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Abstract—We propose a new GPU method for synthesizing
subdivision meshes with exact adaptive geometry in real time.
Our GPU kernel builds upon precomputed tables of basis
functions for subdivision surfaces and is therefore supporting all
subdivision schemes, either interpolating or approximating, for
triangle or quad meshes. We designed our kernel so that it can
be integrated seamlessly within a standard tessellation pipeline,
exploiting software or hardware (adaptive) tessellation methods.
We make use of the tessellator unit as an adaptive mesher
for maximum subdivision level, exploiting the linear nature of
subdivision surfaces to enable arbitrary level of detail adaptivity
and control the visual smoothness using Subdivision Shading by
applying the same tables as for geometry. We evaluate our kernel
on a variety of dynamic meshes and compare it to subdivision
substitutes.

Index Terms—Subdivision Surfaces;Real time Tessellation;GPU
Programming

Fig. 1: Real time adaptive GPU subdivision meshes (2 frames
on the right) from a dynamic coarse mesh (left).

I. INTRODUCTION

Real time tessellation methods allow to refine surface meshes
by generating a denser set of polygons on the fly. The domain
surface can be kept coarse to ease animation and manipulation
at application level, while newly inserted vertices are often
used to sample a smooth surface before eventually moving
them according to a scalar or vector displacement map. As
the input mesh may have an arbitrary topology, subdivision
surfaces are frequently considered as a good representation
for the underlying smooth surface to sample. However, due to
the cost of exact evaluation, these surfaces are often replaced
by approximations which can be evaluated at any parameter
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domain point in linear time, without relying on recursive
schemes. Unfortunately, while a large variety of subdivision
surface models exist, most of the approximation schemes are
dedicated to a particular model (e.g., interpolating subdivision
surfaces for triangle domain). In this work, we show how
real time tessellation can be used as an adaptive mesher for
any subdivision scheme by using precomputed basis functions
tables (BFT). We propose a GPU implementation that reaches
high frame rates while outputting dense dynamic subdivision
meshes and integrates seamlessly into the standard tessellation
pipeline, consuming only a moderate amount of GPU memory.
Additionally, we suggest an adaptation of Subdivision Shading
to such an evaluation which, although different, offers a similar
smoothness control mechanism as the original method, still
avoiding recursion or exact parametric evaluation.

A. Related Work

Subdivision Surfaces: A subdivision surface [1] is a smooth
parametric surface of arbitrary topology defined by a base
polygonal mesh (domain) and a subdivision scheme. A subdi-
vision scheme defines a smooth surface entirely by either ap-
proximating (e.g., Catmull-Clark scheme [2] for quad meshes,
Loop scheme [3] for triangle meshes or Loop-Stam scheme [4]
for tri-quad meshes) or interpolating (e.g., Modified Butterfly
scheme [5] for triangle meshes) the base meshes vertices.
They are often defined by a collection of subdivision masks
tailoring a recursive tessellation process interleaved with local
filtering operators and generate a denser subdivision mesh
closer to the limit (continuous) subdivision surface at each
step. For many schemes, subdivided vertices can be pro-
jected to their limit position directly, therefore sampling the
subdivision surface exactly. When a subdivision scheme is
derived explicitly from a spline basis, an exact, recursion-free
evaluation allows to sample the surface at arbitrary parameter
values. Recursive or parametric evaluations are usually both
too expensive for practical interactive applications. However,
as any point of a subdivision mesh can be defined as a
weighted combination of base mesh vertices, it is possible
to precompute a table of basis functions [6]. The weights
contained within this table are associated to each base vertex
for each fine vertex v for which the so-defined combination
provides the position of v. These weights depend on the base
domain connectivity and the tessellation level and can be
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Fig. 2: Our GPU subdivision mesh synthesis pipeline.

generated for limit positions as well, i.e. the projection of v
onto the subdivision surface, which is equivalent to an infinite
number of subdivision steps.

Alternatively, subdivision surfaces can be efficiently sampled
on the CPU at rational parameters by combining translation
and scaling functions [7], therefore computing the basis func-
tions on-the-fly. However, this is not easily adaptable to a GPU
implementation.

Real Time Tessellation: Mesh tessellation can be performed
on the fly and adaptively on the GPU. At first stages of
the rendering pipeline, the input mesh is super-sampled,
generating a large number of fine polygons replacing the
input ones and displacing the resulting vertex set to sample a
given function defined on the base surface. The entire process
is repeated at each frame, enabling the application to only
manage the coarse (dynamic) mesh at application level (e.g.,
animation, physics, interaction) while a high resolution mesh
is synthesized and displayed in real time. Such tessellation
methods can be implemented on any GPU equipped with
vertex shading capabilities [8], [9], exploit GPU computing
environments [10] and benefit from recent hardware support
since DirectX 11 and OpenGL 4 graphics API versions.
One noticeable property of such methods is their ability to
tessellate adaptively the input mesh, providing watertight high
resolution meshes with spatially varying density. Although
subdivision surfaces may appear as a natural application for
real time tessellation, recursive or parametric evaluation are
often considered too slow for typical interactive applications
and a number of alternative curved surface models have been
developed for this purpose.

Fast Curved Surface Models: Substitutes to subdivision
surfaces [11] offer visual smoothness with a close look to
what subdivision surfaces produce and without the need for
mapping the recursive evaluation to the GPU [12], [13].
These representations are often based on low degree spline
patches [14]. For instance, a Curved PN Triangles [15] is
a triangular Bézier patch built solely from the input triangle
(vertex positions and normals). Such local schemes can only
mimic high order continuity by exploiting a similar strategy
to Phong Normal Interpolation [16]: a synthetic normal field
is generated using interpolation over the input vertex normals,
independently of the actual geometric differentials. This in-
terpolation is quadratic [17] in the case of PN Triangles and

can even make use of subdivision basis [18]. A number of
subdivision surface approximations [19], [20], [21] have been
proposed following a similar strategy. Simpler operators such
as Phong Tessellation [22] can also offer an economic way
to get rid of most of the typical visual artifacts stemming
from coarse meshes. Although all of those methods produce
smoother high-resolution versions of the input mesh, none of
them can reproduce the high quality of a true subdivision
surface.

B. Contribution

We propose an adaptive subdivision surface meshing algorithm
which exploits real time GPU tessellation to produce dynamic
subdivision meshes on-the-fly. Our geometry synthesis kernel
is oblivious to the particular subdivision scheme in use and
can therefore be combined with all classical ones (i.e., sta-
tionary local schemes with compact support). We use BFTs at
maximum level to index an adaptive triangulation and exploit
the same tables to generate a smooth normal field in a similar
way as subdivision shading [18]. Our kernel runs at high frame
rates for dynamic input base meshes with deep (adaptive)
tessellation ratios and is fully compatible with the standard
tessellation pipeline. On the contrary to subdivision substitutes,
we do not aim at producing visually smooth surfaces only but
rather propose to carry off computations from CPU to GPU
for all applications exploiting subdivision meshes (e.g., high-
end modeling packages) without the need to switch to a new
representation.

Notations: We denote M as the base mesh and § as a given
local and compact subdivision operator. M* = 8¥ (M) is the
subdivision mesh after k steps of subdivision applied on M°.
Any mesh M’ is composed of a vertex set V' = {vi} and a
face set F' = {fi}.

II. GPU SuUBDIVISION KERNEL

A. Overview

The basic idea is to use the tessellation unit (either GPU
emulated or hardware supported) as a real time adaptive
mesher for a maximum resolution BFT. As usual with BFTs,
several tables have to be generated, one for each input face
connectivity configuration. Following the idea of Bolz and
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Fig. 3: An input triangle t° is subdivided once on the GPU resulting in four triangles t}. Each triangle t} is tessellated (pass
I middle) — for instance by instancing a refinement pattern or by using the DXI1 tessellator — and related basis functions are
queried. Finally, for each created vertex ¥; the linear combination given by the weights w; and the vertices v; is computed.

Schroder [6], we do not generate all the intermediate BFTs
and directly precompute a maximum table, for instance at
level 5 which corresponds to a tessellation pattern of 32x32
faces. The weights stored by these maximum BFTs correspond
to limit projections: all vertices evaluated using these tables
will lay on the (limit) subdivision surface. Therefore, there
is no difference between a subdivision vertex at level 3 or 5
for instance and alternative adaptive triangulations can exploit
the same set of maximum level tables, whatever the desired
number of vertices and triangles. Our algorithm is described
in Figure 2 and makes use of 3 major components:

« An initial GPU subdivision pass is applied on M to
isolate extraordinary vertices (to reduce the number of
tables required) and to initialize a normal field on m!
for subsequent Subdivision Shading.

o Uniform or adaptive tessellation is performed on M',
refining it directly to level k. This step can exploit
recent hardware tessellation units [23], [24] or GPU
implementations [8], [9], [10]

o A set of basis function tables {B'} are precomputed
and stored on the GPU. At rendering time, vertex po-
sitions and normals of M* are computed using linear
combinations of vertices of Ml, with weights stored
in {B'}. The spherical averages required to interpolate
points on the Gauss sphere are approximated using a
single normalization [18].

Basis function tables speedup the evaluation of points on the
limit subdivision surface in contrast to complicated and slow
direct evaluation [25] or GPU recursive emulations [12], [13].
They can be obtained by generating configuration meshes
which consist of a single triangle and its one-ring neighbour-
hood as depicted in Figure 3 (lower left). All vertices are
placed within the zz-plane except one which is moved to
z = 1. This configuration mesh is subdivided with a given
scheme and the basis functions are given in the z-values. This
procedure is repeated for all vertices of the configuration mesh.

Unfortunately, the number of basis function tables increases
quickly for a mesh with arbitrary connectivity. However, ap-
plying a single subdivision step isolates extraordinary vertices

and produces faces at level 1 with one extraordinary vertex
at most. This mechanically diminishes the combinatorics for
precomputation and the number of BFTS to store for a bounded
valence (up to 18 in our experiments). We implement this ini-
tial subdivision step on the GPU and use M in all subsequent
GPU steps. Consequently, the entire algorithm is executed on
the GPU and the input coarse mesh can be provided either
from the main (CPU) application (e.g., high end modeling
packages such as Maya or 3DS Max) or from the GPU itself
(e.g., GPU skinning). After this step all faces will have at most
one extraordinary vertex and are ready for further tessellation
and evaluation using basis function tables.

For the sake of simplicity, the discussion will be limited to the
Loop subdivision because triangles are ubiquitous for real time
rendering and the subdivision scheme produces a surface that
is at least C''-continuous everywhere. However, our approach
is not specific to this scheme and can be used with other
schemes as well (e.g., Catmull-Clark, Butterfly).

Preprocessing: To prepare the input mesh for our pipeline
and to reduce the computational effort during runtime, several
preprocessing steps are applied at initialization time. First, we
load pregenerated basis function tables as in [6]. We store them
as floating point textures which allow random access from
within a shader. Afterwards, we allocate the space required to
store M* on the GPU which will be filled using the initial
GPU subdivision step. At this step we impose M" to be a
uniform tessellation of M? to avoid any memory manipulation
at runtime and directly specify its connectivity. The advantage
is that M can now be animated on the GPU without memory
layout modification as long as its connectivity does not change
(i.e., F! is static). Note that the GPU memory cost for a given
object is small and independent of its actual final resolution
and that the BFTs can be shared by all objects in the scene
(see Fig. 3).

B. Initial GPU Subdivision Step

A single step of uniform subdivision multiplies the number of
triangles by a small fixed ratio (low data amplification) but
may have to handle a large spectrum of connectivity config-
urations. Again, each vertex Uz-l € V! is a linear combination



Fig. 4: M° with the subdivision shading procedure starting at
level 0, 1 and 2.

of the vertices of V® and a large part of the evaluation cost
can be cached by applying a similar strategy as BFTs but
specialized to this single step: we record for each vertex of V*
a computational entry consisting of weights and indices of its
parent vertices in V® and update V' each time V° undergoes
a deformation.

Normal vectors of V! are computed using a similar approach.
This time, each computational entry for a surface normal
of M' has to keep track of the vertices which contribute
to its calculation, namely its one-ring neighborhood. These
vertex indices are encoded into the data structure ordered
consistently in counterclockwise order together with a flag
indicating whether the normal is located on a boundary. For
the latter case the related triangle fan is treated as open and a
different set of tables will be used in the main pass.

struct BFTPatch {
uint m_uiPoints[k];
uint m_uilndexBFT;
uint m_uiOneRingSize;
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The values stored in m_uiPoints index control points
of the patch, i.e., vertices of the patch and its one-ring
neighbourhood. m_uiIndexBFT is an index into the basis
function table, indicating the set of basis functions to use
for the particular patch connectivity. This value is induced
by the related face on Ml, its location (interior, bordering,
etc.) and the valence of the unique (possibly) extraordinary
vertex. m_uiOneRingSize is used as a break condition
while looping over the one-ring neighbourhood in the main
GPU Step.

Note that the initial subdivision step could directly apply
Subdivision Shading [18] using the coarse mesh’ normals and
only a single texture. However, we found the visual result
to be too smooth sometimes resulting in a loss of visual
quality. Similarly, one could delay the evaluation of geometric
normals to a deeper level for starting Subdivision Shading at
the expense of a lower frame rate. Remind that tangent masks
can be used to compute geometric normals, which leads to the
usual defects around extraordinary vertices [18].

GPU Implementation: First, we need the attributes of M°
as random shader-accessible resources (fextures for OpenGL
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Fig. 5: The real time tessellation GPU unit as an adaptive
subdivision mesher.
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and buffers for DirectX). We convert the mesh using GPU
stream output in a preliminary pass, where stream tokens
should be understood as vertex positions, vertex normals etc.
GPU deformation can also be applied during this stage.

In a second pass, we initiate n instances of a single point,
where n is equal to the number of vertices of M'. At shader
level, each instance is identified by its ID and used to lookup
the corresponding computational entry from GPU memory
(e.g., textures). Therefore, each vertex of M can be computed
by evaluating the linear combination as encoded in the entry.
The result is streamed into a random access shader resource.

In the following pass, the surface normals of M! are computed
by again creating n instances of a single point. This time,
normal computational entries are queried and the result is
streamed to complete M* in GPU memory.

Any additional vertex attributes can be treated with a similar
strategy using Multiple Render Targets (MRT) and the calcu-
lation entries from either resource (e.g., texture coordinates
can use the same weights as positions [26]). MRT also allow
to pack these 2 last passes into a single one when using
subdivision gradient masks. We however kept this 2-pass
configuration for enabling alternative normal computation.

Note that hardware instancing of a single point is very fast
and can be seen as a thread creation for each vertex (position,
normal etc.). The initial GPU step does not, overall, represent
the bulk of the computation.

C. Main GPU Subdivision Step

Positions and normals computed at the aforementioned step
as well as the basis function tables are used as random access
shader resources in the main step. For each face/patch f} € F',
tessellation is performed at desired level, outputting a dense
set of parameter values. These values are 2D coordinates
of points laying on fl1 and the tessellator ensures that the
corresponding fine triangulation is generated. We now need to
evaluate the 3D position of the vertex from this 2D parameter
{u, v} and the values computed at the initial step (see Fig. 3).
We first map {u,v} onto an integer subindex: as maximum



BFTs correspond to uniform tessellation at maximum level,
this subindex is trivially computed as the 1D parameter of
{u,v} on the tessellation’s space filling curve. The evaluation
of a surface point given by the refinement vertex v; is a linear
combination of the vertices v} of M and the basis functions
as weights.

f(u7v) = ZBi(uﬂ))V% (D

The basis functions for each surface point are given by
the connectivity index of the patch and the subindex. The
evaluation of equation 1 in the shader is very fast as it boils
down to a simple loop in the following shader code:

main() {
uint uiPatchldx = GetPatchIndex(gl_InstancelD);
BFTPatch p = LoadPatch(uiPatchldx);
vec3 vPatchPos[] = LoadPatchPos(p);
vec3 vPatchNormal[] = LoadPatchNorm(p);
float fBFT[]=LoadBFT(p.m_uilndexBFT, gl_Vertex.x);
vec3 vPos = vec3(0.f, 0.f, 0.f);
vec3 vNormal = vec3(0.f, 0.f, 0.f);
for ( int i=0; i<p.m_uiOneRingSize; ++i ) {
float fWeight = fBFT[i];
vPos += fWeight * vPatchPos][i ];
vNormal += fWeight * vPatchNormal[i];
}
gl_Position = gl_ModelviewProjection * vPos;
vNormalOut = gl_NormalMatrix * vNormal;
/2.

The surface normals are computed similarly to the vertex
positions by applying subdivision shading [18]. Basically the
same weights are used for vertex-positions and vertex-normals,
but the combination is performed on the Gauss sphere. As
for the original technique, this interpolation is usually well
approximated using a single exponential map interpolation,
i.e., euclidean interpolation followed by a normalization. Of
course, tangent BFTs or an extra pass allow to evaluate
the geometric normals, but it usually leads to lower shading
quality [18].

Adaptive Refinement: As mentioned in [6] the tables of
basis functions can be subsampled thus allowing for adaptive
refinement as well. Since we consider limit surface points
at any level, all basis functions of level n can be seen as
a subset of basis functions of level n + 1. The tessellation
unit offers adaptive level of tessellation within a triangle when
specifying different tessellation ratios for the edges of an input
face. Therefore, our approach is trivially made adaptive since
our algorithm does not rely on the particular connectivity
of M*: a triangle with different tessellation ratios (i.e., fine
adaptive triangulation) makes use of the same BFT (see Fig. 5).
Although it is not possible to sample the subdivision surface
at arbitrary parameter domain with our method (e.g., for Loop,
fine vertices must all be located at dyadic split positions), we
can still offer linear geomorph transition, i.e. with all vertices
laying on a virtual mesh subdivided at maximum level.

III. RESULTS AND PERFORMANCES

The performance of our algorithm was tested on a GeForce
GTX 295, 1.8 GB graphics memory and an Intel Core i7
2.67 GHz using OpenGL under Windows (see Table I). We
measured frame rates of our algorithm in combination with the
Adaptive GPU Refinement Kernel [9] as a tessellator emulator.
Although this implementation does not reflect the perfor-
mances obtained with recent genuine hardware tessellation
units, it helps to understand how the overall workload for exact
subdivision mesh generation compares to fast approximations
and subdivision substitutes. Table I gives the frame rate for
several models at various subdivision levels and compares it
to a variety of substitutes.

Surprisingly, while the presented subdivision pipeline is, of
course, more expensive than local refinement schemes such as
Phong Tessellation [22] or PN Triangles [15], it still succeeds
at offering real time performances and significantly higher sur-
face quality (see Fig. 7). For instance, it is only slightly more
expensive than subdivision surface approximation schemes
such as the QAS model [19] which also relies on an initial
subdivision step (that we implemented on the GPU in our
framework). We also measure flat tessellation (no fine vertex
displacement) to better quantify the cost of the subdivision
evaluation. Overall, the performance of our simple approach
shows that subdivision surfaces can be created on the fly on
the GPU with interactive performance and without resorting
to substitutes. Of course, our approach relies on subdivision
meshes and arbitrary parameter evaluation is bounded to linear
interpolation on the fine triangles.

Applications such as games might preferably use subdivision
substitutes as only visual smoothness and high frame rates are
critical. However, for all applications which are using standard
subdivision surfaces with recursive evaluation bounded to a
limited number of subdivision steps (e.g., high end computer
graphics packages for SFX and Animation), our experiments
show that the CPU computational workload can be signif-
icantly decreased by offloading the entire process to our

Fig. 6: Surface quality around extraordinary vertices: com-
parison between quadratic approximation (QAS), Phong Tes-
sellation (PT), PN-Triangles (PN) an our subdivision method
(SM).
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tessellation level at which it is synthesized.

two step GPU algorithm, in particular regarding the per-fine
triangle cost for deep subdivision level (see Fig. 8). The final
result is shaded thanks to Subdivision Shading normals and is,
regardless of the valence, visually smoother (see Fig. 6) than
linear [16] or quadratic [17], [15], [19] normal interpolation.

Future work: Although the memory consumption is not
as critical as for early GPU implementations [27] of basis
function tables (about 9 MB for tables of level 5 for inte-
rior and boundary cases up to valence 18), we think that
the computation time could be improved by quantizing the

Model Head Guy Frog Big Guy

#Input tri. 524 1168 2584 2900
Tessellation Level 2 (4x4 split)

#Output tri. [| 8384 [ 18688 | 41344 | 46400

Frame rate (in fps)

SM [ 641 | 495 | 334 | 291
Tessellation Level 4 (16x16 split)

#Output tri. [| 134k [ 299k [ 661k |

Frame rate (in fps)

SM [ 312 ] 176 | 85 | 76
Tessellation Level 5 (32x32 split)

742k

#Output tri. [| 536k [ 1196k | 2646k | 2969k
Frame rate (in fps)

SM 103 50 24 21

QAS 80 53 44 23

PN-Tri. 109 69 41 35

PT 120 77 48 40

Flat 137 85 52 45

TABLE I: Performance measure.

tables to reduce cache usage. This quantization should ensure
some symmetry to guarantee crack-free subdivision meshes
and for entropy. We plan to experiment with several cache
optimization strategies and face reordering based on vertex
valence rather than spatial proximity.

IV. CONCLUSION

We have shown that a simple combination of basis func-
tion tables and GPU tessellation enables dynamic subdivision
meshing at high frame rates with dense output. Our approach
makes adaptive GPU subdivision trivial, can be implemented



on any programmable GPU using existing tessellation kernels
and is ready to exploit new hardware tessellation units. More-
over, it is compatible with all subdivision schemes, does not
require any particular scheme-specific setup and can provide
smoother shading using Subdivision Shading. We believe that
our method can be useful to developers using subdivision
surfaces who want to exploit the latest GPU generations with
tessellation capabilities without switching to other surface
models such as subdivision substitutes.
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