LazyNav: 3D Ground Navigation with Non-Critical Body Parts

Emilie Guy, Parinya Punpongsanon, Daisuke Iwai, Kosuke Sato and Tamy Boubekeur
IEEE 3DUI 2015
Best Paper Award



With the growing interest in natural input devices and virtual reality, mid-air ground navigation is becoming a fundamental interaction for a large collection of application scenarios. While classical input devices (e.g., mouse/keyboard, gamepad, touchscreen) have their own ground navigation standards, natural input techniques still lack acknowledged mechanisms for travelling in a 3D scene. In particular, for most applications, navigation is not the primary interaction. Thus, the user should navigate in the scene while still being able to perform other interactions with her hands, and observe the displayed content by moving her eyes and locally rotating her head. Since most ground navigation scenarios require only two degrees of freedom to move forward or backward and rotate the view to the left or to the right, we propose LazyNav a mid-air ground navigation control model which lets the users hands, eyes or local head orientation completely free, making use of a single pair of the remaining tracked body elements to tailor the navigation. To this end, we design several navigation body motions and study their desired properties, such as being easy to discover, easy to control, socially acceptable, accurate and not tiring. We also develop several assumptions about motions design for ground navigation and evaluate them. Finally, we highlight general advices on mid-air ground navigation techniques.



PDF format Video


  author = {Emilie Guy and Parinya Punpongsanon and Daisuke Iwai and Kosuke Sato and Tamy Boubekeur},
  title = {{LazyNav}: 3D Ground Navigation with Non-Critical Body Parts},
  journal ={IEEE 10th Symposium on 3D User Interfaces},
  year = {2015}