Author’s Draft. The final version will be presented at the Eurographics Symposium on Rendering

and published a spcial issue of the Computer Graphcis Forum journal. 2013

Factorized Point Based Global Illumination

Beibei Wang™* Jing Huang® Bert Buchholz** Xiangxu Meng®™ Tamy Boubekeur*

*Institut Mines-Telecom; Telecom ParisTech; CNRS LTCI *Shandong University #NYU Polytechnic Institute

Abstract

The Point-Based Global Illumination (PBGI) algorithm is composed of two major steps: a caching step and a
multiview rasterization step. At caching time, a dense point-sampling of the scene is shaded and organized in a
spatial hierarchy, with internal nodes approximating the radiance of their subtrees using spherical harmonics. At
rasterization time, a microbuffer is instantiated at the unprojected position of each image pixel (receiver). Then,
a view-adaptive level-of-detail of the scene is extracted in the form of a tree cut and rasterized in the receiver’s
microbuffer, solving for visibility using a local variant of the z-buffer. Finally, the pixel color is computed by
convolving its filled microbuffer with the surface BRDF. This noise-free indirect lighting method is widely used in
the industry and captures several critical lighting effects, including ambient occlusion, color bleeding, (indirect)
soft-shadows and environment lighting. However, we observe a large redundancy in this algorithm, both in cuts
and receivers’microbuffers, which stems from their relatively low resolution. In this paper, we propose an evolution
of PBGI which exploits spatial coherence to reduce these redundant computations. Starting from a similarity-based
variational clustering of the receivers, we compute a single tree cut and rasterize a single microbuffer for each
cluster. This per-cluster microbuffer provides a faithful approximation of the incident radiance for distant nodes
and is composited over a receiver-specific microbuffer rasterizing only the closest nodes of the cluster’s cut. This
factorized approach is easy to integrate in any existing PBGI implementation and offers a significant rendering

Volume 32 (2013), Number 4

speed-up for a negligible and controllable approximation error.

1. Introduction

The visual impact of global illumination (GI) in a synthe-
sized picture is the sum of a number of lighting effects stem-
ming from indirect light bounces. Among them, one-bounce
diffuse effects, such as ambient occlusion, directional occlu-
sion, color bleeding and indirect soft shadows, carry a large
portion of the visual realism that typical GI solutions bring.
Point-based global illumination (PBGI) is a popular render-
ing technique which captures such a subset of GI effects for
a moderate amount of time and is intensively used in spe-
cial effects and computer animation productions. This GI
approximation model can be seen as a generalized forward
rendering method which combines a fast adaptive approxi-
mation of the scene with a multiview rasterization. The re-
sulting algorithm is noise-free, amenable to a parallel imple-
mentation and can even be extended to other GI effects (e.g.,
multiple bounces), although still away from a full GI solu-
tion, in particular when it comes to specular indirect phe-
nomena (i.e., caustics).

(© 2013 The Author(s)
Draft version, final version pubished in Computer Graphics Forum (Eurographics Associ-
ation and Blackwell Publishing Ltd).

1.1. Basic Algorithm

PBGI [Chr08] runs in a two-step process: a caching step and
a multiview rasterization step. At caching time, the scene is
densely point-sampled (e.g., using Poisson disks), the points
are shaded from the light sources — accounting for direct
shadows only — and structured in a hierarchical data structure
(e.g., octree, BSH). This tree is constructed bottom-up from
the shaded points, with internal nodes carrying approxima-
tions of their related sub-trees (e.g., bounding sphere, normal
cone, low-degrees spherical harmonics modeling the outgo-
ing diffuse radiance).

At rasterization time, each pixel of the final picture is
shaded using a so-called microbuffer, which is a small hemi-
spherical RGBZ image instantiated at the unprojected po-
sition of the pixel (or receiver) in the scene. For each mi-
crobuffer, a specific level-of-detail (LoD) of the scene is ex-
tracted in the form of an adaptive cut in the PBGI tree. The
resulting nodes are rasterized in the microbuffer using a lo-
cal variant of the z-buffer algorithm to solve for visibility.
The filled microbuffer is finally convolved with the point’s
BRDF to shade the pixel.

B.Wang, J. Huang, B. Buchholz, X. Meng & T. Boubekeur / Factorized Point Based Global Illumination

The two key ideas of this algorithm are (i) the point’s hi-
erarchy, which acts as an economic substitute to the actual
scene when it comes to the many adaptive LoDs which have
to be extracted; (ii) the microbuffers, which extend the con-
cept of rasterization to a per-pixel/receiver level.

1.2. Redundancy Issue

Looking back at the rasterization step, we observe that a
specific cut is computed from the entire scene for each sin-
gle receiver. However, the resolution of their microbuffers
is typically low (from 4x4 to 64x64 in practice) which im-
mediately translates into tree cuts having a large number of
coarse nodes, therefore being highly similar for nearby re-
ceivers. As we will show later, this abundant redundancy has
a significant impact on the overall rendering time.

1.3. Overview

We tackle this problem by exploiting the mi-
crobuffers’spatial coherence to factorize both cut com-
putations and rasterizations. Our factorized PBGI technique
(or FPBGI) works in three steps (see Fig. 1):

1. we cluster the receivers based on their similarity and se-
lect a per-cluster active receiver,

2. for each cluster, we compute a single (coarser) cut from
the active receiver and rasterize it in a microbuffer shared
by all receivers of the cluster

3. for any receiver, we start the tree traversal from its cluster
cut and rasterize only the newly added (i.e., closer) nodes
in a receiver-specific microbuffer, which is composited
with the cluster one before final BRDF convolution.

As a result, a large part of tree traversals and cut rasteriza-
tions are factorized among nearby receivers, which leads to
an overall rendering speed-up ranging from 2x to 4x on the
typical scenes illustrating this paper.

2. Previous Work

PBGI. PBGI was first introduced by Christensen [Chr08],
who proposed the idea of microbuffers and exploited
the notion of point-based substitutes introduced by Bun-
nell [BunO5] for real time ambient occlusion and indirect
illumination. Ritschel et al. [REG*09] then replaced cube
microbuffers with 2D Lambert-warped ones, introducing im-
portance sampling to PBGI together with an efficient GPU
implementation. Hollénder et al. [HREB11] later improved
on the fine-grained parallelism of the adaptive cut compu-
tation by pairing nodes and receivers in a low-scale GPU
data amplification mechanism. The cut definition itself has
been addressed by Maletz and Wang [MW11] who used an
importance-driven point projection based on an initial clus-
tering, by Wang et al. [WMXS11] who grouped together
close points with similar normals and computed average
cuts for a subset of the receivers, and by Tabellion [Tab12]

who recently exposed a set of cut picking algorithms suit-
able for HDR imaging. The PBGI accuracy entirely de-
pends on the density of the initial sampling and the re-
lated memory issue has been tackled by Kontkanen et al.
[KTO11], who proposed an out-of-core framework for PBGI
with cache-coherent tree construction and traversal. Buch-
holz and Boubekeur [BB12] proposed an in-core solution to
this problem, learning a reduced set of node data vectors in
high dimension and quantizing all tree nodes against the re-
sulting look-up table.

Coherence in rendering. Coherence through some form of
“reuse” mechanism has been widely studied in GI research.
Such techniques try to avoid redundancy at different levels
of the GI solution computation, including irradiance, radi-
ance, shading and even tree-cuts in a closer context to ours.
Ward et al. [WRC88] reused illumination computation by
computing scalar (diffuse) irradiance on a subset of pix-
els and interpolating for the others, eventually using gradi-
ents [WH92] for smoother results. Wang et al. [WWZ*09]
used k-means to subsample receiving points and interpolate
irradiance, reaching interactive framerates but missing small
geometric details. Radiance Caching [KGPBOS5] overcomes
the limitation to diffuse reflectance by storing incoming ra-
diance as a directional function, interpolating it between pix-
els and convolving with the BRDF for every pixel. Closer to
PBGI methods, Hollénder et al. [HREB11] proposed a time-
coherent cut update, together with a lazy scheme bounding
the amount of time dedicated to this update. Our approach is
inspired by this method, but acts in the spatial domain.

Near-far decomposition. The idea of near-far irradiance
decomposition has been previously studied in the context
of hardware ambient occlusion [SAO7] and final gather-
ing [AFOO0S5]. Acting in a PBGI context, our approach dif-
fers in the sense that the near-far split is entirely formulated
through the cluster/receiver cut, the far component being
shared by numerous receivers.

3. Factorized Point Based Global Illumination
3.1. Variational Receiver Clustering

Our basic assumption is that receivers with similar positions
and normals have similar cuts: we propose to model this po-
sition/normal similarity by computing a variational cluster-
ing of the receivers based on a specific metric D. To ease
parallel computation, we start by regularly tiling the image
space and work independently on each tile. Within a tile, we
group spatially coherent receivers in k clusters using a vari-
ant of the k-means algorithm:

1. we initialize k centers from randomly selected receivers
in the tile,

2. we cluster the tile’s receivers by associating each of them
to its closest center w.r.t. D

3. we update clusters’ centers and restart in (2).

(© 2013 The Author(s)

B.Wang, J. Huang, B. Buchholz, X. Meng & T. Boubekeur / Factorized Point Based Global Illumination

B Active Receiver
Other Receiver

. . Receiver
\l O b ‘f shading
u
_QF‘S:::: + -
H T

== Cluster cut
m= Receiver-specific cut

@ Farnode O Near node ’

Receiver-specific

D Cluster microbuffer
microbuffer

Figure 1: Principle. Starting from a tiled set of image pixels/receivers (left), we perform a variational clustering based on
positional and normal similarity (middle left). For a given cluster, we compute a shared cut (middle right, red) later reused by
each individual receiver to further refine their own cuts (middle right, green). The far nodes of the cluster are rasterized into a
shared cluster microbuffer (right, purple) and refined nodes (added on a per-receiver basis) are rasterized in a receiver-specific
microbuffer (right, orange), which is composited into one cluster for final BRDF convolution (pixel indirect shading).

We perform this procedure for a prescribed number of it-
erations and search, for each cluster, the closest receiver to
the resulting center: in the following, we call it the active
receiver of a cluster.

Following Cohen-Steiner et al. [CSAD04], we define our
position/normal metric D as a Sobolev summed metric:

2 2
D(x,¢) = ||pc — px||” + | |ne — nx||

with x being a receiver, ¢ a cluster center, p (resp. n) their
position (resp. normal) in R3. The weight o trades cluster
flatness for spatial extent. We typically set it to the length
of the tile’s receivers’ bounding box diagonal. Last, at each
iteration, the center position and normal of a cluster C are
updated as follows:

ercnx
|| Xxecnxl|

o ZXEC Px _
Pe = card(C) fle =

3.2. Cluster Cut and Microbuffer

Within a cluster C, the factorized workload among receivers
takes the form of a single shared cut and a single microbuffer
which are computed w.r.t. the active receiver X¢.

In the next step of the rasterization phase, we start by
traversing the PBGI tree from the root for x¢ but stop early
to produce a cut which is coarser than required in the vicin-
ity of x¢. Indeed, we assume that the significant difference
between two nearby microbuffers only appears at fine scale
(i.e., closer nodes) and deal with it later.

During the top-down PBGI tree traversal, we use a
far/near classification of the tree’s nodes based on a mea-
sure 7 for each node/receiver pair: far nodes (y > €) are tra-
versed as usual, while near nodes (y < €) stop the traversal
immediatly. The node/receiver measure is defined as y= 3
with r being the cluster’s radius r and d the distance between
the node and x¢. The resulting cluster cut contains two types
of nodes: far nodes, which are rasterized in the shared clus-
ter microbuffer, and near nodes, which will be concurrently

(© 2013 The Author(s)

refined for each individual receiver in the next step. At this
stage, the cluster microbuffer already carries the distant irra-
diance shared by all cluster receivers.

3.3. Receiver Cut, Microbuffer and Shading

In the last part of our algorithm, we process each individ-
ual receiver in parallel. For a given receiver, we compute
its specific cut starting from the cluster cut (instead of the
tree’s root) and traversing the hierarchy down to the clas-
sical microbuffer-dependent solid angle threshold. Only the
newly added nodes to the cut are marked as refined. Once the
cut is completed, we rasterize its refined and near nodes into
a receiver-specific microbuffer. Basically, only the closer
nodes are rasterized and we obtain a sparse microbuffer.

Last, we composite this receiver microbuffer with the cor-
responding cluster one, using the depth component of both
microbuffers to properly cull the microbuffer pixels which
are hidden by this combination. The resulting composited
microbuffer is finally convolved with the receiver’s BRDF
to shade the receiver/pixel.

4. Results

We implemented our technique in the Mitsuba Ren-
derer [Jak10], with the initial point set being generated using
Poisson Disk sampling. Comparisons are performed against
the original PBGI algorithm [Chr08] and performances are
measured on a 2.67GHz Intel i7 (8 cores) with 9GB of main
memory. Images are rendered with one-bounce indirect illu-
mination at a 1280 x 1000 pixels resolution (except for the
Cornell Box, at 1024 x 1024) with 32 x 32 tiles.

In all comparisons, we measure numerical differences
with the Mean Squared Error (MSE) and visual differences
by counting the number of Perceptually Different Pixels
(PDP), as proposed by Yee [Yee04]. This perceptual error
metric acts in the Lab space and is plotted in black and blue.

B.Wang, J. Huang, B. Buchholz, X. Meng & T. Boubekeur / Factorized Point Based Global Illumination

Scene Points Individual Timings Total Time Error
Clustering | Cut Computation | Micro-Rasterization Full Rendering
Time(s) PBGI FPBGI PBGI FPBGI PBGI FPBGI | PDP MSE
CornellBox | 88.88K 0.68s 2.46m 0.65m 1.73m 1.19m 5.72m 2.60m 103 8.79-6
Bunny 1.00M 0.87s 2.38m 0.56m 1.55m 1.08m 4.49m 2.03m 61 1.31e-4
ItalianCity 8.38M 0.87s 3.65m 1.08m 1.23m 0.64m 5.52m 2.34m 235 8.15e-5
Sponza 16.19M 0.87s 19.7Im 3.77m | 5.40m 1.68m 26.72m 7.04m 15 2.51e-5

Table 1: Performance measures.

PBGI FPBGI 8.79e-6 / 103 DPBGI 4.85*10e-5 / 5408

Indirect only Indirect only

Indirect only Indirect only

9 .

1.31e-4 /61 2.01*10e-4 / 24807

Indirect only

2.51e-5/15 3.10e-4 / 28697

Indirect only

Indirect only 7 Indirect only

Figure 2: Error analysis on the indirect lighting contribution for FPBGI and DPBGI against PBGI. Perceptual differ-
ences [YeeO4] are plotted in black (no visible difference) and blue (visible difference). The MSE between RGB images and
the number of Perceptually Different Pixels [YeeO4] (PDP) are indicated in the format <MSE>/<PDP> on top of difference

images.

In Fig. 2, we compare FPBGI with the original PBGI al-
gorithm on three different scenes. Overall, we observe a neg-
ligible error, both from a perceptual and numerical point of
view. The original PBGI algorithm can indeed be trivially
sped-up by reducing the resolution of the microbuffers (i.e.,
higher solid angle threshold in the tree traversal), which im-
mediately translates into coarser cuts for each receiver and
reduced rasterization time. Therefore, we also compare to
such a degraded PBGI setting (DPBGI), with microbuffer
resolution decreased so that the total rendering time is as
close as possible to our FPBGI. In this case, DPBGI pro-
duces significantly stronger errors, with noticeable aliasing
appearing.

In Table 1, we report timings and errors for the four differ-

ent examples shown in Fig. 2 and Fig. 3. Here, we can assess
the benefit of our factorized approach, with a speed-up ratio
for the total rendering time (including BRDF evaluation and
initial set up) ranging from 2.2 to 3.8 compared to the orig-
inal PBGI algorithm. Looking at the specific portion of the
algorithm that we target (rasterization), the speed-up ratio
ranges from 3.4 to 5.2 for the cut computation and from 1.4
to 3.2 for the micro-rasterization. In all cases the receiver
clustering time is negligible.

In Fig. 3, we provide a visual comparison of the final ren-
dering (direct+indirect illumination) between a fully path-
traced solution (PTS), PBGI and FPBGI. We can observe
that PBGI and FPBGI provide similarly good approxima-

(© 2013 The Author(s)

B.Wang, J. Huang, B. Buchholz, X. Meng & T. Boubekeur / Factorized Point Based Global Illumination

Direct PTS

Bunny and Bird Cornell Box

Sponza

Italian City

PBGI FPBGI

Figure 3: Visual comparison of final renderings.

tions of the PTS, which is typically an order of magnitude
slower than FPBGI.

We also analyze the influence of the two main parame-
ters of FPBGI: the number of clusters per-tile k and the far-
near threshold €. In Fig. 4, we illustrate their influence on
the Sponza scene. We observe that the influence of k clearly
dominates on the approximation quality, as measured by nu-
merical and perceptual errors. However, looking closely at
the result, we can see that, under a very small k value, large
values of € cause large visible artifacts. In Fig. 5, we plot
the speed-up evolution under variations of these two param-
eters. We empirically determine &k = 100 and € = 10e~2 as
good default values for all the scenes we experimented with.
Last, with visually invisible differences, FPBGI inherits the
temporal coherence of PBGI: we illustrate this behavior in

(© 2013 The Author(s)

an accompanying video with three sequences showing ani-
mated lighting, camera and models.

Discussion. Alternatively to our approximation technique,
recent approaches [REG™09,HREB 1] propose to maximize
the fine-grained parallelism of the PBGI algorithm in or-
der to map it efficiently on GPU architectures. Clearly, our
approach is orthogonal to such methods, but preserves the
natural parallelism of PBGI. However, compared to such
methods, an additional specific preliminary pass would be
required to gather the shared microbuffers. As future work,
at least two alternative solutions may be further developed to
combine our factorization with an efficient GPU implemen-
tation: first, the typical number of clusters is large enough
to load the numerous GPU computing units with cluster
cuts computations using a naive implementation (i.e., one
thread per-cluster first, then one thread per-receiver); sec-

B.Wang, J. Huang, B. Buchholz, X. Meng & T. Boubekeur / Factorized Point Based Global Illumination

o
I
X

1.86e-5/25

3.89e-5/330

2.50e-5/19 3.06e-5/47

100

K=

2.51e-5/15
0.01 0.05

2.85e-5/12

4.69e-5 / 566 5.35e-5/788

3.36e-5/95

3.19e-5/80

2.88e-5/28 2.95e-5/34

Far Node Thres. 0.1 1.0

Figure 4: Parameter influence with <MSE>/<PDP> to the PBGI solution for each pair.

ond, a more evolved solution could use the two-layer GPU
computing model (blocks and threads) to make threads be-
longing to the same block define concurrently the cluster
cut and microbuffers in shared memory before synchroniz-
ing them and letting them processing their receiver-specific
components, using the ManyLoDs algorithm [HREB11] at
both stages.

Interestingly, Holldnder et al. [HREB11] proposed an
acceleration exploiting temporal coherence only, the lazy
scheme which reuses cuts over consecutive frames, while
our factorized approach exploits spatial coherence. Combin-
ing both approaches could help exploiting spatio-temporal
coherence to its full extent.

Our approach has two main limitations. First, the cluster
cut may be over-conservative and the resulting per-receiver
cut can be too refined. Although this does not influence the
rendering quality, this remains sub-optimal. A solution could
be to allow receivers to “walk-up” the tree while refining
their cut. Second, the two main parameters of the algorithm
have fixed values. These values could be optimized dynam-
ically and vary spatially by using the PBGI tree to perform
a quick scene analysis. Last, our approach can be seen as a
simplified hierarchy of receivers. It would then be interest-

ing to determine how to reformulate the PBGI algorithm to
rasterize, adaptively, the PBGI tree against the receiver/pixel
one to reach a fully adaptive solution.

5. Conclusion

We have proposed a factorized evolution of the PBGI al-
gorithm which exploits spatial coherence to significantly
speed up the computation of indirect diffuse illumination ef-
fects. By combining an initial variational clustering with per-
cluster cuts and microbuffers, we showed that the individual
receiver workload boils down to a local geometry rasteriza-
tion followed by a microbuffer compositing. As a result, we
obtain a speed-up ranging from 2x to 4x, without any visi-
ble image degradation. Our approach is easy to implement
in any PBGI framework and has a reduced set of intuitive
control parameters.

Acknowledgements. This work has been partially sup-
ported by the China Scholarship Council and 863 Program
of China under Grant No. 2012AA01A306, the European
Commission under contract FP7-287723 REVERIE and the
ANR iSpace&Time project.

(© 2013 The Author(s)

B.Wang, J. Huang, B. Buchholz, X. Meng & T. Boubekeur / Factorized Point Based Global Illumination

Tree Cut + Microbuffer Rasterization
Performance

12
10
X
S 8 ’%ﬁ

6 ! + ——k =10
3 =
g 4 r e =k =50
M)

k=100
0

0.01 0.05 0.1 1
Far Node Threshold

Figure 5: Parameters influence on the speed-up.

References

[AFO05] ARIKAN O., FORSYTH D. A., O’BRIEN J. F.: Fast
and detailed approximate global illumination by irradiance de-
composition. In ACM SIGGRAPH 2005 (2005), pp. 1108-1114.
2

[BB12] BUCHHOLZ B., BOUBEKEUR T.: Quantized point-based
global illumination. Comp. Graph. Forum (Proc. EGSR 2012)
31,4 (2012), 1399-1405. 2

[Bun0O5] BUNNELL M.: Dynamic ambient occlusion and indirect
lighting. GPU Gems 2 (2005), 223-233. 2

[Chr08] CHRISTENSEN P.: Point-based approximate color bleed-
ing. Tech. Rep. 08-01, Pixar Technical Notes, 2008. 1,2, 3

[CSAD0O4] COHEN-STEINER D., ALLIEZ P., DESBRUN M.:
Variational shape approximation. ACM Trans. Graph. 23, 3
(2004), 905-914. 3

[HREB11] HOLLANDER M., RITSCHEL T., EISEMANN E.,
BOUBEKEUR T.: Manylods: Parallel many-view level-of-detail
selection for real-time global illumination. Comp. Graph. Forum
(Proc. EGSR 2011) 30, 4 (2011), 1233-1240. 2,5, 6

[Jak10] JAKOB W.: Mitsuba renderer. http://www.mitsuba-
renderer.org/, 2010. 3

[KGPB05] KRIVANEK J., GAUTRON P., PATTANAIK S., BOUA-
TOUCH K.: Radiance caching for efficient global illumination
computation. JEEE TVCG 11,5 (2005), 550-561. 2

[KTO11] KONTKANEN J., TABELLION E., OVERBECK R. S.:
Coherent out-of-core point-based global illumination. In Comp.
Graph. Forum (Proc. EGSR 2011) (2011), pp. 1353-1360. 2

[MW11] MALETZ D., WANG R.: Importance point projection for
GPU-based final gathering. Comp. Graph. Forum 30, 4 (2011),
1327-1336. 2

[REG*09] RITSCHEL T., ENGELHARDT T., GROSCH T., SEI-
DEL H.-P., KAUTZ J., DACHSBACHER C.: Micro-rendering for
scalable, parallel final gathering. ACM Trans. Graph. (Proc. SIG-
GRAPH Asia 2009) 28, 5 (2009). 2, 5

[SAO7] SHANMUGAM P., ARIKAN O.: Hardware accelerated
ambient occlusion techniques on GPUs. In ACM I3D (2007),
pp. 73-80. 2

[Tab12] TABELLION E.: Point-based global illumination direc-
tional importance mapping. In ACM SIGGRAPH Talk (2012).
2

[WH92] WARD G. J., HECKBERT P.: Trradiance gradients. In
Eurographics Workshop on Rendering (1992). 2

(© 2013 The Author(s)

[WMXS11] WANG B., MENG X., XU Y., SONG X.: Fast point
based global illumination. In Computer-Aided Design and Com-
puter Graphics (2011), pp. 93-98. 2

[WRCS88] WARD G.J., RUBINSTEIN F. M., CLEAR R. D.: A ray
tracing solution for diffuse interreflection. In ACM SIGGRAPH
Computer Graphics (1988), vol. 22, pp. 85-92. 2

[WWZ*09] WANG R., WANG R., ZHOU K., PAN M., BAO H.:
An efficient GPU-based approach for interactive global illumina-
tion. In ACM Trans. Graph. (Proc. SIGGRAPH 2009) (2009),
pp. 91:1-91:8. 2

[Yee0O4] YEE H.: A perceptual metric for production testing.
Journal of Graphics Tools 9, 4 (2004), 33—40. 3, 4

