
An evaluation of descriptors for large-scale image
retrieval from sketched feature lines

Mathias Eitz∗, Kristian Hildebrand∗, Tamy Boubekeur+ and Marc Alexa∗

∗ TU Berlin
+ Telecom ParisTech - CNRS LTCI

Abstract

We address the problem of fast, large scale sketch-based image retrieval,
searching in a database of over one million images. We show that current
retrieval methods do not scale well towards large databases in the context
of interactively supervised search and propose two different approaches for
which we objectively evaluate that they significantly outperform existing ap-
proaches. The proposed descriptors are constructed such that both the full
color image and the sketch undergo exactly the same preprocessing steps. We
first search for an image with similar structure, analyzing gradient orienta-
tions. Then, best matching images are clustered based on dominant color dis-
tributions, to offset the lack of color-based decision during the initial search.
Overall, the query results demonstrate that the system offers intuitive access
to large image databases using a user-friendly sketch-and-browse interface.

Keywords:

Sketch-based image retrieval, Image databases, Image descriptors, MPEG-7

1. Introduction

Digital cameras have lead to vast amounts of digital images, many ac-
cessible for free through the internet (e.g. Flickr). Finding an image in a
database that is close to a mental model is an important and difficult task.
Currently, most queries are either based on textual annotations, rough color
sketches or other images, respectively parts of images [1, 2].

We feel that images cannot be succinctly communicated and searched
based on words alone; humans would probably describe different parts of the

Preprint submitted to Computers & Graphics July 19, 2010

image and use different words depending on their cultural or professional
background. On the other hand, searching an image based on a query that
looks very similar to the intended result either requires an existing image,
whose absence is usually the reason for a search, or great artistic skill if a
shaded rendition of the image is necessary. It seems that it is much easier
for humans to sketch the main feature lines of a shape or scene. This might
be connected to how humans think of and memorize objects [3, 4, 5]. Note
that the main feature lines of an image almost completely determine its
shading [6]. This result has been exploited recently for creating a simple and
intuitive to edit vector image representation [7].

1.1. Previous work

The task of comparing a rough sketch of feature lines to an image is natu-
ral yet difficult. First approaches to this problem go back to search based on
pictorial description in 1979 [8]. Most approaches to image retrieval based
on outline sketches up to now still use involved algorithms: Hirata et al. [9]
search in a database of 205 colored oil-paintings by matching the edge image
of the database images against the user sketch. Images are normalized in size
and subdivided into 8 × 8 local blocks. For each local block, the best local
correlation is computed by searching in a small window of local blocks. The
global similarity is then computed as the sum of the local correlation val-
ues. Chan et al. [10] search in a database of 137 color images by comparing
attributes of salient edge features, such as as length, curvature and spatial
relationship. The edges are modeled as implicit polynomials, resulting in
a retrieval algorithm that is tolerant towards local distortion in the input
sketches. Rajendran and Chang [11] employ direction and curvature his-
tograms for encoding the strongest edges in an image. The proposed method
uses multiple scales to account for various levels of detail in user’s sketches.
The resulting system is used to search in a database of approximately 5,000
images of paintings and other objects. Lopresti et al. [12] recognized that a
user sketch can be seen as a special form of handwriting and cleverly treat
the search as a string matching problem in a database of 125 sketches. Jain
et al. [13] combine color and shape information (using a linear combination
of color histogram and edge histogram similarity measures) to retrieve trade-
mark images out of a database of 400 images. Hurtut et al. [14] use curvature
motion flows to analyze pictorial content in line-drawings in small databases.

Other works are based on matching a single curve to the sketch: Del
Bimbo et al. [15] and Sclaroff [16] let the user sketch undergo bend and

2

stretch deformation to match the contours. Matusiak et al. [17] represent
contours in curvature scale space [18] and define a distance measure for curves
represented in curvature scale space. Ip et al. [19] present an affine invariant
description for single contours.

As most current retrieval algorithms for large image collections, our sys-
tem is based on a small descriptor (high dimensional feature vector) that
captures essential properties of the images. Image similarity is then defined
by a distance metric over the feature vector. Typical descriptors use global
or localized histograms of intensity, color, directionality [20, 21, 22, 23] or
coefficients of global image transformations [24, 25]. These descriptors fail
to generate good results for sketched feature lines as input. A descriptor
specifically designed for search based on edges [26] employs an angular radial
partitioning (ARP) of the images and a histogram of the number of edge
pixels falling into angular bins. The final feature vector is taken to be the
magnitude of the Fourier transform of that histogram to achieve invariance to
rotations. Initially proposed in the MPEG-7 standard [27, 28] as a descriptor
for capturing location and orientation distribution of edges in texture images,
the edge histogram descriptor (EHD) has been found to be as well applicable
to sketch-based image retrieval [29, 30]. It has been extended to additionally
capture semiglobal edge distributions by Won et al. [31].

1.2. Scope

We believe that either deciding which single contour to extract or match-
ing against a set of contours in each image is unlikely to scale to large
databases. Instead, a method that is able to flexibly capture contours of
an arbitrarily large number of objects in an image while representing the
extracted data as a high-dimensional feature vector is desirable. This de-
couples the search from the representation and thus allows using standard

nearest-neighbor search algorithms [32, 33]. In this work, we therefore only
consider descriptors that can be represented as high-dimensional feature vec-
tors. The focus of this work, however, is on evaluating retrieval quality, we
are not trying to maximize retrieval speed. On our collection of 1.5 million
images, a standard linear search algorithm yields reasonably interactive re-
trieval performance and we therefore generate all our results and perform all
evaluations using exact linear search. To show that the proposed approach
is indeed scalable to even larger collections, we present preliminary perfor-
mance results using a state-of-the-art approximate nearest neighbor search
algorithm in Section 4.

3

1.3. Contributions

In [34] we have presented a system for sketch-based image retrieval that
yields interactive search results on a database of more than one million im-
ages. We extend this paper by providing additional technical details at all
major steps as well as a new thorough evaluation of retrieval performance.
The proposed image representations are shown to significantly outperform
existing approaches.

Descriptors. We use both the ARP and EHD descriptor as a baseline for
evaluation and compare their performance to that of the Tensor and HOG
(histogram of oriented gradients) descriptor introduced in [34]. The Tensor
and HOG descriptor efficiently capture distribution of location and orien-
tation of gradients in the image but differ in the way this information is
encoded. The first descriptor is based on structure tensors [35, 36], which
encode the main gradient orientation in a certain image area. The second
descriptor employs local histograms of oriented gradients [37, 38] and can be
seen as an extension of the EHD descriptor. A main feature of both descrip-
tors is that they elegantly address the asymmetry between the binary user
sketch on the one hand and the full color image on the other hand. Both
descriptors are constructed in such a way that both the full color image and
the binary sketch undergo exactly the same preprocessing steps. This results
in an elegant formulation and considerably eases implementation.

Evaluation. Evaluating an image retrieval system is simple if correct annota-
tions for all images in the collection are given. Given a query image/sketch,
each annotation would allow to make a binary decision whether the cor-
responding image is relevant to that query or not. Then, descriptors and
systems can be compared by means of their precision/recall plots or ad-
vanced variants thereof. While such annotated dataset have been created,
e.g. for relatively small shape databases [39], such datasets do not exist for
sketch-based image retrieval. Creating such a dataset would be desirable but
currently seems to be infeasible for large image collections such as the one
used in this paper. Even if such a dataset existed, a fundamental problem
remains: human performance (drawing a query sketch) and system perfor-
mance both influence the result while it would be desirable to solely measure
system performance. This is a problem in many experiments that require hu-
man input, and usually one tries to minimize the variation in human input
as much as possible.

4

We propose to evaluate descriptors based on a set of reference images
selected from the collection. For each reference image, we create a corre-
sponding sketch and then measure on what rank a descriptor returns the
reference image when querying with that sketch. Assuming that the shapes
depicted in the sketch are close to those in the reference image, we expect a
good descriptor to return the reference image in the top ranks, even under
slight affine deformations of the sketch.

Since we are interested in isolating system performance, we need to make
sure that sketched feature lines are close to where they are in an image, in-
cluding only certain variation resulting from free-hand sketching. We there-
fore generate the query sketches by a) tracing the reference image, thus elim-
inating human influence as much as possible and as a compromise by b)
drawing the sketches from memory while allowing the participants to have
second looks at the reference image. On this basis we can objectively compare
different descriptors, which is the main point of this paper.

2. System Overview

We have downloaded a set of 1.5 million pictures retrieved from Flickr,
only images with a minimum resolution of 640x480 pixels have been retrieved.
The maximum size of the downloaded images has been limited to 1024x768
pixels, downscaling larger images. All downloaded images have been stored in
jpeg format in a simple folder structure on harddisk. The database memory
footprint is 375 gigabyte resulting in an average jpeg filesize of 250 kilobyte.

The input of our image search engine is a set of binary outlines (see
Figure 1, left) which are sketched by the user to define the desired shape of
the searched content. The result of a query is a small collection of pictures
with similar shape but spanning a potentially large range of hues. In order to
provide the user with a mechanism for quickly finding the correctly colored
image in the result set, we additionally cluster the search results according to
a color histogram descriptor into a small number of clusters (typically in the
order of five to ten). The user can then quickly find the cluster containing
matches of desired color and choose from that cluster the image best matching
the shape outlined in the sketch. The clustering is described in more detail
in Section 4.

Our image ranking algorithm is based on descriptors which capture the
main directions in each part of the image and are computed for all images in
the database in an offline process. During the query, the user sketch provides

5

0.21
0.72
0.12
0.03
0.23
0.44
0.42
0.03

sketch-­based interface

feature extr.

feature vector

query

image database

display1.5 Mio

query results

Figure 1: Overview over the proposed system pipeline: A sketch-based interface is used
to generate hand-drawn binary sketches. A feature vector encoding essential properties
is then extracted from the input sketch and used to query the image database for similar
images which are presented to the user.

direction information for each spatial region. A descriptor is extracted from
that sketch and compared to the descriptors in the database using a nearest
neighbor search algorithm. Images corresponding to descriptors found as
nearest neighbors to the query descriptor are returned and presented to the
user.

We have implemented the proposed methods into an integrated sketch-
based image retrieval system which can be used by any novice user to quickly
query an image database (see Section 6 for timings) or even create new con-
tent using recent sketch-based photo synthesizer systems [40, 41]. The power
of the system stems from exploiting the vast amount of existing images, which
offsets obvious deficits in image descriptors and search. We analyze the prop-
erties of the proposed descriptors and evaluate their retrieval performance in
Sections 5 and 6.

3. Sketch-based image descriptors

Almost all image descriptors are designed for matching entries in the
database against a given (partial) image [20, 21, 22, 23, 24, 25, 42]. These
descriptors can be used for user generated input only if this input resem-
bles the image in color, intensity, or directionality. A vector-valued or scan-
converted sketch of feature lines is not compatible with these descriptors, and
we believe searching image databases based on this input can be considered
harder than based on input already resembling the database entries.

In the following, we first quickly describe two existing descriptors for
sketch-based image retrieval: angular radial partitioning proposed by Chalechale

6

et al. [26] and the edge histogram descriptor defined in the MPEG-7 stan-
dard [29]. We then describe the two descriptors introduced by Eitz et al. [34]
and show in Section 5 that they overcome deficiencies of the existing ap-
proaches.

Partitioning strategy and features. All four descriptors subdivide the image
using a regular partitioning strategy and extract image features from each
resulting local region. Throughout this paper we call the local image regions
arising from the subdivision process “cells”. The local features of all cells
(using a fixed spatial layout) are then taken to form a feature vector repre-
senting the image. The four descriptors analyzed in this paper differ in how
they subdivide the image (regular grid in the case of the Tensor, HOG and
EHD descriptor, radial-angular subdivision in the case of the ARP descrip-
tor) and what information is extracted from each cell (gradient orientation
in the case of the HOG and EHD descriptor, structure tensors in the case
of the Tensor descriptor and Canny feature lines [43] in case of the ARP
descriptor).

Partial matching. In order to obtain pictures which contain an object fitting
the user sketch but also other objects in different locations, every empty cell
(i.e. that has no intersection with the user sketch) is ignored in the descriptor-
based distance computation and stored in a binary mask. This has three
immediate consequences: first, the user can focus on specific picture content
and does not have to sketch up an entire picture before querying the database;
second, this increases the set of potentially acceptable results by avoiding
restrictions on a picture’s background; third, this reduces significantly the
amount of distance computations during a query.

3.1. Angular Radial Partitioning

Chalechale et al. [26] propose a descriptor explicitly developed for sketch-
based image retrieval that is robust against small offsets in location and
scale and designed to be rotation invariant. The extraction of the descriptor
from an input image requires the following steps: a) convert the image to its
gray intensity representation; b) extract local edge features using the Canny
edge filter; c) partition the edge map into M · N radial-angular partitions
(illustrated in Figure 2); d) count the number of edge pixels falling into each
partition e) apply the Fourier transform to each resulting radial histogram
in order to achieve rotation invariance.

7

Image features are extracted by considering pixels I(φ,θ) in the binary
edge map resulting either from the Canny edge extraction step or the binary
hand-drawn sketch. Figure 2 shows the edge map of a typical image from our
database overlaid with the radial-angular partitioning scheme. The algorithm
uses the surrounding circle of I to create M · N radial partitions, where M

is the number of radial partitions and N is the number of angular partitions.
The angle θ between adjacent angular partitions is θ = 2π/N and the radius
of successive concentric circles is φ = R/M where R is the radius of the
surrounding circle of the image (see Figure 2 for an illustration). The image
features f(k, i) in each cell are now defined as follows:

f(k, i) =

(k+1)R
M�

φ= kR
M

(i+1)2π
N�

θ= i2π
N

I(φ,θ) (1)

for k = 0, 1, 2, ...,M − 1 and i = 0, 1, 2, ..., N − 1. In other words, the
ARP descriptor simply counts the number of Canny pixels falling into each
cell.

When I is rotated by an angle of θ, the extracted features for each cell
are shifted into a neighboring angular bin. To achieve rotation invariance for
fθ(k, i), the final descriptor exploits this property and stores the magnitude
|F (k, u)| of the 1D-Fourier transform of f(k, i) for each i. When shifting the
signal (rotating the image) by an angle of θ, the resulting Fourier coefficients
change, but the magnitude |F (k, u)| of the transform stays the same due to
the shift invariance property of the Fourier transform.

The distance between two ARP feature vectors is defined as their l2 dis-
tance.

3.2. Edge histogram descriptor

The edge histogram descriptor (EHD) has been proposed in the MPEG-7
standard [29] for texture image characterization and has been adapted for
SBIR by Manjunat et al. and Chalechale [29, 30].

The EHD represents the distribution of 5 types of edges in local image
patches. As illustrated in Figure 3, the image is subdivided into k × k non-
overlapping cells. The edge distribution in each cell is characterized by a 5-
bin histogram, distinguishing 5 different types of edges: vertical, horizontal,
45-degree, 135-degree and non-directional edges (illustrated in Figure 3). A
histogram is computed for each of the cells individually, resulting in a feature
vector of size 5k2.

8

F (u)

u
i = 0

i = 1

i = N − 1

i2π/N = θ

φ = kR/M

Figure 2: Left: angular radial partitioning of the Canny edge map into M radial and N
angular sectors, where k = 0, 1, 2...M − 1 and i = 0, 1, 2...N − 1. Right: rotation invariant
features for each radial partition i extracted using the 1D Fourier transform.

horizontal response

vertical response

45 degree response

135 degree response

non-directional response

1

1

-1

-1

(a) vertical

1 1

-1 -1

(b) horizontal
√

2

−
√

2

0

0

(c) 45 diagonal

0−
√

2

√
20

(d) 135 diagonal

-22

2-2

(e) non-directional

Figure 3: Left: the EHD distinguishes 5 types of edges for each cell and stores the values
in a 1D array. Bottom right: five edge filters used for the EHD.

9

For extracting directional edge features for each subimage we follow Ya-
mada et al. [28]. The count for the determined direction in the appropriate
histogram bin of the image patch is increased by one if the measured edge
response is greater than a certain threshold t. For a binary sketch, we use
t = 0 and for images t = 11 [30]. Yamada et al. also propose to improve
the resulting descriptor using semiglobal histograms that are generated from
the local histograms over all rows, columns and four-by-four patches of the
subdivision grid [28]. We also evaluate this extension and refer to it as the
EHD semiglobal descriptor throughout the rest of the paper.

The distance between two EHD feature vectors is defined as their l1 dis-
tance; a weighted l1 distance is used for the semiglobal version of the descrip-
tor [28].

3.3. Histogram of oriented gradients descriptor

Clearly, the main type of information in a sketch is the direction of the
stroke (i.e. the tangents, resp. normals) relative to its position. This infor-
mation relates best to the direction of gradients. Note that it is important
to ignore the sign of the gradient, as the feature line only contains the infor-
mation that gradients in the image are expected to be orthogonal to the line,
but not which of the two regions is supposed to have higher intensity. In the
following we review two descriptors that collect information about the gra-
dients in each image in the database, specifically designed to be independent
of the sign of gradients [34].

Let I denote an image with dimensions m× n. We write guv = ∇Iuv for
the gradient. For both approaches we consider a regular decomposition of
the image into cells Cij. We say (u, v) ∈ Cij if the pixel with coordinates u

and v is contained in the cell with index (i, j). We compute gradients using
Gaussian derivatives with σ = 1. The additional smoothing is essential for
computing reliable orientation information, especially in the case of a rough
binary user sketch. This is different from the implementation in [34] and
slightly improves retrieval performance.

The main point of the descriptors described below is to determine the
orientation of large gradients in each cell in the image hoping that they cor-
relate with the normal directions of the user sketch. Note that the normals
of the user sketch not only lack information on the sign but also have no
“magnitude”. This means we have to normalize the gradients of the descrip-
tors, which results in regions with large and small gradients being treated
equivalently. We discard very small consistent gradients reflecting smooth

10

Figure 4: Left: for each image cell the histogram of oriented gradients descriptor stores
the sum of squared gradient magnitudes falling into one of six discrete orientation bins.
Right: the tensor descriptor subdivides the image into rectangular tiles. For each tile a
structure tensor is computed, depicted by the ellipses.

intensity or color transitions, noise or jpeg compression artifacts. In practice
we set g

T
g < ε

2 to zero. We use ε =
√

2/20, which corresponds to 5% of the
maximum gradient magnitude. We compute gradients on a grayscale image
produced from the intensity channel of the input color image. When com-
puting a descriptor from a binary image (user sketch), gradients are directly
computed from the binary representation.

The HOG descriptor can be seen as an improved variant of the edge his-
togram descriptor (EHD) proposed in the MPEG-7 standard [27, 28]. His-
tograms of oriented gradients have also been employed for human recognition
in images [38], as an alternative to shape contexts [44] or SIFT [45]. The
descriptor fits our requirement in that it only considers the gradients of the
image and can easily be used without considering the sign of the gradient.

For each cell we compute gradient orientations and insert them into the
corresponding histogram bin. We weigh each entry by its squared length
based on the assumption that relatively stronger gradients are more likely
to be sketched by the user. Let hij be the histogram of cell Cij with d bins,
then we define the weight in the k-th bin as

hij(k) =
�

(u,v)∈Cij ,o(gij)∈[k/d,k+1/d[

g
T
uvguv (2)

with
o(x) = arccos

�
sgn

�
e

T
x
�
e

T
x/�x�

�
(3)

11

where e is an arbitrary unit direction vector and sgn
�
e

T
x
�

accounts for the
desired equivalence x ≡ −x.

For the computation of distances between histograms we first compute
normalized histograms Hij to account for the possibly different number of
gradients in two corresponding cells:

Hij =
1�

k hij(k)
hij (4)

Now let Hij and H̃ij denote two normalized histograms. Let dij denote
the l1 distance between Hij and H̃ij:

dij =
�

k

|Hij(k)− H̃ij(k)| (5)

Finally, we define the distance between two edge histogram descriptors
H and H̃ as:

dist(H, H̃) =
�

i

�

j

dij (6)

The resulting image description is visualized using pie charts in Figure 4.

3.4. Tensor descriptor

Contrary to the histogram approach where orientations are discretized

into bins we are interested in finding a single vector in each cell that is
as parallel as possible to the local image gradients. This vector would be
a representative for the image “structure” in that cell. We pose this as
a maximization problem and see that the system matrix corresponds to the
so-called structure tensor. We only consider discrete scalar images containing
luminances here, while the approach can be easily extended for multi-band
images [46].

Let x be a unit vector, which we want to define such that it represents
the main direction in cell Cij. As x

T
guv attains a maximum if x � guv we

pose the definition of x as the following optimization

x = arg max
�x�=1

�

(u,v)∈Cij

�
x

T
guv

�2
. (7)

12

Note that
�

(u,v)∈Cij

�
x

T
guv

�2
=

�

(u,v)∈Cij

x
T
guvg

T
uvx =

x
T




�

(u,v)∈Cij

guvg
T
uv



x = x
T
Gijx

(8)

which means we are maximizing a quadratic function in x with the constraint
x

T
x = 1. The matrix Gij contains the sum of outer products of gradients

in cell Cij and is commonly referred to as the structure tensor. We find the
unique maximum using the Langrange multiplier λ, and setting ∇x to zero
leads to the necessary condition

2Gijx + 2λx = 0 (9)

which means that we can find x (up to sign) as the unit eigenvector of Gij

corresponding to the largest eigenvalue. The eigenvalues correspond to the
maximum and minimum of the quadratic functional, reflecting the distribu-
tion of gradients. Thus, a compact representation of all this information, yet
not including the sign of the gradients, is given by the structure tensor Gij.

In order to detect similarly oriented image edges independently of the
magnitude of the edges, we store the structure tensor normalized by its
Frobenius norm:

Tij =
Gij

�Gij�F
(10)

We define the distance dij between two tensors Tij and T̃ij as the Frobenius
Norm of the difference between the two tensors:

dij = �Tij − T̃ij�F (11)

Finally, we define the distance between two tensor descriptors as the sum
over the tensor distances in their corresponding cells:

dist(T, T̃) =
�

i

�

j

dij (12)

A visualization of the resulting image descriptor is given in Figure 4.

13

Table 1: Grid resolutions of the descriptors ARP, EHD, HOG and Tensor. The ARP
descriptor is parameterized by radial-by-angular partitions. The EHD, HOG and Tensor
descriptor parameters are a rectangular grid of x-by-y image cells. The settings proposed
in the original papers are marked using bold font.

size ARP EHD HOG Tensor
small 3x8 4x4 6x4 8x6
medium 10x58 12x12 12x8 16x12
large 20x115 20x20 24x16 32x24

3.5. Descriptor variants

So far, we have seen a total of 5 descriptors: ARP, EHD, EHD semiglobal,
Tensor and HOG. To measure the influence of the grid resolution on retrieval
performance, we define 6 variants of each descriptor: three different grid reso-
lutions (small, medium and large) as well as for each resolution a masked and
an unmasked version of the descriptor (mask not applicable to the ARP de-
scriptor due to the use of frequency domain coefficients as the features). This
results in a total of 27 descriptor variants, we list their respective parameters
in Table 1.

The descriptors variants include the parameters used in the original pa-
pers; for the ARP descriptor this is the variant (small, unmasked) [26], for
the EHD and EHD semiglobal the variant (small, unmasked) [31] and for the
Tensor and HOG descriptor the variant (large, masked) [34]. The remaining
parameter settings are chosen such that similar descriptor sizes have roughly
comparable storage requirements, see Table 4.

4. Image search and clustering

In order to run our sketch-based image retrieval system and evaluate the
descriptors we use a standard Apple MacPro configured with 2 Intel Xeon
2.8Ghz QuadCore processors and 32GB of main memory. When starting
the system we load all descriptors into a large array which is kept in main
memory. Note that all descriptors used in this paper can be considered as
points in high-dimensional space. Given a query descriptor and a distance
metric, searching best matches thus reduces to finding nearest neighbors in
this high-dimensional space. Throughout the paper, we find exact nearest
neighbors using linear search for evaluation of the descriptors, which we also
found to be just fast enough for querying the database interactively given our

14

query result R center random selection clustering center update clustering

Figure 5: Partitioning query result based on dominant colors: k-means on 3D color his-
tograms.

collection size of 1.5 million images. Note that speeding up the exact search
is non-trivial due to the high dimensionality of the entries [47]. Instead, we
give additional experimental results using an approximate nearest neighbor
k-means tree algorithm [48, 33] and discuss in Section 7 how this algorithm
could be employed to facilitate true web-scale search.

4.1. Linear search

A query is performed by computing the distances between the query de-
scriptor and all other descriptors in the database. Then R, the set of N

(typically 50 to 100) images {I0, ..., In−1} with smallest distance to the in-
put descriptors (typically generated from a sketch) is determined using a
fixed-size priority queue of N elements. Note that the task of computing dis-
tances can be easily parallelized and we do so using a standard Map-Reduce
framework.

4.2. K-means tree search

We construct a k-means tree [48] by hierarchically subdividing space us-
ing k-means clustering [49]. We decompose the whole set of descriptors into
k clusters, and then recursively subdivide the resulting clusters, stopping the
recursion when a cluster contains less than k descriptors. We query the result-
ing tree using a best-bin-first strategy [33], retrieving 2,000 potential nearest
neighbors, which we sort according to their distance to the query descriptor
and finally return R, the set of N best matches. In our implementation, we
use a branching factor of k = 32.

4.3. Clustering

Since we perform the search based on binary sketches, R may contain
pictures with very different color distributions. In order to help the user

15

to browse this set, and before presenting R to him, we cluster it into k

clusters (typically 5 to 10) of similarly colored images using the k-means

algorithm. This algorithm, also known as Lloyd clustering [49], selects k

random centers among its (possibly high-dimensional) input set and defines
clusters by assigning each element in the set to its closest center. Then the
algorithm updates the centers by moving them to the centroid of their relative
cluster and restarts the assigment step. This procedure is repeated until a
given stopping condition is satisfied (e.g. maximum number of iterations,
stable clustering detected). This algorithm aims at minimizing an energy E
over all clusters: when the notion of “proximity” (closer center) is modeled
as the Euclidean distance in the space embedding the set, then E is the sum
of squared distance of the elements to their relative center and it effectively
minimizes the size of the clusters.

In our search engine, we use it with the setup illustrated in Figure 5.
We start by computing a color descriptor ci for each image of R which
captures the dominant colors of Ii. We then select k random images in R,
set their color descriptors as initial centers and run the k-means clustering.
In practice, we define ci as the color histograms of Ii. The distance used to
assign each image Ii to a given center (i.e. cluster) is the squared l2 distance
between these histograms. We employ three-dimensional color histograms,
subdividing the RGB colorspace into 6×6×6 bins. Figure 13 shows a result
of query clustering.

5. Evaluation of retrieval performance

We are interested in evaluating and comparing the relative retrieval per-
formance of the 27 descriptor variants discussed in Section 3. Our evaluation
addresses the following two problems:

• How does a descriptor behave under slight affine deformations of a
query sketch?

• How well does a descriptor retrieve images given queries from real users?

To analyze those problems we have defined a ground truth set of 43 reference
images from our image database covering a wide range of different scenes,
several of which we show in Figure 6. In the evaluation we measure on
which rank a descriptor returns the ground truth image when querying with
the sketch created from that reference image. Performing such queries for a

16

��

�

��
���

��
	

���
��

�
�

��
�	

��
���

��

�

��

Figure 6: Shown are several of the 43 image/sketch pairs used in the formal evaluation.
Top row: images from the database selected as ground truth. Second row: sketches that
have been traced from the ground truth images. Third row: sketches that have been
drawn from memory by participants of the evaluation. When querying with a sketch, we
measure the rank of the corresponding ground truth image from the first row; we expect
a good descriptor to return the ground truth image as one of the first results.

large number of input sketches with different descriptors allows for a simple
direct comparison of their relative retrieval performance. For each reference
image we have generated sketches using two different methods.

Sketches from tracing images. The first set of 43 sketches has been generated
by three different users that we instructed to trace the most important out-
lines in the reference images. Specifically, the reference images were shown
in a painting application and we asked the participants to trace what they
considered the most important features into a second layer. The input was
performed using a tablet screen and pen.

Sketches from memory. The second set of 43 sketches has been generated by
nine users that we instructed to sketch a memorized version of the reference
image. Participants were shown a printout of the reference image and then
asked to sketch the memorized image using pen and paper. Participants were
allowed to have a second look at the reference printout during sketching when
requested in order to reduce the influence of limited short term memory on
the resulting sketches. Some of the resulting sketch/image pairs are shown
in Figure 6.

17

Benchmark definition. Using the two sets of reference sketches we have eval-
uated descriptor performance by querying the database for the most similar
images to each sketch and finding the rank of the reference image in the re-
sulting answer. To check robustness of the descriptors we generated queries
for 9 translated, 9 scaled and 9 rotated versions of each input sketch. The
translated sketches have been generated by translating the original by a fac-
tor of up to 0.1 times the width of the sketch in a random direction; scaled
versions by scaling the input by a factor between 0.8 and 1.2 and rotated
versions by rotating the input around its center by −20 to 20 degrees. Ad-
ditionally, combinations of translation, scale and rotation were also tested,
the combined transformations were generated by applying the three trans-
formations in the order scale, rotate, translate. The detailed set of resulting
parameters is listed in Table 2.

In total we generated 36 affine transformed version for each of the 43
reference sketches, gathering a total of 1548 measurements for each of the
27 descriptor variants. Additionally, we evaluated the GIST descriptor de-
signed for example-based image retrieval [21]. First, we tested its suitability
for sketch-based image retrieval using the same setup as for the sketch-based
descriptors and second, we tested its invariance against affine transforma-
tions, querying with the reference images instead of the sketches.

In order to achieve robustness against outliers in retrieval rank, we use
robust statistics and report median retrieval ranks for each transformed set of
43 sketches. Figures 7, 8, 9, 10 and 11 summarize the results of the evaluation
graphically.

6. Results

As can be seen in Figures 13, 14 and 15 the proposed system gathers
good matches for a given query sketch (all queries have been executed using
the Tensor descriptor). We show a typical result of a query in Figure 15,
displaying the first 15 matches. In Figure 14 we show a hand-picked subset
of the top 50 matches for each of the three query sketches. For each sketch
we show six images that match the probably intended semantics of the sketch
and are considered good matches by the experimental users of our system.
While the intended semantics of a sketch is not reflected in all of the answers,
they still resemble the features in the user sketch; this is shown in each second
row of Figure 14.

18

Table 2: Affine transformations applied to evaluation sketches for testing robustness
against distortions. Translation is given as relative to the length in pixels of the sketch
diagonal, rotation in degrees around the sketch center and scale as a factor of the sketch
sidelength

Translation t Rotation r Scale s Combined
0.1 -20 0.8 s ◦ r ◦ t

0.075 -15 0.85 . . .
0.5 -10 0.9 . . .

0.025 -5 0.95 . . .
0 0 1 . . .

0.025 5 1.05 . . .
0.05 10 1.1 . . .
0.075 15 1.15 . . .
0.1 20 1.2 . . .

Table 3: Timings (in s · 10−6) for comparing two descriptors with their corresponding
distance metric. Descriptors using a mask in the distance computation are marked by
(m). Note that using a spatially localized mask is not possible with the ARP descriptor,
since its feature vector stores frequency domain coefficients.

Descriptor ARP EHD EHD semiglobal HOG Tensor
large 7.76 3.00 51.69 3.40 3.92
medium 2.01 1.07 16.11 0.85 0.97
small 0.09 0.15 2.49 0.23 0.26
large (m) – 4.97 44.65 6.14 4.13
medium (m) – 2.30 19.54 1.69 1.19
small (m) – 0.37 2.60 0.55 0.43

Table 4: Storage requirements of the descriptors ARP, EHD, Tensor and HOG (byte).

Sizes Tensor ARP EHD HOG
small 576 96 320 576
medium 2304 2320 2880 2304
large 9216 9200 8000 9216

19

3

4

5

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

3

4

5

6

Degrees

m
ed

ia
n

qu
er

y
ra

nk

x

3

4

5

6

m
ed

ia
n

qu
er

y
ra

nk

x

3

4

5

6

m
ed

ia
n

qu
er

y
ra

nk

x

3

4

5

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

3

4

5

6

Degrees

m
ed

ia
n

qu
er

y
ra

nk

x

3

4

5

6

m
ed

ia
n

qu
er

y
ra

nk

x

3

4

5

6

m
ed

ia
n

qu
er

y
ra

nk

x

3

4

5

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

medium

3

4

5

6

Degrees

m
ed

ia
n

qu
er

y
ra

nk

x

medium

3

4

5

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

3

4

5

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

Figure 7: Evaluation results from traced sketches. Left to right: GIST (example based),
GIST (sketch-based) and ARP. Note the different scale of the x-axis in the first column.

20

2

3

4

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

medium

Figure 8: Evaluation results from traced sketches using descriptors without masks. Left
to right: Tensor, HOG and EHD.

21

2

3

4

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

Figure 9: Evaluation results from traced sketches using descriptors with masks. Left to
right: Tensor, HOG and EHD.

22

2

3

4

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

Figure 10: Evaluation results from memory sketches using descriptors without masks. Left
to right: HOG, Tensor and ARP.

23

2

3

4

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

Distance

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

2

3

4

6

m
ed

ia
n

qu
er

y
ra

nk

x

medium

Figure 11: Evaluation results from memory sketches using descriptors with masks. Left
to right: HOG, Tensor and EHD.

24

0

1

2

3

4

5

6

7

8
x 10

EHD (l) EHD (m) EHD (s) HOG (l) HOG (m) HOG (s) Tensor (l) Tensor (m) Tensor (s)

distance metric evaluation timing for masked descriptors (s)

tim
e

pe
r d

es
cr

ip
to

r

Figure 12: Timings for computing the distance between two masked descriptors (each in
the variant large (l), medium (m) and small (s)). Timings are measured for each descriptor
by querying using all 43 example sketches. The variance in the timing of single descriptor
results from the fact, that the 43 query sketches each have different numbers of cells that
are masked out.

Table 5: Timings of the computation of a single descriptor (ms).

Sizes ARP EHD Tensor HOG
small 10.4 6.5 15.2 9.3
medium 9.3 7.9 15.6 9.3
large 9.1 6.5 15.3 10.2

25

Figure 13: Answer of the proposed system to the sketch shown in the middle. The first
50 matches are clustered into 6 clusters. Note that the result set contains a very high
percentage of trees as probably desired by the user.

6.1. Interactive sketch-based retrieval

We have implemented a simple user interface for drawing and editing
sketches that allows to interactively query our database of 1.5 million images.
While we have not performed any user study, the use of simple outlines for
querying the database has been intuitive to use in our experiments. Typical
response times of the system are in the order of a few seconds using linear
search, depending on the size of the descriptor chosen.

6.2. Computational performance

We have measured median query time under linear search by performing
queries with all 43 sketches used in the evaluation. The result is illustrated in
Figure 12 for the Tensor, HOG and EHD descriptor, a detailed listing of the
timings of all variants is given in Table 3. Note that we have normalized the
measured timings to the time needed for computing the distance between a
single pair of descriptors since this is the operation, that has to be performed
in the inner loop of any nearest-neighbor search algorithm. The timings
have been measured on a single core; in our interactive query system we use
a parallelized distance computation using a standard Map-Reduce framework
and achieve a speedup roughly in the number of cores available.

The query timings are similar among the descriptors for comparable de-
scriptor sizes; smaller descriptors (storing less data) can be searched faster.

26

Figure 14: Shown is a hand-picked subset of the results when querying the database for 50
images matching the sketches on the top left of a row. In the top row we show “expected”
results, and rather “unexpected” results in the corresponding bottom row.

27

Figure 15: The first 15 matches (left to right, top to bottom) for the query on the left. The
query sketch has been generated from an image in the database, which has been ranked
5,474. Note that the first matches provide a very reasonable answer to the user query,
meaning that a low rank of the image used to generate the sketch does not imply the
descriptor failed.

The masked version of the descriptors require slightly more time than their
unmasked equivalents, probably due to the additional memory accesses needed.
Note that the EHD semiglobal descriptor requires an order of magnitude
longer for comparison. This is due to the fact, that we compute the semiglobal
histograms during runtime as suggested by Won et al. [31]. At the expense
of additional memory, this computation could easily be done in the prepro-
cessing step, which seems to be necessary for larger image databases.

Additionally, we have evaluated search performance of the k-means tree
algorithm. An approximate search using the HOG medium descriptor takes 6
ms, querying for 2,000 potential nearest neighbors using a best-bin-first strat-
egy and selecting the N best matches from that set. This is more than two
orders of magnitude faster than linear search – but also has some potential
drawbacks which we discuss in Section 7.

The descriptors considered in this paper are all very efficient to compute,
we achieve timings between 6.9 and 15.6 ms for extracting a single descriptor
from a (one megapixel) input image (corresponds to 67 to 144 descriptors per
second). This timing includes the time for loading the image from harddisk
and decoding it (JPEG compression).

28

6.3. Evaluation of retrieval performance

We have performed an extensive experimental evaluation that allows to
concisely assess descriptor performance, gathering a total of 50, 000 measure-
ments. The setup is described in Section 5, the results of this evaluation are
shown graphically in Figures 7, 8, 9, 10 and 11. As expected, images are
most likely recovered from a sketch if the sketch is in the right position,
scale, and orientation, however, we see that small amounts of transformation
are tolerable (the ARP descriptor is rotation invariant if rotated by inte-
ger multiples of its angular binning angle). Our results do not show any
significant advantage of using the semiglobal version of the EHD descriptor
over the standard EHD descriptor which employs only local histograms. We
therefore only show plots for the standard EHD descriptor in Figures 8, 9
and 11.

Evaluation of traced sketches. In Figures 7, 8 and 9 we can see that both the
HOG and the Tensor descriptor provide significantly better retrieval perfor-
mance than the ARP and the EHD descriptor, with the Tensor descriptor
slightly outperforming the HOG descriptor. Both the ARP descriptor and
the unmasked versions of the Tensor and HOG descriptor perform compara-
bly, however, all versions of the EHD descriptor perform rather poorly given
our evaluation setup. We believe that this is due to the edge extraction
techniques applied. While the ARP descriptor uses Canny edges (without
directionality information) and both the Tensor and HOG descriptor use the
squared magnitude of gradient as the edge information, the EHD descriptor
employs a simple edge counting technique, all edges – independently of their
magnitude – have the same weight. We can also conclude that – at least
for the set of sketches used in our evaluation – the baseline descriptors ARP,
EHD and the extended semiglobal version of the EHD descriptor do not scale
well to our large database size. We believe that this is – in part – due to
the absence of using a mask in the distance computation. For sketches with
large blank areas (in our experience, users typically draw sparse sketches),
descriptors without a mask essentially try to retrieve images that have the
same blank areas, the matching of the actual contours thus gaining less in-
fluence. To quantify this effect we have generated masked and unmasked
versions for all descriptors where applicable. The evaluation results for de-
scriptors without masks are shown in Figure 8, the corresponding masked
versions in Figure 9. The results for all descriptors clearly show that using
a mask for sketch-based image retrieval is essential for good retrieval per-

29

formance. In Figure 7 we show that the GIST descriptor [21] (a popular
descriptor designed for example-based retrieval) can – as expected – not be
directly applied to sketch-based image retrieval. Interestingly, when used for
example-based retrieval, the GIST descriptor is more affine-invariant than
sketch-based descriptors (see Figure 7, left). We discuss possible reasons and
conclusions that can be drawn from this observation in Section 7.

Evaluation of memory sketches. In Figures 10 and 11 we show evaluation
results for sketches created from memory. All descriptors perform slightly
worse than for traced images, we attribute this to the additional abstrac-
tion, transformation and distortion introduced into the sketches during the
memorization, drawing and digitization process. Consistent with the results
from traced sketches, the ARP and EHD descriptors are outperformed by
the Tensor and HOG descriptor, with the Tensor again slightly outperform-
ing the HOG descriptor. The best performing descriptor (Tensor medium) is
still able to place roughly 50 % of the reference images in the top 100 results
– note that the top 100 images correspond to only 0.0067 % of our collection
size.

6.4. Additional observations

While in the objective evaluation we can recognize a slight advantage of
the Tensor descriptor over the HOG descriptor, the users of our experimental
system indeed seemed to prefer the query results generated by the tensor
descriptor. We thus used the Tensor descriptor in all our examples, unless
stated otherwise.

We also found that the rank of the sketched image is of only limited value
in the context of very large databases: a good descriptor is not supposed to
discriminate objects belonging to the same class. If many images similar
to the sketch are contained in the database, it is unlikely that the reference
image is found in the first few results. We demonstrate this effect for a
query that has essentially not been successful according to our evaluation
metric, i.e. the rank of the original image is very large. Figure 15 shows
the 15 images with smallest distance to the sketch input shown (using the
Tensor descriptor). While the original image is not among these 15 images
(in fact the rank in this case is 5,474) most images in this set clearly show a
resemblance to the input. This leads us to the conclusion that additional to
the experimental evaluation a user study is also desirable, letting real users
rate query results.

30

7. Conclusions & discussion

We have presented an interactive system for sketch-based image retrieval
on a large database of over one million images and shown in a thorough
experimental evaluation that the Tensor and HOG descriptors clearly out-
perform other existing approaches under the evaluation metrics applied in
this paper.

Shape based retrieval. Note that while the resulting search engine retrieves
images that resemble the shapes depicted in a query sketch, the results do
not necessarily match the (probably intended) semantics of a query. This
however would indeed be a desirable property of a retrieval system and we
can envision systems that use higher level descriptors containing additional
semantic information in addition to the low level image features currently
used. Additionally, we see further potential for all descriptors by applying
advanced edge extraction techniques, such that human sketching style gets
mimicked more closely [50, 51]. Then, defining an improved version of e.g.
the ARP descriptor would be straightforward, using the improved sketch
lines instead of Canny lines.

Evaluation setup. While tracing images certainly is not a realistic way of gen-
erating input for an actual query, it helps eliminating the influence of human
performance from the evaluation process and thus making the evaluation
more objective. Assuming that a traced sketch closely resembles the shapes
in the reference image, we can now expect that a good descriptor retrieves the
reference image as one of the top results and objectively compare descriptors
based on retrieval ranks. This also allows the evaluation to focus on how
robust a descriptor is against affine transformations by querying with affine
transformed versions of the sketch. Asking users to draw sketches from mem-
ory certainly is more natural in terms of query input. However, in the context
of benchmarking, this would introduce a range of problems: instead of solely
measuring descriptor performance, human drawing and memorization skills
would influence the evaluation. We have therefore evaluated descriptors using
a) traced feature lines, thus mostly eliminating human influence on retrieval
performance and as a compromise using b) memory sketches while allowing
subjects to have a second look at the reference image. We openly admit that
sketching the feature lines seen in an image completely from memory would
probably not work, in the sense of retrieving the reference image correspond-
ing to that sketch in the top ranks. Note that this is no indication about

31

actual system performance, as the system might well return relevant images,
just not the one we had initially presented. Indeed, all our examples as well
the accompanying video show that the system works in the sense of providing
matches that fit sketches that were drawn without any image as a template.

Retrieval performance. While the system and descriptors have shown very
promising results, there are still many opportunities for further improve-
ment: reducing the memory footprint of the image descriptors by using e.g.
quantization or learning a compact binary code such that pairwise descrip-
tor distances are preserved [52] would help using the system with even larger
databases. In the same spirit, out-of-core search would allow running it on
smaller machines with limited main memory. While for our database size
(1.5 million images) the performance of a linear search was not a limitation,
larger databases could certainly make use of faster searches, employing e.g.
approximate nearest neighbor techniques [33, 32]. All descriptors covered in
this paper are applicable to standard nearest neighbor search techniques and
we have shown that by using a k-means tree [48, 33] the search can indeed be
sped up by several orders of magnitude. It is clear that employing an approx-
imate nearest neighbor algorithm always requires a trade-off between speed
and precision (what fraction of the true nearest neighbors are returned?).
While faster retrieval is certainly always desirable, it remains to be evalu-
ated how much influence – if any – the approximate search has on retrieval
quality. Due to its hierarchical structure, the k-means tree also could be a
promising approach for facilitating retrieval on true web-scale collections: the
sub-trees could be distributed over a large number of computing nodes and
queried independently, merging individual query results on a master-node to
form the final result.

Invariance to affine transformations. While all descriptors used in this paper
can be efficiently computed and evaluated, they only provide limited invari-
ance to similarity transformations (with the notable exception of the ARP
descriptor which is invariant to rotations that are integer multiples of its
binning angle). We believe that such deficits in a descriptor can be overcome
by exploiting the variety provided by a large image database and support
this claim with the results shown in Figures 13, 14 and 15. There are several
interesting observations to be made from our evaluation: first, invariance to
affine transformations is tightly coupled to the resolution of the local subdi-
vision scheme. This can be clearly seen in the evaluation, descriptors using

32

coarser subdivision grids have a better chance of retrieving transformed ver-
sions of the original sketch. The GIST descriptor which only uses 4× 4 local
cells but stores a rich representation of the image content in each cell outper-
forms the sketch-descriptors regarding affine invariance. This suggests that a
similar strategy could also be successful for sketch-based descriptors – we can
see the HOG descriptor as a good candidate, storing a rich representation
of e.g. gradient orientation and curvature in rather coarse cells. Note that
orientation histograms can always be made completely rotation invariant by
constructing them relative to a well-defined local frame instead of a fixed
global frame [44]. Exploiting the shift-invariance property of the Fourier
transform could be an interesting approach to make descriptors translation
invariant, in a similar manner used to make the ARP descriptor rotation
invariant. While wavelet transforms are unstable under translations of the
signal, shiftable multiscale transforms [53] are specifically designed to yield
translation invariant signal decompositions. Finally, a user study assessing
how much invariance actually is desirable in a sketch-based retrieval system
certainly would be extremely helpful.

An interesting final observation is the dependence of the system on the
database content. Our database contains relatively few objects in a simple
frontal view (i.e. the front side of a house, the side view of a car). However,
most users tend to sketch objects from these points of view and will find that
only few images match their sketch – simply because there are no objects in
the database with silhouettes as sketched by the user.

[1] A. Smeulders, M. Worring, S. Santini, A. Gupta, R. Jain, Content-
based image retrieval at the end of the early years, IEEE Transactions
on Pattern Analysis and Machine Intelligence 22 (12) (2000) 1349–1380.

[2] R. Datta, D. Joshi, J. Li, J. Z. Wang, Image retrieval: Ideas, influences,
and trends of the new age, ACM Computing Surveys 40 (2) (2008) 1–60.

[3] J. J. Koenderink, A. J. van Doorn, C. Christou, J. S. Lappin, Shape
constancy in pictorial relief, in: Object Representation in Computer
Vision II, 1996, p. 151.

[4] D. D. Hoffman, M. Singh, Salience of visual parts, Cognition 63 (1997)
29–78.

[5] F. Cole, A. Golovinskiy, A. Limpaecher, H. S. Barros, A. Finkelstein,

33

T. Funkhouser, S. Rusinkiewicz, Where do people draw lines?, ACM
Transactions on Graphics 27 (3) (2008) 88:1–88:11.

[6] J. Elder, Are edges incomplete?, International Journal of Computer Vi-
sion 34 (2) (1999) 97–122.

[7] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, D. Salesin,
Diffusion curves: a vector representation for smooth-shaded images,
in: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2008),
Vol. 27, 2008, pp. 1–8.

[8] N. Chang, K. Fu, Query-by-pictorial-example, in: The IEEE Computer
Society’s Third International Computer Software and Applications Con-
ference, 1979. Proceedings. COMPSAC 79, 1979, pp. 325–330.

[9] K. Hirata, T. Kato, Query by visual example - content based image re-
trieval, in: Proceedings of the 3rd International Conference on Extend-
ing Database Technology: Advances in Database Technology, Springer-
Verlag London, UK, 1992, pp. 56–71.

[10] Y. Chan, Z. Lei, D. Lopresti, S. Kung, A feature-based approach for
image retrieval by sketch, in: SPIE Storage and Retrieval for Image and
Video Databases II, 1997.

[11] R. Kumar Rajendran, S.-F. Chang, Image retrieval with sketches and
compositions, in: IEEE International Conference on Multimedia and
Expo, Vol. 2, 2000, pp. 717–720.

[12] D. Lopresti, A. Tomkins, Temporal domain matching of hand-drawn pic-
torial queries, in: Proc. of the Seventh Conf. of The Intl. Graphonomics
Society, 1995, pp. 98–99.

[13] A. Jain, A. Vailaya, Image retrieval using color and shape, Pattern
Recognition 29 (8) (1996) 1233–1244.

[14] T. Hurtut, Y. Gousseau, F. Schmitt, F. Cheriet, Pictorial analysis of
line-drawings, in: Porc. International Symposium on Computational
Aesthetics in Graphics, Visualization, and Imaging, 2008.

[15] A. Del Bimbo, P. Pala, Visual image retrieval by elastic matching of
user sketches, IEEE Transactions on Pattern Analysis and Machine In-
telligence 19 (2) (1997) 121–132.

34

[16] S. Sclaroff, Deformable prototypes for encoding shape categories in im-
age databases, Pattern Recognition 30 (4) (1997) 627–641.

[17] S. Matusiak, M. Daoudi, T. Blu, O. Avaro, Sketch-based images
database retrieval, Lecture notes in computer science (1998) 185–191.

[18] F. Mokhtarian, A. Mackworth, A theory of multiscale, curvature-based
shape representation for planar curves, IEEE Transactions on Pattern
Analysis and Machine Intelligence 14 (8) (1992) 789–805.

[19] H. H. S. Ip, A. K. Y. Cheng, W. Y. F. Wong, J. Feng, Affine-invariant
sketch-based retrieval of images, in: Proceedings of the International
Conference on Computer Graphics, IEEE Computer Society, 2001, p. 55.

[20] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, Query
by image and video content: The QBIC system, IEEE Computer 28 (9)
(1995) 23–32.

[21] A. Oliva, A. Torralba, Modeling the shape of the scene: A holistic rep-
resentation of the spatial envelope, International Journal of Computer
Vision 42 (3) (2001) 145–175.

[22] C. Carson, S. Belongie, H. Greenspan, J. Malik, Blobworld: Image seg-
mentation using expectation-maximization and its application to image
querying, IEEE Trans. Pattern Analysis and Machine Intelligence 24 (8)
(2002) 1026–1038.

[23] A. Torralba, R. Fergus, W. T. Freeman, 80 million tiny images: a large
database for non-parametric object and scene recognition, IEEE Trans.
Pattern Analysis and Machine Intelligence 30 (11) (2008) 1958–1970.

[24] C. E. Jacobs, A. Finkelstein, D. H. Salesin, Fast multiresolution image
querying, in: Proceedings of SIGGRAPH 95, 1995, pp. 277–286.

[25] J. Z. Wang, G. Wiederhold, O. Firschein, S. X. Wei, Content-based im-
age indexing and searching using daubechies’ wavelets, Int. J. on Digital
Libraries 1 (4) (1997) 311–328.

[26] A. Chalechale, G. Naghdy, A. Mertins, Sketch-based image matching
using angular partitioning, IEEE Transactions on Systems, Man and
Cybernetics, Part A 35 (1) (2005) 28–41.

35

[27] T. Sikora, The mpeg-7 visual standard for content description-an
overview, IEEE Transactions on Circuits and Systems for Video Tech-
nology 11 (6) (2001) 696–702.

[28] A. Yamada, M. Pickering, S. Jeannin, L. Cieplinski, J.-R. Ohm, M. Edi-
tors, Mpeg-7 visual part of experimentation model version 8.0, ISO/IEC
JTC1/SC29/WG11/N3673 (2000) 1–82.

[29] B. Manjunath, P. Salembier, T. Sikora, Introduction to MPEG-7: mul-
timedia content description interface, John Wiley & Sons Inc, 2002.

[30] A. Chalechale, Content-based retrieval from image databases using
sketched queries, Ph.D. thesis, University of Wollongong (2005).

[31] C. Won, D. Park, S. Park, Efficient use of mpeg-7 edge histogram de-
scriptor, Etri Journal 24 (1) (2002) 23–30.

[32] A. Andoni, P. Indyk, Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions, Communications of the ACM 51 (1)
(2008) 117–122.

[33] M. Muja, D. G. Lowe, Fast approximate nearest neighbors with auto-
matic algorithm configuration, in: International Conference on Com-
puter Vision Theory and Applications, 2009, pp. 331–340.

[34] M. Eitz, K. Hildebrand, T. Boubekeur, M. Alexa, A descriptor for large
scale image retrieval based on sketched feature lines, in: Symposium on
Sketch-Based Interfaces and Modeling, 2009, pp. 29–36.

[35] H. Knutsson, Representing local structure using tensors, in: The 6th
Scandinavian Conference on Image Analysis, Oulu, Finland, 1989, pp.
244–251.

[36] J. E. Kyprianidis, J. Döllner, Image abstraction by structure adaptive
filtering, in: Proc. EG UK Theory and Practice of Computer Graphics,
2008, pp. 51–58.

[37] D. Lowe, Object recognition from local scale-invariant features, in: In-
ternational Conference on Computer Vision, Vol. 2, 1999, pp. 1150–1157.

36

[38] N. Dalal, B. Triggs, Histograms of oriented gradients for human de-
tection, in: International Conference on Computer Vision & Pattern
Recognition, Vol. 2, 2005, pp. 886–893.

[39] P. Shilane, P. Min, M. Kazhdan, T. Funkhouser, The Princeton shape
benchmark, in: Shape Modeling International, Vol. 105, 2004, p. 179.

[40] M. Eitz, K. Hildebrand, T. Boubekeur, M. Alexa, PhotoSketch: a sketch
based image query and compositing system, in: SIGGRAPH 2009:
Talks, 2009.

[41] T. Chen, C. M. Ming, P. Tan, A. Shamir, S.-M. Hu, Sketch2photo:
Internet image montage, ACM Transactions on Graphics, (Proceedings
SIGGRAPH ASIA 2009) 28 (5).

[42] M. Swain, D. Ballard, Color indexing, International Journal of Com-
puter Vision 7 (1) (1991) 11–32.

[43] J. Canny, A computational approach to edge detection, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (1986) 679–698.

[44] S. Belongie, J. Malik, J. Puzicha, Shape matching and object recogni-
tion using shape contexts, IEEE Transactions on Pattern Analysis and
Machine Intelligence 24 (4) (2002) 509–522.

[45] D. G. Lowe, Distinctive image features from scale-invariant keypoints,
International Journal of Computer Vision 60 (2) (2004) 91–110.

[46] S. Di Zenzo, A note on the gradient of a multi-image, Computer Vision,
Graphics, and Image Processing 33 (1) (1986) 116–125.

[47] K. S. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is ”near-
est neighbor” meaningful?, in: International Conference on Database
Theory, 1999, pp. 217–235.

[48] K. Fukunaga, P. M. Narendra, A branch and bound algorithms for com-
puting k-nearest neighbors, IEEE Trans. Computers 24 (7) (1975) 750–
753.

[49] S. Lloyd, Least squares quantization in pcm, IEEE Transactions on In-
formation Theory 28 (2) (1982) 129–137.

37

[50] D. Martin, C. Fowlkes, J. Malik, Learning to detect natural image
boundaries using local brightness, color, and texture cues, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (2004) 530–549.

[51] H. Kang, S. Lee, C. Chui, Coherent line drawing, in: Proceedings of
the 5th international symposium on Non-photorealistic animation and
rendering, 2007, pp. 43–50.

[52] A. Torralba, R. Fergus, Y. Weiss, Small codes and large image databases
for recognition, in: IEEE Conference on Computer Vision and Pattern
Recognition, 2008, pp. 1–8.

[53] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, D. J. Heege, Shiftable
multiscale transforms, IEEE Transactions on Information Theory 38 (2)
(1992) 587–607.

38

