
EUROGRAPHICS 2009/ D. Ebert and J. Krüger Areas Paper

Hybrid Ambient Occlusion

Christoph K. Reinbothe∗ Tamy Boubekeur+ Marc Alexa∗

∗TU Berlin
+Telecom ParisTech & LTCI CNRS

Abstract
Ambient occlusion captures a subset of global illumination effects, by computing for each point of the surface the
amount of incoming light from all directions and considering potential occlusion by neighboring geometry. We
introduce an approach to ambient occlusion combining object and image space techniques in a deferred shading
context. It is composed of three key steps: an on-the-fly voxelization of the scene, an occlusion sampling based on
this voxelization and a bilateral filtering of this sampling in screen space. The result are smoothly varying ambient
terms in occluded areas at interactive frame rates without any precomputation. In particular, all computations
are performed dynamically on the GPU while eliminating the problem of screen-space methods, namely ignoring
geometry that is not rasterized into the Z-buffer.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism Color, shading, shadowing, and texture;

1. Introduction

The human visual system is not sensitive to small errors
in low frequency light variation. As a consequence, visu-
ally convincing approximations of global illumination can
be achieved with a rather aggressive simplification of the
light transport. In particular, indirect lighting can be approx-
imated by sampling the geometry in the vicinity of a point,
assuming that this geometry blocks the incoming light. This
technique is called ambient occlusion and is by now a feature
in any modern realtime 3D engine.

The basic idea of ambient occlusion goes back to ac-
cessibility shading [Mil94]: surfaces points are classified
based on the radius of empty tangent spheres – larger empty
spheres hint at more light reaching the surface at this point.
Later, Zhukov et al. [ZIK98] introduced the notion of ob-
scurance to equip local illumination models with a globally
defined ambient term. Finally, Christensen [Chr03] intro-
duced the technique of obscurance in a production environ-
ment (Pixar’s RenderMan) under the (more common) name
of ambient occlusion. If the geometry of the scene is static,
ambient occlusion can be precomputed. We refer the reader
to the recent survey by Méndez-Feliu and Sbert [MFS09] for
a more complete overview of ambient occlusion history.

In this paper we consider the case of dynamic scene ge-

ometry, for which the computation has to be done in real
time for each frame. So far, real time performance has been
achieved by computing the ambient occlusion on the GPU in
screen space (see Section 3 for more details and references).
This limits the effects of ambient occlusion to the geometry
that is actually rendered into the Z-buffer, ignoring parts that
are either in the view frustum but occluded by other objects
or outside the view frustum (e.g. behind the image plane).

We propose to solve this problem by performing a 3D
rasterization of a region of interest (i.e. where ambient oc-
clusion cannot be computed statically), independently of the
current Z-buffer. This allows potential occluders located out-
side the field of view or behind a front object to be consid-
ered. As this approach combines both screen space and ob-
ject space computation, we call our technique Hybrid Ambi-
ent Occlusion (HAO).

HAO is able to reproduce visually convincing ambient oc-
clusion shadowing effects:

• in real time;
• for fully dynamic scenes, without restrictions on the ani-

mation and deformation undergone by the geometry and
without any CPU precomputation;

• considering all nearby objects, even if they are located
outside the (rasterized) field of view.
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HAO is implemented via a multi-pass algorithm running on
the GPU. It produces an AO map, which can be further com-
bined and modulated within a deferred shading rendering en-
gine. This AO map is generated in three steps:

1. a 3D rasterization of the scene geometry is performed in
the region of interest with the single-pass voxelization of
Eisemann and Décoret [ED06] (see Section 5);

2. for each pixel of the screen, the ambient occlusion is
estimated in object space using Monte-Carlo sampling
where occlusion in a given direction is defined as a ray
intersection with a non-empty cell of the 3D rasterization
(see Section 6);

3. the resulting AO values are filtered in screen space using
a separable approximation of the bilateral filtering on the
AO map (see Section 7).

As a result, we obtain smoothly varying low frequency
shadows at interactive rates for complex dynamic scenes on
standard hardware (see Section 8).

2. Background

Ambient Occlusion (AO ) captures the shadows created by
occluded indirect light coming equally from all directions
(“ambient” light) and is a special case of the obscurance
technique [ZIK98]. It is usually approximated on a surface
by only taking local geometry into account: the more ge-
ometry is within a certain distance to a point on the sur-
face, the darker (less accessible) the shading at this point
will be. More formally, considering a point p of the surface,
equipped with a normal vector n, the ambient occlusion A
is defined as follows:

A (p,n) =
1
π

∫
ω∈Ω

V (p,ω)〈ω,n〉dω (1)

where Ω is the hemisphere with center p and orientation n,
V (p,ω) is the visibility term defined to be one if geometry
exists in direction ω and zero otherwise, and 〈.〉 is the dot
product.

This basic definition is usually enhanced with a weight-
ing kernel w to restrict the analysis to the geometry located
within a maximum distance dmax and progressively decrease
the contribution of occluders within this distance:

A (p,n) =
1
π

∫
ω∈Ω

w(V (p,ω),dmax)〈ω,n〉dω (2)

The kernel should reproduce its input at p, and smoothly and
monotonically decay to zero at dmax. Wendland [Wen95] has
derived piecewise polynomial functions that have minimal
degree and the desired compact support:

w(t,h) =
{

(1− t
h )4( 4t

h +1) if 0≤ t ≤ h
0 if t > h

(3)

We use this kernel several times in our approach.

3. Related Work

Several techniques have been introduced over the last 5
years to approximate AO in real-time. These methods range
from purely static to purely dynamic ones. Pharr and
Green [PG04] focus on a static approach by precomput-
ing the ambient occlusion value for a scene and storing the
results in textures or as a vertex component on a per ver-
tex base. This offline rendering pass limits this technique to
static scenes.

Mendez-Feliu et al. [MFSC03] precalculate the ambient
occlusion term on a per-patch basis and perform updates
only for regions with moving objects. However a large num-
ber of patches are needed to produce high quality shadows.

In order to avoid the precomputation of ambient occlu-
sion terms, Bunnell [Bun05] propose to transform meshes
into surface discs (surfels) of different sizes, covering the
original surfaces. Rather than computing visibility informa-
tion between points on the mesh, they approximate the shad-
owing between these discs to determine ambient occlusion.
However, highly tessellated objects are needed to get high
quality shadows as visibility is estimated per-vertex only.
Hoberock and Jia [HJ07] extend this algorithm to work on a
per fragment basis.

Kontkanen and Laine [KL05] presented a technique for
computing inter-object ambient occlusion. For each occlud-
ing object, they define an ambient occlusion field in the sur-
rounding space which encodes an approximation of the oc-
clusion caused by the object. This information is then used
for defining shadow casting between objects in real time.
This technique works particularly well for rigid transforma-
tion of objects, but is limited when arbitrary deformations
are mandatory.

Kontkanen and Aila [KA06] address the special case of
character animation, where the animation parameters can be
used to control the AO values parametrically on the surface.
This technique is very efficient at producing shadows on legs
and arms, but cannot account for the neighboring geometry.

Shanmugam and Arikan [SA07] split up the computation
of ambient occlusion into two parts: a high-frequency part,
evaluated on near objects using an image space approach,
and a low frequency part, approximated on distant objects
with spherical occluders.

Finally, the Screen-Space Ambient Occlusion
(SSAO) [Mit07, BS08] technique made full dynamic
AO available to realtime applications by considering the
Z-Buffer as a geometric guess of the scene and tracing rays
on a per-pixel basis to evaluate the AO. This technique
represents the state-of-the-art in realtime AO, but has a
strong limitation: being performed entirely in screen space,
it ignores any object located outside the field of view –
yet these objects may have a significant influence on the
ambient occlusion residing on visible objects. As a result,
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Figure 1: Overview of the HAO work flow.

the ambient occlusion term at a given visible point might
change with the point of view.

4. Overview

Ambient occlusion is a low frequency effect and it is as-
sumed that the imprecise shapes of shadow areas are visually
insignificant. We exploit this property using two simplifica-
tions. First, the exact geometry of the scene is not important:
we capture the scene in a 3D proxy (a regular grid) by per-
forming a 3D rasterization, acting as a geometric guess for
space occupation and for fast ray intersection. Second, the
occlusion sampling (on the Gauss sphere) can be quite sparse
if we filter it to retain the necessary visual smoothness: we
use a small number of rays for each pixel and smooth the re-
sult with a fast approximation of a bilateral filter (BL-filter)
on the AO map. This filter is geometry aware and benefits
from deferred shading by reusing the depth map computed
prior to appearance maps, such as the normal map, the color
map and, in our case, the AO map.

Basically, the rendering work flow is entirely supported
by the GPU and can be summarized as follows (illustrated
on Figure 1):

1. Generate a 3D proxy by rasterizing the region of interest
into an occupancy grid.

2. Render color, normal, [...] and Z buffers.

3. Generate the AO map by tracing rays: sample the hemi-
sphere for each pixel, using the 3D proxy to compute in-
tersections.

4. Apply a BL-filter on the AO map using normal and depth
information as additional range spaces.

5. Combine color, normal, [...] and HAO values on the out-
put screen buffer.

Note that since static regions can embed precomputed AO
maps, the HAO is performed only where dynamic ambi-
ent occlusion is required, within an arbitrary spatial domain

specified by a simple bounding volume (which can be dy-
namic, too).

5. 3D Rasterization

In order to create a voxel representation of the geometry, we
follow the idea of Eisemann and Décoret [ED06]: an orthog-
onal camera defines a bounding box (near/far plane) around
an object and the bit set is used for coding the color of each
pixel (x,y) as a binary table indicating the presence of ge-
ometry along the z direction.

In particular, we divide the bounding box of the geometry
into slices; each slice represents a single layer within a 3D
texture, holding one to four 32bits unsigned integer values
per pixel. A voxel cell is then described by a single bit, stat-
ing the presence of geometry in its associated sub-volume.
Using up to 8 output buffers simultaneously, leads to a max-
imum 3D resolution ranging from 2563 to 10243 according
to the pixel format.

The grid is created in a single pass by rendering the geom-
etry located inside the bounding box from an orthographic
voxelizing camera. At this stage, every unnecessary opera-
tion (e.g. texturing, depth-test) is disabled. Every newly ras-
terized fragment is logically combined with existing ones in
the framebuffer by an OR-operator (see Figure 2).

One drawback here is the case of polygons which are
aligned (up to numerical precision) with the viewing direc-
tion of the voxelizing camera. After rasterization, such poly-
gons have a framebuffer footprint size of zero and thus are
not stored into the 3D texture. Ideally, a second voxelizing
camera should be set up to rasterize the volume of the scene
from another local frame and correct the 3D texture informa-
tion. However, this additional voxelization doubles a large
part of the HAO cost (voxelization and sampling).

Actually, we observed that in typical real-time scenes, this
artifact occurs only because geometry was designed “axis-
aligned” (standard axis-aligned views in 3D modeling pack-
ages). We therefore rotate the voxelizing camera by a ran-
dom angle prior to the voxelization process. In practice, we
never observed any artifact with this simple setup.

Figure 2: 3D rasterization of the Stanford Dragon at three
different resolutions.
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Figure 3: By sampling jittering values δ from a 3D noise
texture and applying them on a ray ω(p,r), the ray is shifted
to its new direction ω(p,r′).

Figure 4: Influence of the ray spread angle. From left to
right: 0.25, 0.5 and 0.75.

6. Ambient Occlusion Sampling

The AO map is generated by Monte-Carlo integration over
the hemisphere of each pixel to evaluate Equation 2.

A(p,n) =
1
n ∑

ωi∈{ω1,ωn}
w(V (p,ωi),dmax)〈ωi,n〉 (4)

We distribute rays {ω1,ωn} over the hemisphere using a
regular uniform sampling pattern, dynamically jittered with
a space-dependent noise function (illustrated on Figure 3).
This noise function is encoded as a small white noise 3D
texture tilling the entire space and evaluated according to the
position and normal at each pixel. The object space nature
of this jittering procedure avoids flickering when the camera
moves.

The number of samples (rays) and the spread (i.e. open
angle within which the rays are distributed, see Figure 4)
are user-defined parameters and greatly influence contrast,
smoothness and frame rate.

As an optimization, we exploit the fact, that the AO map
will be filtered later on, to reduce the number of steps along
a ray. Instead of marching the 3D proxy and testing each cell
along a ray to find an intersection, we use a fixed and typi-

cally small number of steps to test the grid occupancy uni-
formly along the ray. This provides two benefits: first less
tests are performed (8 in most of our tests), and second, we
do not need branching and perform exactly the same number
of intersection tests for each ray, which is better with the cur-
rent GPU programming model. Obviously, this simplifica-
tion produces more noise in the AO map as some rays pass-
ing near the corner of non empty cells may miss them. Nev-
ertheless, it greatly speeds up the ambient occlusion sam-
pling and still produces visually smooth results once the fil-
tering is performed.

If a filled voxel cell is found, the (actually binary) result
is weighted by distance and angle between the pixel’s nor-
mal and the traced ray. This produces progressive penumbra.
Figure 5 shows the influence of the number of rays on visual
quality, with and without filtering.

7. Bilateral AO Map Filtering

The AO sampling is the bottleneck of the entire process:
it depends on the resolution of the AO map and the num-
ber of rays emitted for each pixel. As an optimization strat-
egy, we generate a low resolution AO map (typically four
times smaller than the actual screen resolution), and use
a joint bilateral upsampling approach inspired by Kopf et
al. [KCLU07] to both resample the HAO map at screen res-
olution as well as filtering the noise present in the initial sam-
pling. This approach is based on bilateral filtering – for more
background see the course by Paris et al. [PKTD08].

We extend the approach of Kopf et al. [KCLU07] by
defining the bilateral kernel over:

• domain: a m×m window in image space, weighted by a
piecewise polynomial function;

• range: a combination of kernels over distance in object
space, angle between normals and AO values.

Note that m controls the smoothing effect of this filtering
over the sparsely sampled AO, while defining the range

Figure 5: Influence of the number of rays. From left to right:
16, 32, 64 and 128 rays per pixel without (top) and with
(bottom) filtering.
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Figure 6: Influence on performance by the three main parameters: voxelization resolution, number of rays per pixel and support
size for BL filtering.

space according to object space entities avoids AO bleeding
between distant objects projected closely in image space.

More formally, let x be a pixel in the final full resolution
buffer, then we define its AO as:

hm×m(x) =
Σy∈Qwd(x,y)wr(x,y)h′(y/k)

Σy∈Qwd(x,y)wr(x,y)
(5)

with Q denoting the set of pixels contained in the square
of m×m pixels centered on x, wd the weighted kernel for
screen space distances:

wd(x,y) := w(||x−y||,m) (6)

wr the weighted kernel defining the range influence:

wr(x,y) := wn(x,y) ·wp(x,y) ·wh(x,y) (7)

with

wn(x,y):=w(1+ 〈n(x),n(y)〉,2)
wp(x,y):=w(||p(x)−p(y)||,dmax)
wh(x,y):=w(||h′(x/k)−h′(y/k)||,1)

p(x) the object space position corresponding to x (extracted
from the Z map), n(x) the normal at this location (extracted
from the normal map), h′ the low resolution AO map gener-
ated at the previous step and k the scale ratio between h and
h′.

Although not separable, the bilateral filter can be ap-
proximated in two passes [PV05], combining two one-
dimensional filters (one horizontal and one vertical), while
still obtaining visually convincing results:

h̃m×m(x) := h1×m(hm×1(x)) (8)

This again improves the frame rate significantly. Note that all
filtering and up-sampling steps are performed on the GPU.

8. Implementation and Results

We implemented HAO in OpenGL using NVIDIA’s Cg lan-
guage. We measured the run-time performances on a desk-
top PC equipped with an Intel Core2Quad Q6600 running at

Parameter Value
Screen resolution 800×600
HAO map resolution 400×300
Ray samples per pixel 32
Steps per ray 8
Voxel grid resolution 2563

BL filter size 16

Table 1: Settings of the test scenes

2.4Ghz, 4GB RAM and a NVIDIA 9600GT under Windows
Vista Ultimate x64. Three different test scenes (Figure 7)
were used to examine different parts of our algorithm.

The Japanese scene consists of about 21K triangles and is
mostly made of axis aligned boxes.

The Stanford Dragon is made of about 871K triangles.
Compared to the previous one, our performance measure
shows that the HAO mapping is almost independent of the
scene geometry complexity. Note that the even slightly bet-
ter frame rate is obtained due to the fact that the region of
interest in which the algorithm runs is defined as the bound-
ing box of the model, and thus does not cover all the pixels
of the screen.

The Cathedral is a standard test scene of AO methods and
contains about 80K triangles with geometric features at dif-
ferent scales.

Additionally, we captured two frames of the Toasters ani-
mated scene (Figure 8), demonstrating the dynamic AO pro-
duced by our method.

Frame rate measurements are reported on Figure 6. The
basic parameter settings are specified in Table 1. Then, we
vary a single parameter and test its influence on the frame
rate. We choose to inspect the influence of the voxelization
resolution, the number of rays traced per pixel and the size
of the bilateral filter support.
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Figure 7: Final rendering. Top: Phong shading alone. Bottom: with HAO mapping.

As expected, we observe that the number of rays is the
most critical parameter. This confirms our choice on a rather
sparse sampling of the ambient occlusion within a lower res-
olution AO map, followed by a bilateral upsampling. Sur-
prisingly, the voxelization cost is almost negligible, what-
ever the desired grid resolution is. We observed that higher
resolution grids significantly improve the image quality only
for narrow ray distribution (small spread), when a “sharper”
AO is desired.

Last, in Figure 9, we compare HAO to SSAO. This illus-
trates the advantages of the hybrid nature of our approach:
all objects around a location are taken into account, indepen-
dently of their screen-space projection.

9. Conclusion

Hybrid Ambient Occlusion improves over Screen Space
Ambient Occlusion by preserving the influence of geome-
try that is not rasterized into the Z-buffer but contributes to
occlusions. As a consequence, shadow areas are consistently
preserved during an animation, even for objects that become
(un)occluded or enter the field of view.

This is achieved by a combination of 3D rasterization, lo-
cal ray tracing and image space filtering. In fact, the algo-
rithm is hybrid by two means: it combines rasterization and

Figure 8: Interactive animated scene. Left: Phong shading
alone. Middle: dynamic HAO map. Right: final rendering.

ray tracing as well as object space and image space compu-
tation.

A similar approach might be adopted for addressing other
rendering techniques in dynamic realtime environments,
such as for instance color bleeding. More generally, 3D ras-
terization offers a simple and generic medium between for-
ward and backward rendering: our future work will focus
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(a) SSAO

(b) HAO

Figure 9: Comparison of SSAO and HAO. Left: Showing the
weakness of SSAO if geometry in front hides potential oc-
cluders in the back. Middle and Right: Occluders which are
outside the viewport have no influence on visible geometry
anymore.

on introducing level of detail, such as 3D mipmaps, for the
generation of the 3D proxy and for computing intersections.
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