
Double Hierarchies for E�icient Sampling
in Monte Carlo Rendering

Norbert Bus
Tamy Boubekeur

LTCI, Telecom ParisTech, Paris-Saclay University

Figure 1: Renderings of di�cult scenarios. From le� to right: reference, GMMs [Vorba et al. 2014] and our method.

ABSTRACT
We propose a novel representation of the light �eld tailored to
improve importance sampling for Monte Carlo rendering. �e
domain of the light �eld i.e., the product space of spatial positions
and directions is hierarchically subdivided into subsets on which
local models characterize the light transport. �e data structure is
based on double trees, and only approximates the exact light �eld,
but enables e�cient queries for importance sampling and easy
setup by tracing photons in the scene. �e framework is simple
yet �exible, supports any type of local model for representing the
light �eld, provided it can be e�ciently importance sampled, and
progressive re�nement with an arbitrary number of photons. Last,
we provide a reference open source implementation of our method.

CCS CONCEPTS
•Computing methodologies →Ray tracing; •Mathematics of
computing →Markov-chain Monte Carlo methods;

KEYWORDS
Monte Carlo rendering, importance sampling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGGRAPH ’17 Talks, Los Angeles, CA, USA
© 2017 ACM. 978-1-4503-5008-2/17/07. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3084363.3085063

ACM Reference format:
Norbert Bus and Tamy Boubekeur. 2017. Double Hierarchies for E�cient
Sampling
in Monte Carlo Rendering. In Proceedings of SIGGRAPH ’17 Talks, Los Angeles,
CA, USA, July 30 - August 03, 2017, 2 pages.
DOI: h�p://dx.doi.org/10.1145/3084363.3085063

1 BACKGROUND
Importance sampling for incoming light. One of the most re-
cent approaches for representing incoming light is proposed by
[Vorba et al. 2014]. It starts by creating a dense sampling of distri-
butions by associating a hemispherical distribution with points in
the scene. �en, during sampling, the distribution closest to the
rendered point is queried and used to sample the incoming light.
�e method uses GMMs (gaussian mixture models) as distributions,
but they can be replaced by any model. As the method only models
the incoming light, one has to combine it with BRDF sampling
using multiple importance sampling.
Representing the light �eld. [Ren et al. 2013] achieve real-time
global illumination by utilizing a similar light �eld domain subdi-
vision strategy, training neural network models that approximate
the light �eld in each subspace. Our method shares this idea of
training local models but additionally enables e�cient sampling by
exploiting double tree hierarchies [Bus et al. 2015]. Our proposed
technique develops further this data structure to enable e�cient
sampling and training with photons.

2 METHOD
Let D be the space of hemispherical distributions and let the map-
ping m : R3 → D assign a distribution of incoming light to each
point in a scene. In the Monte-Carlo se�ing m(·) is used for an

SIGGRAPH ’17 Talks, July 30 - August 03, 2017, Los Angeles, CA, USA N. Bus & T. Boubekeur

estimator of the integral in the rendering equation, i.e., L(x ,ω) =
1
n
∑n
i=1 f (x ,ωi ,ω)L(x ,ωi)/m(x ,ωi)wherem(x ,ωi) =m(x)(ωi) for

simplicity, L(x ,ω) is the radiance at x ∈ R3 in direction ω ∈ S2, ωi
is the sampled direction and f (·, ·, ·) is the BRDF including the cos
term. �is simple notation reveals that what we seek is a function
m : R3 × S2 → D, such that given any x , m(x , ·) can be easily sam-
pled and the marginal integral,

∫
Ωx

m(x ,ω)dω, is known, therefore
m(x , ·) can be normalized to obtain a distribution. Note thatm(·, ·)
is practically the representation of the light �eld in such a way that
for a given x we can easily sample the corresponding distribution.
Overview. In this paper, we propose a construction that approxi-
mates the light �eld and possesses the previous property. �e idea
is very simple: we subdivide the space into subspaces and for each
of the subspaces we create a local model that approximates the light
�eld on this restricted domain. �e underlying model is arbitrary,
e.g., simple constant function or Gaussian mixture model, the only
restriction on it is that it enables e�cient sampling and marginal
integral calculation. �e only di�culty is how to actually obtain a
hemispherical distribution – or more precisely sample it – for any
point in the scene as one would have to join several local models.
Our key idea is to address this issue by structuring these local dis-
tributions over a double hierarchy of the position-normal product
space, such that sampling proper hemispherical distributions is
e�cient. Similarly to [Vorba et al. 2014], these local models are
created from multiple batches of photons in a preprocessing phase.

R3 S2
R3 × S2

Figure 2: Double hierarchy for the product space.

2.1 Data structure
Consider a hierarchical subdivision of both R3 and S2 to a su�-
cient depth. Let’s denote these structures by R = {R ji ⊆ R

3} and
Q = {Q j

i ⊆ S
2} where the indices are as follows: R ji is the jth

subspace on the ith level. In practice, these structures might be any
hierarchical clustering data structure, e.g., octrees. Each subspace
(herea�er called node) in R stores an initially empty list of product
space nodes (see below for their de�nition) and an RGB value.

We denote a hierarchical subdivision of the product spaceR3×S2

as P and restrict the subspaces to have the form R
j
i × Ql

k with
their children being formed by either subdividing R

j
i or Ql

k into its
children. Hence each product space subspace can be represented
by a link between two nodes in R and Q. P is stored as a tree
structure with the same arity as R and Q. See Figure 2 and note
that the links between the two trees also form a tree.

A node in P represents a spatial subspace coupled with a sub-
set of directions. We associate each of these nodes with a local
model, mR ji ×Q l

k
, representing m(·, ·) on this subspace. Since our

local models need to provide quick access to their marginal integral,
we restrict them to be constant along the spatial dimension.

Scene Method L1 RMSE SSIM Memory Preproc. Render Total(s)

Pool Gauss 0.213967 1.537650 0.663241 897.57 444.00 354.00 805.00
Double 0.257429 1.132270 0.611492 1456.75 282.00 282.00 570.00

Door Gauss 0.000226 0.002333 0.997712 938.51 816.00 528.00 1341.00
Double 0.000255 0.001881 0.997360 2299.05 336.00 510.00 845.00

Table 1: Numerical results comparing the GMMapproach by
Vorba et al. (Gauss) with our method (Double).

2.2 Primitives
Our data structure is equipped with four basic primitives. (i) Build-
ing: depending on the exact realization, it is straightforward to
build R and Q. To build P one simply recursively subdivides prod-
uct spaces clusters starting with P0

0 = R0
0 ×Q

0
0 . (ii) Re�ning: each

of these structures can be adaptively re�ned by simply adding new
leaf nodes. (iii) Training: for each training photon we can easily
descend to a leaf node of P and update the local distribution. �en
for each node R

j
i × Q

l
k in P we calculate the marginal integrand

of mR ji ×Q l
k
(·, ·) and accumulate it in the RGB value of R ji . (iv) Sam-

pling: for a given x we descend in R to the leaf containing x and we
sum up the marginal integrands of the product space nodes stored
along the path. Clearly, this sum is the marginal integrand on the
whole S2 for x . Using this value as the normalization constant we
can simply pick one product space cluster (from the links along the
path of the descent) and sample its local distribution.

Given these primitives, our method works as follows: (i) prior to
rendering we build shallow hierarchies and train the local models
with the photons in each batch while a�er each batch we re�ne the
structures; (ii) during rendering we sample the data structure.

3 EXPERIMENTS
We implemented our method as an extension of the publicly avail-
able source code of [Vorba et al. 2014] to enable easy comparison.
We used an Intel Xeon E5-1660v3 CPU, and utilized two scenes
(Fig. 1), providing examples of di�cult scenarios. More examples
are provided as supplemental materials. We have opted for sim-
plicity hence we used octrees as hierarchical structures and simple
constants as local models. We make our source code publicly avail-
able1. Table 1 gives error, memory and timing results. �e reference
has been created by the GMM based method of [Vorba et al. 2014]
using 65K samples per pixel, while the test images use 256 sam-
ples. �e preprocessing includes training the data structures with
30 batches of 300K photons. Even with the very simple constant
model, our method performs comparably to the GMM based method
in terms of quality. In terms of performance, it achieves a signi�cant
speed-up in the processing time, with an additional speed-up in
the rendering time. We believe that the simplicity, �exibility and
robustness of our method makes it a valuable alternative to other
methods for importance sampling in Monte Carlo rendering.

REFERENCES
Norbert Bus, Nabil H. Mustafa, and Venceslas Biri. 2015. IlluminationCut. Computer

Graphics Forum (Proceedings of Eurographics 2015) 34, 2 (2015), 561–573.
Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo.

2013. Global Illumination with Radiance Regression Functions. ACM Trans. Graph.
32, 4 (July 2013), 130:1–130:12.

Jiřı́ Vorba, Ondřej Karlı́k, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014.
On-line Learning of Parametric Mixture Models for Light Transport Simulation.
ACM Trans. Graph. 33, 4, Article 101 (July 2014), 11 pages.

1Source code available at h�p://www.telecom-paristech.fr/ boubek/papers/DHS/

	Abstract
	1 Background
	2 Method
	2.1 Data structure
	2.2 Primitives

	3 Experiments
	References

