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Figure 1: Adaptive simplification using our algorithm: even beyond 10M tri., our parallel approach remains nearly interactive.

Abstract

Real time geometry processing has progressively reached a perfor-
mance level that makes a number of signal-inspired primitives prac-
tical for on-line applications scenarios. This often comes through
the joint design of operators, data structure and even dedicated
hardware. Among the major classes of geometric operators, fil-
tering and super-sampling (via tessellation) have been successfully
expressed under high-performance constraints. The subsampling
operator i.e., adaptive simplification, remains however a challeng-
ing case for non-trivial input models. In this paper, we build a
fast geometry simplification algorithm over a new concept: Mor-
ton Integrals. By summing up quadric error metric matrices along
Morton-ordered surface samples, we can extract concurrently the
nodes of an adaptive cut in the so-defined implicit hierarchy, and
optimize all simplified vertices in parallel. This approach is in-
spired by integral images and exploits recent advances in high per-
formance spatial hierarchy construction and traversal. As a result,
our GPU implementation can downsample a mesh made of sev-
eral millions of polygons at interactive rates, while providing better
quality than uniform simplification and preserving important salient
features. We present results for surface meshes, polygon soups and
point clouds, and discuss variations of our approach to account for
per-sample attributes and alternatives error metrics.
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1 Introduction

Modern 3D capture pipelines allow acquiring real world geome-
try quickly and accurately. The increasing data generation speed
has motivated a large number of research projects, to provide vi-
sual computing systems with geometric operators able to process
this data in real time. In these constrained scenarios, approxima-
tions and a controlled loss of quality are preferable to exceeding
the time limit. This trend in high performance geometry process-
ing had a number of successes, with now solutions for performing
some of the most critical processing steps on-the-fly, for non-trivial
input and on commodity hardware. This includes for instance adap-
tive feature-preserving filtering [Adams et al. 2009] and adaptive
smooth tessellation [Pixar 2013] (i.e., upsampling) which are now
supported by high-performance data structures and even dedicated
hardware and programmable graphics stages.

The case of adaptive geometry simplification (e.g. mesh simplifi-
cation or point cloud subsampling) remains however challenging.
The key problem in this case lies in the data compaction mecha-
nism, which does not cope naturally with a fine-grained parallel
computing environment. Although two decades of research have
progressively led to simplification algorithms offering a control-
lable trade-off between output surface quality and computational
effort, we are still far from high quality, real time simplification for
non-trivial (e.g., multi-millions) sample sets, and current aggressive
simplification methods have a limited range of applications. How-
ever the interactive and real time scenarios we target may benefit
from higher quality simplifications, with applications such as in-
teractive display on mobile devices, dynamic multiview rendering
or live broadcast of 3D captured data (e.g., 3D camera). In such
applications, the resulting geometry may be discarded after a short
amount of time, required immediately after full resolution data gen-
eration or needed on-demand, in multiple versions under a wide va-
riety of simplification ratios. In this case, it is crucial to provide
instantly visually good simplifications.

Indeed, a key aspect of high performance mesh processing, largely
exploited for filtering and tessellation, is the parallel scalability of
the operators and their ability to run on the graphics processor unit
(GPU). In the context of adaptive simplification/downsampling, we
make two observations. First, fast adaptive sampling often relies
on an underlying hierarchical data structure which is costly to gen-
erate and maintain in a parallel environment. Second, with such a
hierarchy in hand, simplifying the mesh often means extracting a
particular, error-driven “cut” in the tree structure. This operation,
either with a bottom-up of a top-down approach, does not map triv-



ially on a fine-grained parallel architecture.

In this paper, we propose a step toward higher quality real time
surface optimization, in the form of a fast simplification method
which provides adaptive error-driven mesh samplings, while stay-
ing within the real time rates required by our target applications for
typical input/output sizes (see Fig. 1). We address the hierarchy
problem using the Morton order of the input surface samples, over
which we compute a one-dimensional sum of the geometric cost
associated with each surface sample. This intermediate representa-
tion allows for an efficient kd-tree construction and later for con-
current evaluation of all the geometric errors to be estimated on all
the nodes of the tree. It also enables the parallel processing of both
leaves and inner nodes, for a constant and predictable per-node cost.
We use the Quadric Error Metric [Garland and Heckbert 1997] as
our basic cost measure for two reasons: first, it remains the state-of-
the-art measure for general simplification. Second, quadrics have
the nice property to sum to quadrics, which allows us to address the
problem of multi-level error computation using the same principle
as integral images (a.k.a. summed area tables [Crow 1984]). The
hierarchy defined by the Morton codes of the samples requires a
single sort to be performed at the beginning of the algorithm. Al-
though the resulting space clustering is less accurate than a pure
error driven tree refinement/aggregation (e.g., BSP tree), it signifi-
cantly improves over uniform GPU clustering techniques. As a re-
sult, our algorithm can simplify large meshes, polygons soups and
even point clouds in real time, accounting for the geometric fea-
tures, but also for additional attributes on the surface. We present
experiments on a collection of models and discuss possible evolu-
tions of our approach.

2 Previous work

Most mesh simplification methods define an objective optimization
criterion, with a metric which measures the error caused by the sim-
plification in the form of some distance between the original object
and the simplified output. Simplification algorithms usually fall
into two categories : iterative simplification and vertex clustering.

Iterative methods [Hoppe et al. 1993; Garland and Heckbert 1997]
progressively reduce the number of primitives of the mesh by per-
forming, at each step, a local simplification operation causing the
smallest error according to the chosen metric. These methods usu-
ally lead to high quality output meshes but are difficult to parallelize
efficiently due to their sequential nature. They also usually require
a clean mesh connectivity which, in the context of instantaneous
capture and processing, can hardly be guaranteed. Although their
method does not reach real time rates, Grund et al. [2011] propose
a parallel simplification algorithm based on this approach.

We focus on clustering methods, which optimize for a simplified
mesh at a coarser grain, by defining a partition of the mesh, com-
puting a representative vertex/polygon for each cluster and meshing
the resulting (smaller) geometric set. The choice of a particular par-
titioning structure has a strong impact on the overall performance
of the process, with solutions including simple grids [Rossignac
and Borrel 1993; Lindstrom 2000], octrees [Schaefer and War-
ren 2003][Lindstrom 2003][Shaffer and Garland 2005], BSP-trees
[Shaffer and Garland 2001] and k-means partitions [Cohen-Steiner
et al. 2004]. The representative element is again chosen to optimize
a certain metric, for which popular choices include the Quadric Er-
ror Metric (QEM) [Garland and Heckbert 1997] which models the
simplification cost as the sum of the squared distances from the rep-
resentative point to the planes defined by the triangles of the cluster;
or the L2,1 [Cohen-Steiner et al. 2004] metric which uses the nor-
mal information to grow large flat clusters whenever possible. The
final meshing step is performed by either reindexing input triangles
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Figure 2: Tree layout in the method of Karras. The yellow bars
represent the range of leaf nodes (in green, with their Morton code)
covered by the internal nodes (in orange). The red dots indicate the
binary split position.

intersecting three different clusters of the partition to the related
representatives [Rossignac and Borrel 1993; Boubekeur and Alexa
2009] or generating polygons tracking clusters boundaries.

Since each cluster is (mostly) processed independently, vertex clus-
tering methods are more adapted to parallel computing and GPU
architectures. In particular, Decoro and Tatarchuk [2007] have
proposed a GPU implementation of QEM-based grid simplifica-
tion [Lindstrom 2000] as well as a probabilistic octree structure
providing adaptivity.

Regarding the type of simplification obtained, our method falls
in the same category as [Schaefer and Warren 2003], [Lindstrom
2003] and [Shaffer and Garland 2005], with an axis aligned hier-
archy depending on a spatially coherent ordering of the primitives.
Most of our contribution is about providing very similar results in
terms of quality, while performing a fully parallel simplification at
interactive to real time rates.

Hierarchical space subdivision structures provide a good trade-
off between full adaptivity and grid clustering to create the ini-
tial partition. The efficient generation of such structures has been
mostly studied in the context of rendering applications. In par-
ticular, Morton curves (or z-order curves) have proved to provide
an efficient space parametrization supporting the hierarchy con-
struction [Lauterbach et al. 2009; Pantaleoni and Luebke 2010;
Garanzha et al. 2011]. More precisely, a Morton code is calculated
for each primitive by interleaving the bits of its binary coordinates.
Sorting them by their Morton code then groups the primitives in a
spatially coherent manner. This allows for the parallel construction
of a binary tree, level by level, starting from the root, each node
representing a contiguous range of primitives. A similar idea is
exploited by Zhou et al. [2010] to build octress in the context of
surface reconstruction.

Our underlying GPU structure is based on the work of Kar-
ras [2012], who maximize the tree construction parallelism reach-
ing real time performances on models beyond 1M polygons. In-
stead of generating one level of the tree at a time, all the nodes are
processed in parallel thanks to a particular tree layout which allows
finding the range covered by a node and its children independently
from the other nodes.

More precisely, the leaf nodes and the internal nodes are stored in
two distinct arrays: L (size n) and I (size n − 1). By assigning
the right indices to the internal nodes, Karras finds the range of leaf
nodes they cover and the indices of their children, without process-
ing their ancestors or descendants first. In practice, the index of the
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Figure 3: Overview. We start by sorting the input vertices in the Morton order and generate a table of leaves (left) onto which we accumulate
per-leaf error quadrics in the Morton order. We then generate a kd-tree, using the Morton integral to compute the internal nodes in parallel
(middle left). Finally, an error-driven simplified geometry is generated by extracting an adaptive cut in the tree in parallel (middle right) and
meshing its representative vertices using the input connectivity (right).

root is set to 0. Then, for every internal node, the indices of its chil-
dren directly depend on the split position: if the range is split at the
position p, the index of the left child will be p (in L if it’s a leaf, in
I otherwise) and p + 1 for the right child. Consequently, the index
of a node corresponds to one end of the range of leaves it covers.
The other end of the range and the split position are found using a
binary search, detecting the first differing bit of the Morton code in
the range (see Fig. 2). We refer to [Karras 2012] for details on the
construction of the structure.

3 Algorithm

Overview Our algorithm (illustrated in Fig. 3) takes as input an
indexed triangle meshM with an error threshold θ and runs entirely
on GPU. It provides a simplified indexed meshM ′ as an output and
consists in several stages:

1. we sort the vertices of M by their Morton code and define a
list of leaf nodes with error quadrics,

2. we compute a Morton integral, which is a cumulative sum of
the quadrics in the Morton order,

3. we compute the internal nodes of a kd-tree K in a parallel,
non-hierarchical fashion using the Morton integral,

4. we gather the space partition S as the highest nodes of K
with an error lower than θ; the simplified mesh is formed by
the representative vertices of S computed using the per-node
quadric,

5. we re-index the input triangles shared among three different
clusters on their representative point [Rossignac and Borrel
1993] to define the simplified connectivity.

In the following, we describe the main steps of our algorithm, es-
sentially structured by the tree construction and traversal, and point
to relevant parallel primitives.

Morton sorting During the first step of our algorithm, we sort
the vertices by their Morton code. Instead of directly sorting the
vertex array (as well as eventual color or normal arrays), we sort
by key an array of integer indices, ranging from 0 to the number of
vertices of the input mesh, using the Morton code of the vertices
as key. We also maintain a look-up table of the inverse mapping
from the intial vertex order to the Morton one. Once sorted, we
eliminate the duplicates in the Morton order – caused by multiple
close-by vertices discretized to the same Morton code. As our array
is sorted, duplicates are contiguous and we can simply:

1. mark the first occurence of each Morton code,

2. perform a prefix sum over the marking, to generate the map-
ping from the sorted vertex array to the compact leaf node
array

3. allocate a compact array Cl and store the duplicate-free leaf
nodes in it.

As a result, we obtain a mapping from the initial vertex array V to
the leaf node array: V → Cl.

Quadrics initialization For every leaf node l, we compute a
4x4 symmetric quadric matrix Ql following Garland and Heck-
bert [1997]. To do so, we compute the face quadric Qt of each
triangle t of M and sum it to the leaf quadrics of the vertices of
t: Ql =

∑
t∈lQt. Assuming the Morton code is computed with

a fine enough discretization, performing this sum in parallel using
atomics induces only a low number of actual collisions between the
threads. Additionally, we store the mean vertex of each leaf node,
its number of vertices and, optionally, the color and/or the normal
vectors. As usual with quadric-based optimization, we consider that
Ql locally models the shape through its minimizer, a representative
point obtained by either inverting Ql, or falling back to the previ-
ously stored mean position when the determinant of Ql is below a
numerical stability threshold [DeCoro and Tatarchuk 2007].

Morton integrals Beyond the Morton-based hierarchy, one key
aspect of our approach lies in the ability to compute concurrently
the error and representative point for all internal node, regardless of
the current state of their descendants. We solve this issue by com-
puting a cumulative sum of attributes (quadric matrix, mean posi-
tion, etc) along the Morton ordered leaves, defining in particular an
additional node attribute Qscan summing all the quadrics stored in
the preceding nodes in the Morton order. The computation of this
sum is performed in parallel using an inclusive scan. Similar to in-
tegral images [Viola and Jones 2001], this “Morton integral” allows
to compute any sum of attributes for consecutive leaves with only
two memory accesses; for instance in the case of the quadric of a
node n covering leaves r1 to r2:

Qn = Qscan[r2]−Qscan[r1 − 1]

Parallel tree construction We build our kd-tree K by process-
ing internal nodes independently following Karras [2012], using
our Morton-ordered leaf node array Cl, enhanced by the Morton



integral. For each internal node n of K, we need to compute its
quadric matrix Qn and its average vertex (position, color, etc) to
figure out its own representative point xn and approximation error
En w.r.t. the original geometry ofM . Qn is the sum of the quadrics
associated with the children of n, which is equivalent to the sum of
the quadrics of all the leaves having n as an ancestor. Thanks to the
Morton ordering, they are all contiguous and by construction [Kar-
ras 2012] trivial to determine (from index rn1 to index rn2 ). As a
result of our Morton integration, this sum is available in constant
time, using 2 quadric accesses and one 4x4 matrix subtraction per
node. Therefore, it can be performed during the parallel generation
of the tree nodes, independently of the node’s children. From Qn,
we extract xn [Garland and Heckbert 1997; Lindstrom 2000] and
the quadric error:

En = (xn, 1)Qn(xn, 1)
T

Algorithm 1 Parallel tree traversal.
for each leaf node i in parallel do
c← 0
error ← +∞
while error > θ and c ∈ internal nodes do
r ← right[c]
l← left[c]
if i > l then
c← r

else
c← l

end if
error ← errorNode[c]

end while
P [i]← c

end for

Adaptive sampling and remeshing Our error-driven simplifi-
cation gathers an adaptive space partition of M as a cut in K,
formed by the highest nodes of K with an approximation error
lower than θ (see Alg. 1). In our parallel context, we formulate
this cut extraction as the computation of a mapping, associating
each element of Cl to its corresponding node in the target cut. To
do so, we initialize an array P , as large as Cl, filled with zeros i.e.,
the root index. Then, we launch a thread i for each element of Cl

that performs a top-down traversal of the tree toward the i-th leaf
cell in Cl. When passing a node with index P [i], if EP [i] < θ, we
stop the traversal. Otherwise, we set P [i] to one of its child nodes,
depending on the value of i: again, by construction, the index of
the child nodes correspond to the splitting position in the leaf node
array (see Fig. 3). Therefore if i is smaller or equal to the index
of the left child, we set P [i] to its value, otherwise we set it to the
index of the right child. Consequently, the traversal is always done
toward the element of Cl (or leaf node) of index i.

At the end of this procedure, any vertex x of V can be mapped to
a node of the target adaptive cut of K in constant time using our
V → Cl mapping, since it is equivalent to V → P . We collect in
parallel the representative vertices for the nodes of the cut to form
the vertex set V ′ ofM ′ by marking the nodes of the tree that appear
in the cut and scanning the marking array. This provides the size
to allocate for V ′ as well as for each node of the cut, the index
where its representative vertex should be written in V ′ (mapping
P → V ′).

Last, we generate the connectivity T ′ of the simplified vertex set by
classifying all input triangles of M in parallel according to P . We

mark the triangles shared by three different clusters and use a par-
allel prefix sum to allocate the output triangle array T ′. We fill this
array with the marked triangles, reindexed over the representative
vertices thanks to our V → P → V ′ mapping. At this stage, for
each triangle, we can optionally check if its normal orientation has
flipped and reorder its vertices if necessary.

Variations Our simplification method can account for per-vertex
attributes, alternative error metrics or input data in different for-
mats.

For instance, the per-vertex color value can be maintained for each
node similarly to quadric matrices. Indeed, it is often desirable
to weight color averages by the area of incident triangles. This
requires two additional arrays: one used to accumulate the weighted
color information (Col) and for accumulating areas (A). After the
Morton integral computation, the color for any node is given by:

Coln =
Colscan[r2]− Colscan[r1 − 1]

Ascan[r2]−Ascan[r1 − 1]

The exact same process can be used for other attributes, such as
normals. In the last part of the algorithm, this extra per-node value
influences the cut extraction by, for instance, bounding its standard
deviation in all cut nodes. In this case, one more array (Col2) is
needed, to accumulate the squared weighted color information. Af-
ter computing its Morton integral, the standard deviation for the
color of a node is:

Sn =

√
Col2scan[r2]− Col2scan[r1 − 1]

Ascan[r2]−Ascan[r1 − 1]
− [Coln]2

with Coln the mean color for the node.

Unorganized point clouds with normals can also be simplified with
our approach by (i) computing the quadric matrices directly from
point normals, (ii) propagating the normal for each node as we do
for color and (iii) omitting the final meshing step. Note however
that, unless per-sampled area/radius is provided, this method re-
quires data with relatively uniform sampling.

4 Implementation and results

We implemented our simplification algorithm in C++/CUDA, using
the Thrust library [Nvidia 2011] for the prefix sums and sort, and
measured performances on a PC equipped with a GeForce GTX 680
and a 3.6 GHz Intel Xeon E5-1620 CPU. We limited our Morton
codes to 30 bits as we store them as 32 bits integers in GPU mem-
ory. For comparison, we also implemented a GPU regular grid sim-
plification, similar to the method of Decoro and Tatarchuk [2007].
For quality check, we report high quality offline results obtained
with QSlim [Garland and Heckbert 1997].

In Table 1, we report the detailed timings of the different steps
of our algorithm for a collection of models. We can see that real
time performances are reached for meshes up to several millions
of polygons and remain interactive beyond 10 millions. While the
tree construction and sampling parts add up to a very small part of
the total time, the current bottleneck appears at the initial phase.
Note however that for application scenarios implying multiple sim-
plifications of the same model (e.g., many-users remote visualiza-
tion, view-dependent rendering), this stage is performed once for
all. In terms of visual quality, as we can see on the Lucy model
for instance (Fig. 4), our adaptive space partition preserves visually
important features, with small triangles around features and larger
ones in flatter parts.



Model #T Out #T Sort Dupl Leaves Scan Cons Sampl Mesh Total
Bunny 70K 4,300 0.8 0.2 1.3 1.0 1.8 0.1 1.2 6.4
Dragon 100K 9,300 1.1 0.4 3.9 1.2 2.8 0.1 1.5 11.0
Horse 225K 10,000 1.4 0.7 1.9 1.6 3.0 0.1 1.6 10.3
Buste 510K 19,200 1.7 0.3 5.4 1.6 3.5 0.5 1.9 14.9
Caesar 770K 18,500 2.3 0.7 5.6 2.5 4.4 0.9 2.1 18.6
Grog 1M 41,000 2.8 1.1 5.0 3.5 5.1 0.9 2.3 20.8
Gargoyle 1.7M 44,500 3.4 1.0 7.1 3.4 4.1 0.6 2.5 22.1
Raptor 2M 22,500 3.6 1.2 8.8 2.8 1.7 0.2 2.2 20.6
Neptune 4M 24,500 4.6 1.3 30.1 1.8 2.4 0.3 6.6 47.0
Crab 11M 64,200 12.8 3.3 69.8 2.4 6.0 0.9 11.4 106.5
Lucy 28M 116,500 29.7 5.6 151.2 6.1 5.5 0.8 23.9 222.7

Table 1: Performance measures in ms, without CPU-GPU mem-
ory transfer. Sort: Morton sorting, Dupl: duplicates removal.
Leaves: initialization of the leaves attributes (quadrics and mean).
Scan: Morton integration. Cons: parallel tree construction.
Sampl: error-driven tree traversal and cut extraction. Mesh: tri-
angles re-indexing.
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116.5 k tri.

28M tri. 121 ms. 222.7 ms. 234985 ms.

Input

Figure 4: Adaptive simplification of the Lucy model. Our ap-
proach approximates better features and singular structure than
uniform clustering, but still runs in split-second for this large
model.

Model model additional space used
size 27 bits MC 30 bits MC

Bunny 1 7 7
Dragon 2 8 9
Horse 5 19 20
Buste 11 32 37
Caesar 17 61 63
Grog 22 75 80
Gargoyle 39 98 120
Raptor 45 44 89
Neptune 91 83 138
Crab 259 217 275
Lucy 642 502 557

Table 2: Memory usage in Mb for 27 bits and 30 bits Morton
codes.

0.000

0.009

grid
3ms

our method
11ms

QSlim
865ms

Figure 5: Error visualization for the Stanford Dragon model
(100K triangles), simplified to 9300 triangles.

Model Method #T Out #T Time H M12 M21
Bunny Ours 70K 4,300 6.4 0.013802 0.000500 0.000499

QSlim 503 0.002425 0.000295 0.000288
Grid 2.5 0.012880 0.001327 0.001294

Dragon Ours 100K 9,300 11.0 0.008810 0.000671 0.000585
QSlim 865 0.009327 0.000370 0.000251
Grid 3 0.013838 0.001142 0.001039

Horse Ours 225K 10,000 10.3 0.004485 0.000280 0.000280
QSlim 1,728 0.001862 0.000104 0.000101
Grid 4 0.009340 0.000588 0.000555

Buste Ours 510K 19,200 14.9 0.003257 0.000237 0.000236
QSlim 4,419 0.001365 0.000095 0.000094
Grid 6 0.007113 0.000505 0.000490

Caesar Ours 770K 18,500 18.6 0.013818 0.000220 0.000209
QSlim 7,544 0.013894 0.000130 0.000124
Grid 8 0.014448 0.000431 0.000413

Grog Ours 1M 41,000 20.8 0.005253 0.000255 0.000249
QSlim 9,101 0.003686 0.000128 0.000124
Grid 9 0.007022 0.000531 0.000482

Gargoyle Ours 1,7M 44,500 22.1 0.006374 0.000236 0.000237
QSlim 15,668 0.004018 0.000120 0.000118
Grid 13 0.006929 0.000496 0.000469

Raptor Ours 2M 22,500 20.6 0.012457 0.000280 0.000277
QSlim 19,057 0.011525 0.000143 0.000137
Grid 15 0,012629 0.000423 0.000423

Neptune Ours 4M 24,500 47.0 0.005375 0.000272 0.000282
QSlim 43,941 0.001851 0.000089 0.000082
Grid 27 0.008222 0.000487 0.000450

Crab Ours 11M 64,200 106.5 0.005439 0.000233 0.000244
QSlim 92,933 0.002617 0.000057 0.000055
Grid 53 0.004677 0.000319 0.000315

Lucy Ours 28M 116,500 222.7 0.008423 0.000185 0.000179
QSlim 234,985 0.000894 0.000035 0.000033
Grid 121 0.003576 0.000211 0.000203

Table 3: Quality and time comparison with H the Hausdorff dis-
tance between the original model and the simplification, M12 the
mean distance from the original model to its simplification and M21
the mean distance from the simplification to the original model.
Timings are given in ms.

In Table 2, we present the memory usage for the same set of models.
The storage space needed on the GPU only depends on the number
of vertices in the input geometry and on the desired Morton code
precision. In the worst case scenario, if the Morton code is chosen
precise enough to be different for every single input vertex (for ex-
ample with the bunny model), there will be as many leaf nodes, and
thus as many quadrics, average vertices , colors... However, as the
size of the model increases, there will be more and more duplicated
morton codes, and consequently not as many leaf nodes. For this
reason, the GPU memory used by the algorithm does not increase
as quickly as the number of triangles in the input model.

We compare our method with GPU grid clustering, which is very
fast but not adaptive: for a comparable number of triangles, our
method preserves visually important features that disappear with
regular clustering while, although slower, keeping timings in a sim-
ilar range. We also compare our results with QSlim, which favors
quality over performances. We report timings and objective error
measures in Table 3, with in particular mean and Hausdorff dis-
tances between the original and simplified meshes. Measures are
performed using the Metro tool [Cignoni et al. 1998]. We plot vi-
sually the simplification error for the three approaches in Fig. 5.
While for grid clustering, the error is concentrated around details,
our method gives a globally lower error, with lower damages on fea-
tures. This reflects in the error measures, with an improved Haus-
dorff distance and a significantly better mean distance to the origi-
nal model. Of course, the quality of the approximation provided by
our algorithm cannot compete with the QEM-based progressive re-
duction of QSlim. However, as illustrated in the Fig. 11, the visual
quality remains overall good, for an execution time which is three
orders of magnitude faster.
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Figure 6: Point-based simplification using our approach.
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Figure 7: Influence of the normals on the visual aspect, timings
and GPU memory usage. On the Grog model, small clustering ar-
tifacts disappear when the normals are maintained, for example
under the beard, on the leg or on the shoulder.

In Fig. 6, we show an example of point cloud simplification using
our approach on the Michaelangelo David’s head model. Again,
while the geometric resolution is drastically reduced, the important
features, in particular the sharp edges, are captured in the simpli-
fied point sampling. The generation time is comparable to the mesh
case, as the triangle reindexing step is not a bottleneck of our ap-
proach. In Fig. 7 and Fig. 8, we show examples of simplifications
preserving the normal and color information. As we can observe
on the Grog model, maintaining normals improves the visual as-
pect of the approximation by helping preserving details and visu-
ally reducing small clustering artefacts. We also show an exam-
ple of simplification accounting for the color information provided
on a per-vertex basis in the input. Visually important features that
mostly exist through the color distribution are better preserved in
this case. This is particularly useful for stereovision data, which of-
ten exhibits more features in the color than in the geometry. Since
no significant change to the algorithm is needed to preserve an addi-
tional attribute (we just maintain it along with the quadrics, means,
etc), the cost in time and GPU memory is relatively small.

In Fig. 9, we provide an example of simplification for a scene ex-
hibiting a strongly varying vertex density. We can observe a proper
behavior of our approach, with large polygons remaining intact with
small ones being correctly simplified. Last, in Fig. 10, we show ex-
periments performed on animated data. In particular, we focus on
performance capture data [de Aguiar et al. ; Beeler et al. 2011], both
for full body (medium resolution) and face (high resolution) mod-
els. We illustrate the range of possible applications for our method
with on one side a rather simple body model (40k triangles) sim-
plified by a factor of 5, and on the other side a high resolution face
model (2.3M triangles) simplified by a factor 100. We show in this
case the resulting mesh structure, obtained in real time as well.

Limitations Although adaptive, our approach falls in the cluster-
ing category, which induces at least two main limitations. First,
such methods lack guarantees on the topology preservation At
coarse scale, under extreme simplification rates, the input topol-

Input

459K tri. / 52Mb
to 40K tri.

geometry based
simplification

geometry + color
based simplification

24 ms / 61Mb 26 ms / 64Mb

Figure 8: Influence of the color, used to drive the simplification
(on the right) or not (on the left), on the visual aspect, timings and
amount of GPU memory used by the algorithm.

7.8M triangles 320K triangles

Figure 9: Simplification of a 7.8M triangles model with strongly
varying vertex density in 54ms using our approach.

ogy frequently changes, collapsing nearby layers. Although this is
not always a weakness [Cohen-Steiner et al. 2004], more control on
this behavior would be desirable. Second, we do not provide an ab-
solute (polygon-wise) control over the output model size: although
the user can set the desired level of simplification by ruling θ, guar-
anteeing an exact number of polygons is tedious. Our Morton inte-
gration is also bounded by the machine precision: when computing
cumulative sums on very large arrays, imprecisions accumulate and
can cause inaccurate quadric matrices, which can lead to instability
in the output mesh. We reduce the impact of this stability problem
by scaling the input mesh to the unit cube (scaling back the output),
and by using double precision when computing cumulative sums.
However, the error may still be significant when processing very
large (giga polygons) models. Such data requires a different class
of simplification algorithms (out-of-core/streaming), at least as a
first pass. Once the model has reached a first appropriate (dense yet
in-core) simplification, it is possible to chain one or several other
in-core algorithms. Addressing these issues while preserving high
performances is clearly one of the main direction for future work.

5 Conclusions

We have introduced a high performance adaptive geometry simpli-
fication algorithm which can process objects made of millions of
polygons in real time and on commodity hardware. We achieve
such a performance level by introducing Morton integrals, which
are cumulative sums of samples attributes or error measures per-
formed along their Morton enumeration. This intermediate object
enables the parallel construction of a hierarchical approximation
structure and its error-driven parallel traversal to extract a cut of
nodes tailoring the simplified geometry. As a result, we obtain
adaptive simplified meshes on-the-fly, with better quality than state-



4.5 ms per frame-mesh
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frame-mesh

5x
Simplification

Input
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Figure 10: Adaptive simplification of performance capture data. Left: 500 frames are processed independently at about 200 Hz. Right: the
three orders of magnitude downsampling is performed in real time on this dense face model.

of-the-art high performance methods. We also showed that our
method can be extended to account for surface attributes and mesh-
less input. Our approach completes the high performance GPU ge-
ometry processing pipeline, which now features live and adaptive
filtering, refinement and simplification. Beyond alternative met-
rics and additional surface attributes, we believe that the concept
of Morton integration can be useful to other kinds of applications,
providing a parallel scalable support for various flavors of multi-
resolution geometry processing and analysis methods.
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Figure 11: Examples.


