Evaluating and Sampling Glinty NDFs in Constant Time

PAULI KEMPPINEN, Adobe Research & Aalto University, Finland

LOIS PAULIN, Adobe Research, France
THEO THONAT, Adobe Research, France
JEAN-MARC THIERY, Adobe Research, France

JAAKKO LEHTINEN, NVIDIA & Aalto University, Finland

TAMY BOUBEKEUR, Adobe Research, France

Fig. 1. From left to right: our glittery version of the a microfacet BRDF with a Trowbridge-Reitz (GGX) normal distribution, a Beckmann variant showing
per-facet color (red/yellow) control, an anisotropic variant and an image-based lighting setup illustrating the support of importance sampling.

Geometric features between the micro and macro scales produce an ex-
pressive family of visual effects grouped under the term "glints". Efficiently
rendering these effects amounts to finding the highlights caused by the
geometry under each pixel. To allow for fast rendering, we represent our
faceted geometry as a 4D point process on an implicit multiscale grid, de-
signed to efficiently find the facets most likely to cause a highlight. The
facets’ normals are generated to match a given micro-facet normal distri-
bution such as Trowbridge-Reitz (GGX) or Beckmann, to which our model
converges under increasing surface area. Our method is simple to imple-
ment, memory-and-precomputation-free, allows for importance sampling
and covers a wide range of different appearances such as anisotropic as well
as individually colored particles. We provide a base implementation as a
standalone fragment shader.
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1 INTRODUCTION

Product design industries, such as automotive, electronics or fashion,
extensively utilize sophisticated materials characterized by "glints" —
specular reflections resulting from microflakes embedded in the ma-
terial structure, or fine geometric detail. Accurately modeling and
rendering these materials in real time, such as car paints, brushed
metals or complex plastics, was previously addressed using various
trade-offs between computational performance and visual fidelity.
Glint rendering amounts to a special-purpose anti aliasing solution;
the goal is to efficiently evaluate the integral between the com-
plicated surface reflection and the pixel filter. In offline rendering
scenarios, glints can be represented explicitly either as points or
highly detailed normal maps using acceleration structures to search
for the sparse reflections [Jakob et al. 2014; Wang et al. 2020]. These
methods provide the full range of visual effects of glints and offer
high quality, but are computationally expensive.

In real-time scenarios [Deliot and Belcour 2023; Zirr and Ka-
planyan 2016], the common strategy is to generate a stochastic
but spatially-and-angularly-coherent approximation of the mate-
rial response that could have been produced by the exact surface.
This strategy leads to inconsistencies between different levels of
detail that have a low visual impact due to the flickering nature of
glints. However, by discarding the representation of micro-scale
structures they cannot offer tools requiring access to the BRDF such
as importance sampling, which is crucial to handle complex lighting
situations such as image-based lighting. This deficiency makes them
much lower quality than the best offline methods. We reach real-
time performance while obtaining high-quality results by making
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Fig. 2. An intuitive view of our point-based strategy. Left: a photograph depicting glints at different distances. Middle left: stratified point samples at multiple

scales. Center: restriction of each scale to its relevant distance range. Middle right: sum over the scales using a growing number k of neighboring cells. Right: as
the distribution tends to become uniform when denser, we substitute the sum with a closed-form approximation for further neighbors, inspecting only a fixed

number of cell at each scale. While visual discontinuities remain at transitions between levels, those are mitigated by our roulette-based mip-mapping scheme.

our glinty model compatible with the necessary features, such as
importance sampling.

To do so, we represent glint rendering as a 4D point process,
but avoid complex geometric structures or potentially unbounded
computations even for highly anisotropic levels of detail, and model
glints implicitly as a multiscale generation process and choose the
right process per viewing condition. This results in a small, constant
per-pixel computational cost coping with real-time frame rates at
high screen resolution on commodity hardware, yet preserving a
physically-grounded behavior.

Contributions. We present an easy-to-implement real-time glint
rendering method, relying on an implicit multiscale grid to lever-
age spatial and angular resolution, that integrates seamlessly into
standard microfacet-based shading models and supports (i) an ex-
plicit pixel filter, improving rendering quality and temporal stabil-
ity compared to grid interpolation, (ii) importance sampling, (iii)
anisotropic glints, (iv) individual glint colors, and (v) UV-free geom-
etry. We also provide a new Russian Roulette based interpolation to
reduce the visual impact of interpolation on glints intensity.

2 RELATED WORK

Offline methods. Offline glint rendering has been greatly researched,
either using point models [Jakob et al. 2014], normal maps [Wu et al.
2025; Yan et al. 2014] or high-dimensional distributions such as the
P-NDF [Wu et al. 2025; Yan et al. 2016]. These methods build upon
earlier foundations [Durikovi¢ and Martens 2003; Ershov et al. 1999,
2001] addressing specific use cases such as car paint and pearlescent
appearances.

Recently, Chermain et al. [2021b] proposed an importance sam-
pling scheme coping with the multi-lobe visible normal distribution
functions (NDFs) of the glittering NDF proposed in Chermain et
al. [2020], their core idea being to tabulate and store the CDF of the
1D marginal distribution of the corresponding slope distribution.
Deng et al. [2022] proposed to precompute and compress range
queries over the NDF to reach a constant space representation NDF.

Neural models [Kuznetsov et al. 2019] have also been used as a
constant space and compute time solution for glint rendering. Shah
et al. [2024] used neural histograms generating per-pixel NDFs with
arbitrary positions and sizes, offering efficient memory usage, yet
remaining far outside the real-time realm. Similarly, methods based

ACM Trans. Graph., Vol. 44, No. 6, Article 255. Publication date: December 2025.

on normal maps [Wu et al. 2025; Yan et al. 2014] incur significant
memory cost.

Real-time methods. Zirr & Kaplanyan [2016] pioneered the use of
a binomial law to statistically count the number of reflective facets
for a given pixel footprint. Although fast, their approach presents
blending artifacts for distant rendering and pixel footprints which
map to anisotropic surface regions.

Chermain et al. [2020] modeled glinty BRDFs using a dictionary
of 1D marginal distributions to represent the core NDF. Their proce-
dural method is physically-grounded and converges to the smooth
BRDF but is restricted to the Beckmann case.

Deliot & Belcour [2023] proposed a stable statistical counting of
glints over the pixel footprint, based on an implicit grid structure of
on-surface random numbers which handles anisotropic filtering at
constant complexity. Their framework is compatible with arbitrary
NDFs and guarantees stable performance for real-time applications
but is not compatible with importance sampling for e.g., image-
based lighting and has a linear cost in the number of light sources,
which is a common pitfall for methods that do not handle area lights
or image based lighting.

Wang et al. [2020] precompute directional probability functions
stored in GPU buffers together with a spatial tree structure used
to count glints at runtime. These precomputed structures enable
real-time glint rendering but induce a severe memory footprint and
are not suited for fully dynamic scenarios.

The challenging case of area lighting has been addressed by
Kneiphof & Klein [2024] who extend previous counting methods
by combining linearly transformed cosines [Heitz et al. 2016] and
locally constant approximations to model the probability of a mi-
crofacet to reflect light from an emitter toward an observer.

We build our method upon the key idea of using a random point
distribution on the surface to produce a stable glinty appearance.
By handling explicit NDFs instead of only synthesizing their visual
response as Zirr & Kaplanyan [2016] and Deliot & Belcour [2023]
do, we offer crucial features, such as importance sampling, for high-
quality production that require complex lighting environments. Con-
trary to Zirr & Kaplanyan [2016] and Chermain et al. [2020], we
offer a model that takes the NDF as an input to ensure the generality
and expressivity of our method.



3 METHOD
3.1 Overview

We propose a transformation of the NDF of a microfacet model into
a semi-discrete one matching a glinty material, with glints seen as
4D points - 2 dimensions representing their position on the sur-
face X and 2 dimensions representing their normal orientation on
the hemisphere Q (see Fig. 2). We provide an implicit representa-
tion of the set of points on X as the result of a sampling process,
which allows direct access and the ability to iterate over the points
close to a given position and orientation. We use this process to
provide an efficient estimation of the visual response by iterating
over highly-contributing facets and using an analytical estimation
of low-contribution ones. By using our semi-discrete NDF and it-
eration method, we offer an importance sampling strategy, which
makes our method a viable drop-in replacement of standard NDF
models in rendering pipelines.

3.2 Deriving the Glinty NDF

We derive our glinty material from the microfacet model of a BRDF.
Starting with the Cook-Torrance microfacet model

F(wo, wp)G(wo, wp, w;)D(wp)

p(@o, wi) = 1

4w - wol |wg - wif
and we modify the NDF D to make it glinty; the other terms pre-
serve their usual forms, and we use the Smith masking-shadowing
function for G in our work as it is widely used. A V-cavity masking-
shadowing function would be a good alternative as its physical
assumption of spatially decorrelated normals matches the deriva-
tion of our density. D represents a continuous density of micro-
facet normals; to produce a glinty appearance, we replace it with
a spatially-varying distribution D4 (x, wp) that models a discrete
set of reflective particles, queried at location x € X. We preserve
the property that Dy converges to D when viewed from afar, while
letting us see the individual reflectors building up the smooth ag-
gregate BRDF when looking closer. This is equivalent to having the
distributions match on average. For X a surface and |X] its area:

i / Dy (x, wp)dx = D(wp). @)

|X|~)oo

One can view the point-based NDF as one possible discrete real-
ization of the continuous one for a finite number of facets. We use
a jittered grid sampler to generate uniform samples and a NDF-
specific mapping T that maps the NDF D defined on the hemisphere
Q onto the uniform distribution on some domain Uq (usually a
disk or a square, see Figure 3 for the Trowbridge-Reitz case), which
reads mathematically

It (@) = D(w)/|Ual. ®)

with Jr the Jacobian of the transformation T and |Jr| denoting the
determinant of said Jacobian. In this paper we will use a mapping
such that U, is a disk inscribed in the unit square.

Once discrete facet orientations are realized we need a per-facet
reflection distribution. Previous methods widen the light source
[Jakob et al. 2014], use a convolution [Chermain et al. 2021a; Zirr
and Kaplanyan 2016] or introduce an ad-hoc multiplier [Deliot and
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Fig. 3. A geometric view of the map T : Q +— Ugq from the Trowbridge-Reitz
(GGX) distribution on Q (right) to the prior space Ugq (left) via the uniform-
energy-hemisphere (middle): T := L o M. Compared to the smooth (non
glittery) NDF (top), our approach (bottom) acts on the prior and concentrates
energy around the facets.

Table 1. Practical parameterization of our model

Microroughness roughness of a single facet o

Roughness roughness of the microfacet distribution «
Density number of facets per area unit Kp
Anisotropy anisotropic extend of the facets Ax

Belcour 2023]). For perfectly specular facets, the Dirac distribution
would be the natural choice. However, the macroscopic scale of
glints makes their angular response non-singular after aggregation
over their covered surface, and we opt for a Gaussian reflection
distribution in practice, thus leading to a BRDF that can be easily
convolved and integrated within arbitrary intervals, making our
model practical. Therefore, we write the NDF as a 2D mixture of

Gaussians N (x, 1, 0) = exp(=|x — u|?/(20%))/(cV27) at x:

Kp
Dt 08) = LS N (). i x4

i ranging over Kp points, y; and x; being the orientation and position
of point i and § the Dirac delta function. The factor of /| /1 (wp)|
compensates for the scaling introduced by the mapping T. The
average of the lobes is used to preserve the integral of the smooth
distribution. The base standard deviation ax (Eq. (4)) is referred
to as the microroughness: that is the roughness of the reflectance
distribution of a single facet. Smaller values give more animated and
glittery behavior, while larger ones give a more stable look. Figure
3, bottom right, shows D, on the hemisphere. Table 1 presents the
principled parameters of our glinty NDF.

To ensure fast anti-aliased computation of pixel values, we an-
alytically convolve our NDF with the pixel filter. As commonly
done [Heckbert 1989], we find an affine mapping of the screen-
space pixel into the texture space, as it is convenient to define our

ACM Trans. Graph., Vol. 44, No. 6, Article 255. Publication date: December 2025.



255:4 « Pauli Kemppinen, Lois Paulin, Théo Thonat, Jean-Marc Thiery, Jaakko Lehtinen, and Tamy Boubekeur

Position LoD O Position

process there. The filtered NDF is then

Di(x,wh) :=/D*(y,wh)f(y—x,23)dy (5)
X

Kp
- —|]T1(<(;)h)| ZN (T(wh),ui, 0(*\/|]T(wh)|)f(xi —x,3)

f being the filter and X its 2D covariance matrix (-5 indicating ac-
tion in the spatial domain). Any pixel filter f can be employed [Greene
and Heckbert 1986; Heckbert 1989]: in practice, we use a Gaussian.
We have presented our setup for NDF models featuring mappings
T : Q — Ug. Importance sampling is commonly done using such
mappings, making our work compatible with most NDFs studied in
the literature. Next we detail T’s construction for the most widely
used models: the Trowbridge-Reitz (GGX) and Beckmann models.

3.2.1 The Trowbridge-Reitz (GGX) NDF. We use the microsurface
transformation framework of Atanasov et al. [2022] to represent
different roughness, including anisotropic ones, as a transformation
M of the NDF to a uniform distribution over Q:
. 4
Ni(0) = MT o/ |MT |, leading to |/ ()| = M| /HMTwh) ,

(©)

M depending on roughness and anisotropy. We compose it with
Lambert’s area-preserving azimuthal projection [Lambert 1772]

L(x,y,2) = (x,y)/V1 + 2, (7)
and obtain T as T := L o M. Figure 3 details this construction.

3.2.2 The Beckmann NDF. It may be tempting to use, for the Beck-
mann case, the usual mapping T given by the importance sampler of
the NDF [Walter et al. 2007]. Unfortunately, the original derivation
is given in spherical coordinates, leading to a discontinuity in the az-
imuth angle and strong distortions near the pole, which distorts the
shape of the resulting glints. As the Beckmann NDF is a Gaussian
on the tangent plane at Q’s apex, we can use the sampling strat-
egy of Marsaglia [1962] which produces samples from a Gaussian
distribution by scaling a random point on a disk, leading to lower
distortion. We start by mapping Uq to the Gaussian:

Bi(x,) = (x,) - yJ-a log(1 = x2 = y2)/(x? +2),

that we then project onto the hemisphere via normalization:

Ba(x,y) = (2,4, 1) /4[1+ x2 + 42,

and obtain T := B1_1 o BZ_1 that we can use in our method.

3.3 Procedural glint generation and rendering

We now turn to a practical implementation of the model. Exact
evaluation of the glinty BRDF requires summing over all visible
facets, which quickly becomes intractable as their number grows.
We observe that the contribution of a facet (x;, p;) highly depends
on its proximity in space and angle to the shading location x and
the half-vector wy. With this in mind, we present a point process
built for quick enumeration of the most relevant ones.
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Fig. 4. Our 4D implicit grid structure (here abstracted as a 2D grid), trad-
ing off spatial for angular resolution, queried for a given filter in the spa-
tial/angular domains in close-up (left) and far away from the surface (right).
Unconsidered points fall outside the pixel footprint and do not contribute to
the pixel value. Background color gradient represents individual glint angu-
lar response centered on the half-vector between light and view directions.

3.3.1 Implicit grid-based procedural generation. Glints are points in
the 4D space [0, 1)2xUq. We generate them by sampling [0, 1)* and
rejecting points outside Ug. We partition [0, 1)* in a 4D implicit
1111
nx’ ny’ nwy’ H(A)y
total of Kp := nx X ny X nwx X nwy grid cells. We generate all
points representing facets by randomly placing a single point in
each of these cells, giving in cell (i, j, wx, ®y) a point positioned
(i,j,a)x,wy)+riijwy
(nx.ny,nwx,nwy)
random number generator (RNG) seeded by (i, j, ox, wy). We use a
congruential RNG as they are fast to seed. Given a cell index, we
can thus directly access the position of the single point in it with
no memory allocation and very little computation.

grid structure with edge length ( ), ending in a

at Xjjo,w, = with Tijoywy € [0, 1)4 given by a

3.3.2  View-dependent Implicit Grid Size. As shown in Figure 4, a
single 2D cell (4, j) of size % X % in position space contains nwy X
nwy points with normal orientations covering the whole range. We
use our implicit grid to quickly iterate over the highest contributing
facets. To do so, we adapt our implicit grid parameters to the viewing
conditions so the pixel footprint covers a low number of positional
cells. We do this by choosing nx and ny so that the pixel footprint
size fits between once and twice the cell size. As our number of
points Kp = nx X ny X nwx X nwy is constant, decreasing nx and ny
increases nwy and nw: we effectively see the same number of points
throughout the various levels, and access them differently across
those. When seen from afar this allows us to iterate on points in a
wider area while restricting ourselves to closer normal orientations
around the half-vector. From even further away the angular filter
covers a large number of reflecting points — to handle this, we
add a compensation term that accounts for the contribution of the
points not considered to be close neighbors (see Sec. 3.3.4). This
is close in spirit to the gated Bernoulli approximation of Deliot
& Belcour [2023], and is intuitively sensible for glint rendering:
individual facets only matter when there are only a few of them
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Fig. 5. We use a Russian roulette to randomly select the right portion of
evaluated points (in orange) and simply use standard linear blending to
interpolate between the compensation terms (in blue) of the two levels. Color
gradient represents the angular response of an individual facet centered on

the half-vector between light and view directions.
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Fig. 6. Blending between MIP levels, using Russian roulette based (top) and
linear (bottom) interpolation. The insets show a case with one MIP level
contributes most to the image (green), and a case where two levels contribute
roughly equally (red). The appearance of linear blending is not consistent
when between levels, as averaging two sets of points does not preserve their
statistics — at mid level, the density is doubled but the intensity is halved.
Our russian roulette based interpolation better preserves the appearance.

(Figure 2). When the number of facets on the edge of a highlight
grows, the appearance quickly converges to that of a smooth BRDF.

3.3.3 Interpolation via Russian roulette. As shown by Deliot & Bel-
cour [2023], linear blending of point distributions is not desirable:
the appearance at the midpoint of interpolation is that of twice
as many glints with half the intensity (Figure 6 bottom right). To
this end, inspired by Tokuyoshi & Harada [2017], we use a linearly
blended weight for a per-point Russian roulette (Figure 5), so that
on expectation we get linear blending but individual points get
quickly enabled and disabled instead of being smoothly blended
(Figure 6 bottom). To keep the appearance smooth under animation,
we slightly mollify the roulette by replacing the Heaviside function
of the exact roulette by a function that goes from zero to one rapidly
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but smoothly:
R(r,w) = smoothstep(max (0, r — ¢), min(1,r + €), w) 8)

where r is a uniform random number and w the MIP level weight.
We use ¢ = 0.1 for all of our results.

3.3.4  Analytic compensation. When viewed from sufficiently far
away, many points contribute to the density. While, ideally, we
would like to sum over all points falling inside the pixel footprint,
this number grows rapidly with increasing distance to screen, mak-
ing direct evaluation infeasible. In this case, the exact point positions
and orientations become however less significant, and using their
expected contribution in place of their exact evaluation works well:
ENooo |5 N N(w, i) = [ N(w.po)dp.
U
We adopt a two-level ap;roximation 0

scheme that builds upon this practical obser-
vation. Given a half-vector w and points gen- 0 0 |° 0 0
erated implicitly for the pixel footprint at an 0 )
appropriate LoD (see Algo. 1), we consider ° 0
the k points falling into the closest cells B(k) 0 0 0
in the angular domain (blue in the inset), and ° =
evaluate only those explicitly. In order to estimate the contribution
of the other points whose lobe are contained inside Uq but fur-
ther away than B(k) from w (orange in the inset), we substitute
their exact contribution with their expectation, and we define our

compensation term as
Clw, ax) = N (a), 1, 0{*1/|]T(T‘1(w)i) dpu. 9)
Ua\B(k)
As our kernels are Gaussian, integrating is more easily done on
rectangular domains (using the error function erf with a simple
rational polynomial approximation) than on non-centered disks.

We make a final approximation by considering the unit square O
enclosing Ug (red in the inset) and estimate C(w, ax) as

Closas) ~ / N (o i sl (T~ (@) dy— (10)

/ N (o, s s Al (T (@) db.

anB(k)

Note that the correction term is only applied in the angular di-
rection; we choose the spatial-angular trade-off such that the small
spatial neighborhood is always large enough to cover the pixel filter
sufficiently (the contribution of points outside of the neighborhood
is negligible). The number k of angular neighbors considered is a
performance-quality trade-off that is easy to change; we find that
k = 4 is already good enough for most cases (see Figure 2). Note
that the compensation terms are computed per level and blended
linearly during mip mapping (see Figure 5).

Adding our compensation term, our final NDF reads:

DL (x, wp) = | (wp)] (11)

N (T(on). s ey T (op)])
Kp

f(xi—x,Z5) |+ C(wp, ox) |-
ieB(k)
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Fig. 7. We render glints with image-based lighting without angular prefiltering for different base NDFs (left: Beckmann, right: Trowbridge-Reitz) in order to
validate our importance sampling scheme. We provide on the left a comparison to the method of Chermain et al. [2021b], which is the only other real-time
glint rendering method that allows for importance sampling. Partial convergence is shown at the bottom with a growing number of samples per pixels. We use
references computed with 8192 samples per pixel to compute the root mean square error (RMSE.) We use RMSE log-log plots which show power convergence
as straight lines. As dictated by theory, importance sampling offers a constant offset in RMSE log-log plots. Note that the smooth case, Chermain, and ours all
converge towards different target images, and thus the error plots aren’t directly comparable. As expected, importance sampling effectiveness increases with
the specularity of the material. In addition to this figure, we provide as supplemental material a live recording of our application, comparing convergence
speeds obtained using our importance sampling scheme against using the standard importance sampling scheme of the target NDF.

Note that Kp is still the total number of points per unit texture
area, distributed across [0, 1)%, and differs from |B(k)|. The ratio
|B(k)|/Kp corresponds to the area of B(k) and allows weighting
the term correctly before summation with the compensation term
C (itself integrating over the complement of B(k): Uq \ B(k)).

3.3.5 Importance sampling. Importance sampling our model is con-
ceptually straightforward: we sample in Uq from the sum of Gaus-
sians of Eq.(11) generated by our point process (Figure 3 bottom
left) and use T~! to map the samples to Q. This process samples
a normal at the given point. To sample outgoing direction from a
view direction we take the reflection of view direction according
to the sampled normal. Algorithm 2 details our method. We first
sample a direction x, according to the NDF to get a neighborhood
B(k) for Eq. (11). We then perform reservoir sampling [Vitter 1985]
on all terms of the sum. Different areas are sampled per MIP level,
thus separate reservoirs are required. We choose to not sample the
compensation term, as it is only significant if the Gaussians are wide
enough to sample the whole area roughly uniformly on their own.
As shown in Figure 7, importance sampling the glint distribution
leads to considerably less rendering noise compared to the simple
alternative of importance sampling the original smooth distribution.
The error plots also empirically confirm that our sampling scheme
is unbiased. We further show in Figure 8 results of our approach
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Fig. 8. The appearance of our model under environment lighting for a
combination of roughness/microroughness/density values, rendered using
our importance sampling scheme.

for a complex environment lighting for different combinations of
roughness/microroughness/density parameters.



Fig. 9. Rendering glints from NDFs. Left: Trowbridge-Reitz (smooth and
ours). Right: Beckmann (smooth and ours).

3.3.6 Extensions of our model.

Anisotropy. Since we choose our virtual MIP level in a simple
isotropic fashion, there is no limitation in scaling in the UV space.
Hence, like Chermain et al. and Zirr and Kaplanyan, we can ren-
der materials like brushed metals by stretching the UV space and
inversely stretching the angular space; see Algorithm 1 for details'.

Colors. As we treat individual points explicitly, we can set their
colors based on the cell index. The compensation term becomes
colored, so the average color must be possible to compute efficiently.

UV-free. Our method supports uv-free rendering
via triplanar mapping (see the inset) by emulating | ##F
3 different point processes {#;} (aligned in 3 or-
thogonal planes). The same roulette term is used
to blend between the 3 processes, using as weight
the absolute value of the dot product between the
triangle normal and the plane normal. However, this
requires more evaluations and is slower than our
base method, and prevents a simple definition of anisotropy as we
use the uv-gradients to compute preferred anisotropy directions.

4 IMPLEMENTATION & RESULTS

We implement our method as a WebGPU shader, and provide an
interactive implementation at https://www.shadertoy.com/view/
tcdGDI?. The required inputs are the lighting and viewing direc-
tions, the surface normal, and the uv coordinates including their
partial derivatives with respect to screen space. We can relax the
requirement for uv coordinates via triplanar mapping, but the par-
tial derivatives are still required. Pseudo code of our base method is
provided in Algorithm 13, and Algorithm 2 details our importance
sampling scheme. Only a few lines of code are required to implement
our method in a standard PBR engine, as neither preprocessing nor
storage are required, and our approach is compatible with various
smooth NDF models (Figure 9).

We recall that our model is controlled by parameters listed in
Table 1, which can all be spatially-varying, i.e. controlled with pro-
cedural or raster maps. Figure 10 illustrates the impact of those
parameters independently, Figure 11 shows results of our approach
across different geometries and shading styles, and Figure 12 shows
results of our approach guided by spatially-varying maps. Note
that too high-frequency spatially-varying parameters can result in

We drive the anisotropy through our diagonal stretch matrix Ay.

2Implementation tip: Eq. (3) states that Vo € Q, |Jr(w)| = D(w)/|Ug|; this allows
us to use D (w) to avoid explicit Jacobian computation.

3As written in Sec. 3.3.4, we use k = 4 for all examples in the paper.
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Algorithm 1: Evaluation of Di

Input:Smooth micro-facet normal distribution D and
roughness ¢, number of points per unit area of
texture space N, glint microroughness ax and
anisotropy matrix Ay, pixel filter size f, texture
coordinate uv, and half-vector wy,.

Result: Glint (colored) normal distribution Dy (D, wy, uv)

res « \/ﬁdet(A;l) // Implicit grid base resolution

// Spatial position

// Angular position

-

Xg «— Ay -uv
Xa < NDF2Disk(D, wy, «)

)

@

4 d — D(wp, a) // Smooth D evaluation
5 A « QueryLod (res - uv) // MIP level
6 Di «—0

foreach ! € {|A],[A]} do
3 wy—1—[A=]]

N}

// MIP weight
9 resg —res- 27! // Spatial grid resolution
// Angular grid resolution

// Spatial variance

10 resg <« 2!

11 Xs ‘_fz Juv 'JuvT
| Taed-(ax AT
// Explicit contribution from nearby points

// Angular variance

13 foreach is € k-NeighbouringCells(xs, ress) do

14 foreach i, € k-NeighbouringCells(xgq, res;) do
// Glint position and orientation
15 gs < (is - ress + Rand2D (i, ia, 1)) /ress
16 ga < (ia - resq + Rand2D(is, 1a, 1)) /resq
17 ¢ < GlintColor(is, ia, 1)
18 r < Rand1D(is, ia, )
19 Dy += R(r,wy) N (Zs, Xs—8s) N (Za, Xa—ga) -¢/Kp

// Analytic compensation for other points
20 D£ += w) E[GlintColor]C(w, Z4);
21 return 77 1d Di

noise under animation because neighboring pixels can get contribu-
tions from points from unrelated MIP levels, so a step interpolation
instead of a smooth interpolation is sometimes more desirable.

Comparison. Table 2 compares at high-level our technique with
previous real-time methods. Our main conceptual difference to the
methods of Deliot & Belcour and Zirr & Kaplanyan is that we ex-
plicitly model the facets; instead of sampling from a distribution
of plausible outcomes, an actual NDF is produced. Like Deliot &
Belcour, our method is constant-time to evaluate regardless of view-
ing anisotropy, but our implicit grid construction is significantly
simpler and allows for glint anisotropy. Chermain et al. also produce
a NDF and allow for importance sampling it, but their approach is
limited to the Beckmann distribution and requires precomputing a
set of distributions which limits their generality.

Pixel filter and Temporal stability. Explicitly modeling the pixel
filter for a set of discrete points produces exactly filtered results and
avoids subtle artifacts related to implicit grid interpolation visible
in previous works, as shown in Figure 13. On top of allowing us to
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Density »

Micro-roughness

Roughness

Anisotropy

Fig. 10. Our model parameterization and how it translates visually. Each parameter is varied across its row over its range, all other parameters being constant.

Algorithm 2: Importance sampling of Di

Input:Similar to Algorithm 1.

Result: Sampled direction wy, and its associated pdf
1 res,Xg, A // Same as Algorithm 1
2 X, < UniformDiskSampling() // Angular position
3 pdf «0
a4l [A]
5 if Rand1D() < A — | 4] then
6 ‘ I« [A];
7 Y Wx — 0 // Cumulative weights
8 W), Iess, IeSq, s, Xa // Same as Algorithm 1
9 foreach ig € k-NeighbouringCells(xs, ress) do

10 foreach i, € k-NeighbouringCells(xgq, resq) do

1 8s:8a, T // Same as Algorithm 1
12 wx — R(r,wy) N(Zs, x5 — gs) -
/B(xa) N (24, X3 — x)dx Luminance(c)
13 D Wi — Wy + 0, Wi
14 X < Sample (]lB(k)NZa,ga)
15 if Rand1D() < wx /Y, wx then
16 ‘ op — T (x)
17 pdf — pdf +wy Area(B(xa)) PDF(Ng, g,)(X)

1 pdf pdflfr(wh)\|wh-wg|w/1

4r|wp-oi] 2wk

handle a wider range of settings, this also translates to better anti-
aliasing and temporal stability as our subpixel details are always
smooth. As such phenomena are better perceived in motion, we
refer to the supplemental video for additional qualitative results.

Performance. Table 3 provides timings for our method and com-
pares it to the approaches of Zirr & Kaplanyan [2016], Chermain
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Table 2. Qualitative comparison with Chermain et al. [2021b] (Cher), Zirr
& Kaplanyan [2016] (Zirr) and Deliot & Belcour [2023] (Del).

Property Owurs Cher Zirr Del

Importance sampling n n
Trowbridge-Reitz / Beckmann / n/ n/ /
Precomputation free n
Constant time n n
Anisotropy n
Individual colors
Energy conservation n n n

Table 3. Performance comparison: in ms per frame on an RTX 3090 (aver-
aged over 1000 frames), at full HD resolution with 3 lights. Timing are given
for Beckmann/Trowbridge-Reitz NDFs if applicable. (*): Our implementa-
tion of Zirr & Kaplanyan uses the gated Bernoulli approximation which
explains the differences in the timings to those in Deliot & Belcour [2023].

90° plane 25° plane
Roughness low high low high
Zirr & Kaplanyan™ 1.42/NA 1.48/NA 272/NA  2.80/NA

Deliot & Belcour 2.07/1.99 2.06/2.06 2.09/2.00 2.06/2.07
Chermain et al. 3.70/NA  3.44/NA 18.02/NA 19.44/NA
Ours 3.26/1.70 3.27/3.33 3.31/1.59  3.36/3.07

et al. [2020] and Deliot & Belcour [2023]. The experimental setup
reproduces the one proposed by Deliot & Belcour [2023] with two
scenarios: one plane orthogonal to the camera (90° plane), and one
plane with a 25° viewing angle, to assess performance when render-
ing glints at multiple scales/MIP levels. Overall, our method stays in
the ballpark established by the state of the art, and doesn’t exhibit
significantly worse behavior in any specific setting. We measure
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Fig. 11. Some results of our glittery BRDF with different set of parameters over different objects and NDFs.
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Micro-roughness

Fig. 12. Spatially varying parameters. Examples with parameters modulated using two different textures. From left to right: our method with uniform
parameters, the texture, our method with one parameter varied spatially according to the texture while the other parameters stay uniform.

Fig. 13. Explicit pixel filter (ours) vs grid interpolation methods. From
left to right: our method, Deliot & Belcour [2023], Chermain et al. [2021a]
and Zirr & Kaplanyan [2016].

-_

Fig. 14. Limitations. Left two images: We assume that only the few closest
points are relevant. There are settings where this does not hold, causing
the background to brighten before the points uniformly cover the surface
(far left, using k = 4 points), which can be mitigated by consider a larger
neighborhood (middle left, with k = 16 points) for a runtime cost. Right two
images: Not all parameter combinations are sensible. If we model a smooth
surface (middle right) with a microroughness that is too high (far right), we
lose the brightness and shape of the highlight. This is physically reasonable,
as we are trying to model a sharply reflective surface with diffusely reflective
particles, but it does mean that the parameter values are not independent
from each other and have to be chosen together with some care.

in the most typical case where most of the surface is covered by
points; our method is roughly twice as fast for sparse cases due to
early exits for points outside the hemisphere.

ACM Trans. Graph., Vol. 44, No. 6, Article 255. Publication date: December 2025.

Beckmann Chermain et al. | Deliot & Belcour | Zirr & Kaplanyan

£:0.972 £:0.972 £:0.961 £:0.973 £ :0.956

Fig. 15. Furnace test: Average energy & (ideally matches Beckmann or at
least be less than 1). Contrary to Chermain et al., our method is not energy
preserving nor conserving. Only Zirr & Kaplanyan increases the energy.

5 LIMITATIONS & FUTURE WORK

Some parameter settings reveal the structure of our mapping con-
struction. As is visible in the bottom right image of Figure 3, the
mapping stretches the shape of the Gaussians. The more extreme
this stretch is, the more disturbing the artifact becomes - especially
in motion. Our compensation term is designed on the assumption
that individual particles are highly specular. When the microrough-
ness is too large, it considers areas outside of Uy and becomes
visible before the glints converge to a uniform mass (Figure 14,
left). Additionally, the microroughness and roughness parameters
are not independent and some combinations can lead to counter-
intuitive results, even if physically reasonable (Figure 14, right).
Similarly to Deliot & Belcour [2023], our method is not strictly
energy-conserving nor preserving. This is due to our mixture of
Gaussians that can gain or lose energy close to the domain bound-
aries: we do not match the integral of the smooth NDF. To quantify
our energy loss we perform a white furnace test (Figure 15). Since
the response of our model is black in areas between the particles and
arbitrarily high when zoomed in, we perform the test averaged over
surface area. Also, our model’s parametrization could be optimized
to provide coherent parameters with a linear perceptual effect. Last,
we could use ray differentials to propagate pixel footprints to po-
tentially support path tracing, including specular indirect lighting
e.g., glint caustics.
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