state-of-the-art methods [3] but is
free from the computation of a Delaunay triangulation/Voronoi
diagram of multi-material domains, requires only to build a
PSC instead, has lower memory cost, can process self-intersec-
ting meshes, and is significantly easier to implement.
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radius-ratio distributions.
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