
DAG Amendment for Inverse Control of Parametric Shapes

ÉLIE MICHEL, LTCI, Télécom Paris, Institut Polytechnique de Paris, France
TAMY BOUBEKEUR, Adobe, France

A�er stroke #1Ini�al hyper-parameters A�er stroke #2 A�er stroke #3

Input Parametric Shape

Fig. 1. Our method infers without any manual setup how to update the hyper-parameters of a parametric shape to comply with an intent expressed as a brush
stroke on its visualization. This enables a more direct and intuitive interaction process than tunning individual sliders, at no extra cost for the shape’s designer.

Parametric shapesmodel objects as programs producing a geometry based on
a few semantic degrees of freedom, called hyper-parameters. These shapes
are the typical output of non-destructive modeling, CAD modeling or rig-
ging. However they suffer from the core issue of being manipulated only
indirectly, through a series of values rather than the geometry itself. In
this paper, we introduce an amendment process of the underlying direct
acyclic graph (DAG) of a parametric shape. This amendment enables a local
differentiation of the shape w.r.t. its hyper-parameters that we leverage to
provide interactive direct manipulation of the output. By acting on the shape
synthesis process itself, our method is agnostic to the variations of the con-
nectivity and topology that may occur in its output while changing the input
hyper-parameters. Furthermore, our method is oblivious to the internal logic
of the DAG nodes. We illustrate our approach on a collection of examples
combining the typical nodes found in modern parametric modeling packages
– such as deformation, booleans and surfacing operators – for which our
method provides the user with inverse control over the hyper-parameters
through a brush stroke metaphor.

CCS Concepts: • Computing methodologies→ Shape modeling; Shape
analysis.

Additional Key Words and Phrases: Parametric Design, Direct Manipulation,
Shape Modeling, Inverse Control, Shape Differentiation

ACM Reference Format:
ÉlieMichel and TamyBoubekeur. 2021. DAGAmendment for Inverse Control
of Parametric Shapes. ACM Trans. Graph. 40, 4, Article 173 (August 2021),
14 pages. https://doi.org/10.1145/3450626.3459823

Authors’ addresses: Élie Michel, LTCI, Télécom Paris, Institut Polytechnique de Paris, 19
place Marguerite Perey, Palaiseau, 92120, France, elie.michel@telecom-paris.fr; Tamy
Boubekeur, Adobe, 9 Rue de Milan, 75009, Paris, France, boubek@adobe.com.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
© 2021 Association for Computing Machinery.
0730-0301/2021/8-ART173 $15.00
https://doi.org/10.1145/3450626.3459823

1 INTRODUCTION
A parametric shape is a shape driven by a few input values that we
call hyper-parameters. Such a shape is the result of a process com-
monly referred to as non-destructive modeling, where the shape’s
designer intentionally leaves a few hyper-parameters publicly avail-
able to the shape’s end-user (Figure 1).

Mathematically, a parametric shape is a function F mapping the
hyper-parameters 𝝅 to a static geometry 𝐺 ⊂ R3 called an instance
of F . The set of hyper-parameters is a subset Π of R𝑛 . In our case,𝐺
is represented as a 3D surface mesh. We assume a certain degree of
regularity of this function since it is intended for human interaction.
The core problem of parametric shape manipulation by the end

user is that it does not occurs in the 3D space but rather in the
hyper-parameter space, which is roughly a list of sliders in a UI.
Yet, the intent of the end-user is often more naturally expressed in
the 3D space. This mismatch results in a trial and error loop that is
dampening the creation process.

In some contexts like animation, this issue is such a deal-breaker
than riggers are asked to equip shapes with manipulators, which
are handles lying in the 3D space and whose transform drives some
hyper-parameters. But creating these requires extra time and skills
on top of the design of the parametric shape itself.
In the workflow we target (Figure 2), a technical designer first

builds an object using non-destructive modeling tools, and simply
exposes some hyper-parameters without minding manipulators,
thus defining F . Lastly, the end-user edits the hyper-parameters to
customize the object. In between, our DAG amendment automati-
cally modify F so that besides the hyper-parameters sliders the end
user may directly manipulate the shape in the 3D view.

Animation set-up is also a use case complying with the aforemen-
tioned mathematical definition. The set-up of a geometry consists in

ACM Trans. Graph., Vol. 40, No. 4, Article 173. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459823
https://doi.org/10.1145/3450626.3459823

173:2 • Michel, É. and Boubekeur, T.

(a) Shape Design (b) Our DAG Amendment

Parametric Shape
Parametric Shape
with co-parameteriza�on

(c) Our Interac�on Loop

+
Designer End User

Fig. 2. A common creation workflow separates (a) the designer of a parametric object from (c) its end user. The former handles technical issues for the latter to
be fully dedicated to more artistic and intuition based matters (e.g. animation, staging). Our method improves this end interaction without extra effort from
the designer by (b) automatically inserting a few nodes to the parametric shape’s graph representation (DAG) produced by the designer.

attaching it (skinning) to a coarse control shape (often called skele-
ton) whose topology and degrees of freedom are carefully designed
(a process called rigging) to restrain its deformation space to plausi-
ble poses only. This design process is slightly different because one
first creates one particular instance and only then transforms it into
a parametric shape, whereas a non-destructive modeling workflow
directly creates a shape that is parametric.
Nevertheless these two processes result in the same nature of

objects, namely parametric shapes described as a Direct Acyclic
Graph (DAG) as shown in Figure 11, and since our contribution lies
in the manipulation of parametric shapes rather than their design,
it applies to any of these cases without loss of generality.

In this paper, we introduce a method for interpreting user inputs
expressed in the 3D viewport as changes in the hyper-parameter
space without any extra controller setup. Our key contributions are:
• an amendment operator for the parametric shape graph yield-
ing a co-parametrizationwhich associates points across hyper-
parametric variations and thus makes it possible to measure
point-wise shape jacobians efficiently;
• a non-linear filtering mechanism acting on the the result-
ing jacobians to both regularize and sparsify the shape opti-
mization, fostering hyper-parameters whose behavior comply
with the scale of the user brush.

Our approach is (i) automated – no extra effort is required from
the shape’s designer; (ii) flexible – it is possible to locally override
the automated process whenever it is needed, and falling back to
other methods remains possible at any time; (iii) non-invasive –
it can fit into existing parametric shape engines without requiring
to rewrite the content of generation operations.
Although we tried to remain agnostic in the underlying DAG

engine – in particular we do not require it to be automatically
differentiable – we make the assumptions that the operations (a)
process only mesh-based data (b) can transmit extra attributes of
the kind of texture coordinate from their input to their output and
(c) label the output geometry with a duplicate index (that we denote
𝑗) when they duplicate input geometry.

2 RELATED WORK
Parametric shapes are a natural way to represent 3D objects in
a space of lower dimension and higher meaningfulness than for
instance raw vertex positions. Many works output objects that are
in effect parametric shapes.

The object of (auto-)rigging methods is to transform a given static
geometry into a parametric shape. In this context, there is often a
distinction made between the kinematic parameters, which are the
raw degrees of freedom of a coarse skeleton or control cage and
the rig space made of higher-level semantic values on which the
animator has control (called respectively 𝛼 and 𝛽 in [Capell et al.
2005]). It is the latter, publicly exposed to the end user, that we call
hyper-parameters.

Although kinematic parameters can be estimated using geometric
analysis, based for instance on path finding [Tsao and Fu 1984; Wade
and Parent 2000] or Reeb graphs [Aujay et al. 2007; Hilaga et al.
2001; Lazarus and Verroust 1999; Pascucci et al. 2007; Tierny et al.
2006], determining semantic hyper-parameters requires a domain
specific prior.

Some works address the problem of fitting an existing rig space to
a new input geometry [Ali-Hamadi et al. 2013; Avril et al. 2016; Baran
and Popović 2007; Li et al. 2010], typically for motion re-targeting.
Others pick parts from different examples like Frankenrigs [Miller
et al. 2010]. For more examples [Rumman and Fratarcangeli 2016]
surveys auto-skinning methods.
The other way of injecting prior knowledge is through the use

of machine learning techniques, that have been applied to most
common use cases of rigging like human bodies [Anguelov et al.
2005; Liu et al. 2019; Loper et al. 2015; Osman et al. 2020], faces
[Blanz and Vetter 1999; Li et al. 2017; Vesdapunt et al. 2020] or even
generic shapes [Xu et al. 2019]. [Holden et al. 2015] learns how
to place semantic manipulators to reach a given kinematic pose.
Generally a subset of the hyper-parameters gives the morphologic
identity of the character and the reminder is related its posing and
animation.
In the context of machine learning, this lower dimensional ab-

stract space is often called a latent space or embedding space. Its
decoder, that generates a geometry given a particular point of the
latent space, is an example of parametric shape. Latent spaces often
have more dimensions than a human designer can handle though, so
[Chiu et al. 2020] and [Abdrashitov et al. 2020] try to reduce these
dimensions, bringing it even closer to our conception of hyper-
parameter.

The aforementioned body of work focuses on parametric shapes
representing organic shapes, but another common use case for them
is CAD modeling. [Mitra et al. 2012] surveys methods that can
extract a semantic construction graph from the auto-similarities

ACM Trans. Graph., Vol. 40, No. 4, Article 173. Publication date: August 2021.

DAG Amendment for Inverse Control of Parametric Shapes • 173:3

Parametric Shape

Height

Spacing

Hole Y

Hole X

Height

Spacing

Hole Y

Hole X

Hyper-parameters Differen�ate2

Solve3

Single-point Parametric Subshapes

Jacobian Buffer
Hyper-parameter Change

Hyper-parameter Valua�on

Stroke Trajectory

Sample1

Brush

Update4

Fig. 3. Overview of our interaction loop. At the beginning of a stroke, points are sampled around the user cursor to extract co-parameters 𝑎𝑖 and so single-point
parametric shapes C̄ (𝑎𝑖) . Each of these is differentiated to measure their jacobians, which are then provided to the solver. Confronting jacobians to the
trajectory of the cursor, the solver determines the update to apply to the hyper-parameters.

that a given static geometry presents [Kalojanov et al. 2016; Liu
et al. 2015]. More generally, inverse procedural modeling [Aliaga
et al. 2016] intends to represent existing geometries as generation
programs. However we only consider the ones that can be evaluated
in interactive time; inverse control of slower procedural generators
raises challenges of a different kind [Talton et al. 2009, 2011].
CSGNet [Sharma et al. 2018] learns a CSG tree from a static

geometry using reinforcement learning. [Ganin et al. 2018] considers
that the input to a renderer is a program rather than a model and
trains its machine learning model so. [Jones et al. 2020] learns shape
generation programs (i.e. parametric shapes).

Hyper-parameter space is sometimes called latent space, embed-
ding space, rig space [Hahn et al. 2012], design space [Talton et al.
2009], animation space [Merry et al. 2006], abstract parameters
[Capell et al. 2005].

Inverse Control. The most common case of inverse control in
computer graphics is Inverse Kinematics (IK), that originates from
robotics [Saab et al. 2013] and has been extensively studied for
skeletal animation [Aristidou et al. 2018]. Although their announced
scope is often limited to trees of rigid transforms, the methods
proposed in the IK literature may be applied to more complex mesh
deformations like human face posing [Lewis and Anjyo 2010], the
main input requirement being to have access to the jacobian matrix
of the action of hyper-parameters onto a point of the mesh.With this
jacobian at hand, methods have been developed to solve robustly the
inverse problem [Deo and Walker 1992] and account for boundaries
of the hyper-parameters [Baerlocher and Boulic 1998; Raunhardt
and Boulic 2007]. Our focus being on interactive design, we are
interested in online solutions.

The main issue we tackle in this paper consists in defining a
reliable way to measure this jacobian matrix even when the con-
nectivity of the geometry changes and so a vertex’ index cannot be
used to identify a point.

Interactive mesh deformation. Deforming raw geometries that are
not the output of an underlying parametric shape requires extra
prior knowledge. Some methods try to maximize rigidity [Igarashi
et al. 2005; Levi and Gotsman 2015], sometimes based on exam-
ples [Sumner et al. 2005; Wampler 2016]. Linear variational meth-
ods [Botsch and Sorkine 2008] deform the input by solving a linear
system capturing the intrinsic properties of the mesh, enriched with
direct control constraints coming in the form of vertex handles.
Non-linear methods [Botsch et al. 2006; Sorkine and Alexa 2007] fur-
ther develop this concept, to better preserve volumes and cope with
large handle motions. Alternatively, linear blend skinning [Baran
and Popović 2007; Jacobson et al. 2011] offers a scalable framework
where no system is solved at run time, and the bulk of the shape anal-
ysis yielding the handles influence is located at the initial per-vertex
weight computation.

We want to provide such direct control capabilities but our case
differs significantly, as our a priori is the space of possible embed-
dings a parametric shape can undergo through variations of its
hyper-parameters. This is somehow an extreme case of structure-
aware shape processing [Mitra et al. 2014], although such method
usually couples the user deformation (change of the hyper-parameters)
with the extraction of symmetries [Kurz et al. 2014; Wu et al. 2014]
or of coarse control structures from the geometric analysis of one
[Bokeloh et al. 2012; Gal et al. 2009] or many similar shapes [Gadelha
et al. 2020].

Improving interaction with parametric shapes has been explored
by [Kelly et al. 2015] who automatically places the hyper-parameter

ACM Trans. Graph., Vol. 40, No. 4, Article 173. Publication date: August 2021.

173:4 • Michel, É. and Boubekeur, T.

controllers in the 3D view, but the controllers themselves must have
been hand-designed first.

Shape correspondence. We will see in Section 4 the need to iden-
tify points across multiple meshes of potentially varying connec-
tivity, which is commonly referred to as shape correspondence or
cross-parameterization [Kilian et al. 2007; Kraevoy and Sheffer 2004;
Schreiner et al. 2004]. This consists in mapping each point from a
shape to points that have the same semantic but in other shapes.
[van Kaick et al. 2011] surveys a large variety of shape correspon-
dence works, and more recent work even try to match dissimilar
shapes [Hecher et al. 2018]. But this field focuses generally on of-
fline registration of a small number of geometries, while we have
to register a continuous infinity of meshes. Some works build cor-
respondences for large amount of objects. [Mahmood et al. 2019]
addresses the lack of consistent parameterization among datasets of
human bodies, but is hand tuned for this very use case. [Leimer et al.
2017] creates a parametric shape by registering together a whole
collection of shapes. Unfortunately these methods are offline and
resource intensive. Furthermore there are no geometric features
guaranteed that we may rely on to in general. For all these reasons,
we adopt a quite different approach. Establishing a shape correspon-
dence is a semantic operation, so we leverage the implementation
of the parametric shape – the DAG – because its structure carries
semantic information beyond what the output geometry shows.

Optimizations in hyper-parameter spaces. There are other cases
of optimization in hyper-parameter spaces than IK. Such a process
can be found in parametric architecture [Yang et al. 2011; Zhao et al.
2013], in particular to find values for which a form is constructible
[Whiting et al. 2009]. This is also a way to make hand-crafted anima-
tion and physical phenomena coexist [Hahn et al. 2012], or even to
determine hyper-parameters from reference photographs [Debevec
et al. 1996]. Indeed, the machine learning literature contains a num-
ber of such examples, like the work by Zhang et al. [2020] for pose
estimation. A close example to our work is [Umetani 2017]. Even
though their parametric shape is a bit ad-hoc, they experience the
need for a consistent parameterization, both for feeding 3D objects
into a deep learning pipeline and for providing inverse control of
the latent space by simply dragging vertices.

DAG Rewriting. Automatically editing the program that generates
a geometry is used in the field of procedural generation. [Barroso
et al. 2013] proposes to rewrite the rule set of a shape grammar
(which may also be represented as a DAG as shown by [Patow
2012]). [Lipp et al. 2019] transforms edits applied by the user on a
particular instance of a generator into edits of the program that gen-
erates a procedural shape. [Lienhard et al. 2017] proposes automatic
grammar rewriting, thus synthesizing programs that are the inter-
polation of other input programs. [Mathur et al. 2020] assists the
creation of generative programs by transforming hand selections
into semantic queries.

These work are different from our case because they provide ways
for the designer to modify the parametric shape’s program whereas
our method is geared towards the end user of an existing program.

We focus on DAGs representing imperative generation programs,
but other paradigms can be used, leading to different workflows,

such as [Krs et al. 2020] which proposes a powerful combination
of imperative, declarative and example-based ways of modeling
shapes.

3 OVERVIEW
Following a common painting metaphor, we model the user input as
a series of brush strokes. Each of these strokes must be interpreted
as a modification Δ𝝅 of the hyper-parameters. This grounds the
interaction loop shown in Figure 2c and detailed in Figure 3. Our
loop follows the usual approach of inverse control problems, namely
getting a differential information (Jacobian matrices {𝐽𝑖 }) in order
to locally inverse the function F (the solver). For the solving part
we can draw from the IK literature, however this literature takes
for granted the access to the Jacobians, which is not obvious in our
case.

We will first focus on how to theoretically define and practically
measure the Jacobians telling the influence of the hyper-parameters
over the part of the geometrywhere the stroke starts (Section 4). This
is the source of the automatic step b in Figure 2, interleaved between
the design and the use of the parametric shape. Then Section 5 shows
how we use this differential information to compute Δ𝝅 and details
the choices we have made compared to other such solving contexts.
We then show results in Section 6 and finally discuss the current
limitations and many prospects of our method in Section 7.

Terminology. Here are the key terms we use along this paper.
A Parametric shape F is a function mapping input values 𝝅 called

hyper-parameters to 3D surface meshes. An instance of the para-
metric shape is this 3D surface mesh for a fixed value of the hyper-
parameters.

A Single-point parametric subshape takes as input the same hyper-
parameters than the original parametric shape, but only outputs a
single point from the corresponding instance. It may be undefined
for some values of the hyper-parameters, otherwise returns point
that has the same meaning.

The parameter of a 3D point of an instance designates a 2D coor-
dinate that indexes this point and is often used for texture mapping.
The co-parameter 𝑎 of a single-point parametric subshape is a

coordinate that indexes this subshapes among all the other ones.
By extension, the co-parameter of a point of an instance is the co-
parameter of the single-point parametric subshape that this point is
an instance of.

4 CO-PARAMETERIZATION

4.1 Co-parameter definition
Measuring the Jacobian of the parametric shape at a given point
means to tell for each hyper-parameter how this point’s position
changes when the hyper-parameter is subject to an infinitesimal
change. The most straightforward way to do so is the finite differ-
ence method, that consists in evaluating the position of the point
for two close enough values of the hyper-parameter and measuring
their difference. However, the function F returns a set of many
points – an infinity of points – with no way to recognize one among
them.

More formally, our function F : 𝝅 ↦−→ 𝐺 does not have a defini-
tion of differential nor jacobian, so the problem is not in the choice

ACM Trans. Graph., Vol. 40, No. 4, Article 173. Publication date: August 2021.

DAG Amendment for Inverse Control of Parametric Shapes • 173:5

a co-parameteriza�on

hyper-parameteriza�on

parameteriza�on

(w,l)

Fig. 4. For our interaction loop to work, we need to be able to recognize a
point after a change of the hyper-parameters 𝝅 . We model this using three
notions of parameterization.M𝐺 : P𝐺 → 𝐺 ⊂ R3 is a parameterization
as meant in parameterized surfaces. The parametric shape F : Π → {𝐺 }
itself is a higher-order parameterization. SinceM𝐺 is not enough because
in general it is different for each 𝝅 , we introduce C : Π → (𝐴→ R3) which
outputs parameterizations consistent among all the geometries resulting
from F.

of differentiation scheme; other ones – e.g. auto-differentiation –
would suffer from the same issue. We will thus introduce the notion
of co-parameterization of F , a way to extract single-point parametric
subshapes 𝝅 ↦→ 𝑥 ∈ R3, which can be differentiated.
The usual way to identify a point on a geometry is to parame-

terize it. Importantly, this must not be confused with our hyper-
parameterization (see Figure 4). It consists in defining for a fixed
geometry 𝐺 a bijectionM𝐺 : P𝐺 −→ 𝐺 mapping to each point of
𝐺 a parameter from a set P𝐺 . Such a parameter can typically be a
unique texture coordinate or – in the case of meshes – a face index
together with barycentric coordinates. There are in general many
different ways of parameterizing a given geometry.
The problem in our case is that this mappingM𝐺 may depend

on𝐺 = F (𝝅), and so on the hyper-parameter 𝝅 . As a consequence,
it is of no use to recognize a point after 𝝅 changed. Hence the need
for a collection C of consistent parameterizations, each associated
with a different 𝝅 but all sharing the same parameter set A:

C(𝝅) : A −→ F (𝝅) ⊂ R3

The strength of this second order function C is that it may be
uncurried because A does not depend in 𝝅 , so

C : Π −→ (A −→ R3)
becomes

C̃ : Π × A −→ R3

and may even be curried back with its arguments swapped:

C̄ : A −→ (Π −→ R3)
We call C̄ a co-parameterization of the parametric shape F andA

its co-parameter set. It plays a role similar to the surface parameteri-
zation but in the space of parametric shapes. With these notations,
for each 𝑎 ∈ A the function C̄(𝑎) is a differentiable object, for
which using for instance finite differences makes sense. We call

1

4

2 2

l�=4

l�=1

l�=2+2l�=2

l=0
w=uv

l=0
w=uv(a) Original DAG

(c) Insert path index nodes(b) Count leaf-to-root paths

LeafInternal

Root Inserted

Fig. 5. We identify points across different outputs of a DAG (modeling the
implementation of the parametric shape) using two attributes attached to
face corners. 𝑤 is a copy of the parameterization (UV) at the leaf the face
corner comes from. 𝑙 is a unique index of the leaf-to-root path that generated
the face corner. We first count the number of paths flowing through each
input of each node (b.). We then automatically insert nodes (c.) to first
initialize 𝑙 to 0 after each leaf and offset 𝑙 before any input by the number of
paths flowing through previous inputs of the same node. As a result, each
face corner of the output geometry is labeled with a unique path index.

this a single-point parametric subshape of F (the output of step 1 in
Figure 3).

So to determine the influence of the hyper-parameters on a point
𝑝𝑖 sampled on the geometry 𝐺 = F (𝝅), we actually consider its
co-parameter 𝑎𝑖 = C(𝝅)−1 (𝑝𝑖) and evaluate the jacobian 𝐽𝑖 (𝝅)
of C̄(𝑎𝑖) at 𝝅 . The co-parameter 𝑎𝑖 of a point 𝑝𝑖 is thus the way
to "recognize" it after a change of the hyper-parameters. We will
discuss in the next section how to build this co-parameterization in
practice.

4.2 Automatic DAG Amendment
We assume in this section that the geometry produced by the para-
metric shape F is a 3D surface mesh. We will automatically modify
F so that the geometries it produces have each of their face corners
labeled with their co-parameter. Thus, sampling a 3D point 𝑝𝑖 onto
the output mesh also provides its co-parameter 𝑎𝑖 = C(𝝅)−1 (𝑝𝑖) by
interpolating the co-parameters of the corners of the face that 𝑝𝑖
belongs to (Figure 7a).

Without loss of generality, we can model the implementation of
F as a DAG whose nodes are mesh processing operations. Hyper-
parameters affect the behavior of individual nodes, but the connec-
tivity of this graph remains static. Our automatic modification of F

ACM Trans. Graph., Vol. 40, No. 4, Article 173. Publication date: August 2021.

173:6 • Michel, É. and Boubekeur, T.

l l�n�j j=1j=0

Mirror node

...count as 2n paths

downstream

duplicates up to m=2 �mes

<

n paths upstream...

j=1j=0

amendment

Fig. 6. A node that duplicates geometry up to𝑚 times and has 𝑛 incoming
paths is considered downstream as being traversed by𝑛 ·𝑚 paths. Assuming
there is a way to infer the index 𝑗 of the duplicate a face belongs to, the
path index 𝑙 is replaced by 𝑛 · 𝑗 + 𝑙 .

consists in inserting new nodes into this graph. It is non-invasive in
the sense that it does not require to bring any change to the internal
logic of individual nodes.

The co-parameter attribute 𝑎 that we intend to create at each face
corner must be:

unambiguous There must not be two points sharing the same
value of 𝑎.

interpolable within a face. In order to infer any point’s co-
parameter from the value at the corners of its face.

consistent across possible values of the hyper-parameters. To
ensure the continuity of the single-point parametric sub-
shapes 𝝅 ↦→ R3 that we extract.

We split 𝑎 into a real component 𝑤 and an integer component
𝑙 . The real component is technically no different from a texture
coordinate, which is also a real vector attached to face corners. The
integer component must be constant across a given face in order
to ensure interpolability, so it may in practice be attached to faces
rather than corners.

The attribute 𝑙 of a face contains the index of the data flow path
that generated it (Figure 5.b). This is consistent information since
the connectivity of the DAG never changes once the shape has
been modeled. Disambiguating faces generated through the same
path is ensured by the real component𝑤 that is given by a regular
parameterization of the leaf of this path.

Construction. We first insert a node after each leaf of the DAG.
This node initializes 𝑤 by copying the canonical texture coordi-
nate output by the leaf. When the leaf node generates meshes of
constant connectivity, any fixed automatic parameterization (auto
UV unwrapping) can be used. When the node is a primitive shape
(sphere, cylinder, box, etc.), its canonical parameterization works.
Practical mesh-based parametric shape engines support forwarding
face corner attributes through their internal nodes like any other
texture coordinate, so𝑤 is hence defined at the output of the DAG.

To produce the integer part, we first initialize it to 𝑙 = 0 after each
leaf (in the same node that initializes𝑤). Then, before the 𝑘-th input
of an internal node, we add a node that increments 𝑙 by

∑
𝑖<𝑘 𝑛𝑖

where 𝑛𝑖 is the number of paths going through input 𝑖 (see Figure 5).
The goal of the index 𝑙 is to disambiguate cases where 𝑤 over-

laps. Counting paths is a way to address cases caused by nodes that
combine several input meshes, like a boolean operation (difference,

fusion, intersection). The other major source of overlap is duplica-
tion nodes (mirror, copy and transform, scatter, etc.). To include this
into our framework, we multiply the number 𝑛 of paths flowing into
a duplication node by the maximum number𝑚 of duplicates it may
produce (Figure 6). If the duplication index 𝑗 has a finite number
of𝑚 possible values (for a mirror, 𝑗 ∈ {0, 1}), we insert after the
duplication a node that replaces 𝑙 with 𝑛 · 𝑗 + 𝑙 .

If 𝑗 may take an arbitrary large value, we add an extra dimension
to the integer index 𝑙 to store it, promoting it to an integer vec-
tor. Since the real component𝑤 is typically in [0, 1]2 the first two
dimensions of 𝑙 are emulated by offsetting 𝑤 in order to alleviate
memory usage.

Thus, each face corner of the output of the DAG is uniquely and
consistently identified by its path index 𝑙 and leaf parameter𝑤 . Our
process is summarized by pseudo-code in Appendix B.

4.3 Sampling and differentiation
At this point we are able to define what the jacobian of a point
𝑝𝑖 sampled on the geometry 𝐺 = F (𝝅) means. When a stroke
starts, we sample 𝐾 such points by casting rays from the viewport
and intersecting them with 𝐺 . The hit information is used to not
only find the 3D intersection point 𝑝𝑖 but also its co-parameter
𝑎𝑖 = (𝑤𝑖 , 𝑙𝑖).

The extent of the brush may cover areas at very different depths,
but we assume that the user intent has a limited depth of field,
affecting either the foreground or the background but not both at
the same time. To match this, we select the closest sample to the
center of the brush, and discard all the points that are too far from
its unprojected world space location.

To measure the 𝑘-th column of the jacobians 𝐽𝑖 , we evaluate the
parametric shape with the 𝑘-th hyper-parameter slightly changed.
The step of differentiation is set to 𝛿𝑘 = 10−5 · (𝛼𝑘 − 𝛽𝑘), where
[𝛼𝑘 , 𝛽𝑘] is the range of possible values of this hyper-parameter.
Within the new geometry 𝐺 ′ that this produces, we look for points
that have their co-parameter equal to 𝑎𝑖 . For each possible value of
𝑙𝑖 , we build a mesh where coordinates are the 𝑤 attribute of face
corners from𝐺 ′. We then project𝑤𝑖 onto this mesh to find the face
index and barycentric coordinates of the new position 𝑝 ′

𝑖
of the 𝑖-th

sample with respect to𝐺 ′. The 𝑘-th column of 𝐽𝑖 is thus (𝑝 ′𝑖 −𝑝𝑖)/𝛿𝑘
(see Figure 7).

If the nearest neighbor of𝑤𝑖 is too different, we assume that the
point 𝑝𝑖 has no equivalent in the new geometry𝐺 ′. This happens for
instance for points at the edge between the operands of a boolean
operation. In such a case, we set the 𝑘-th column of 𝐽𝑖 to zero to
prevent changing this hyper-parameter, provided we do not know
its influence.

5 SOLVING
The solver is provided with the jacobians 𝐽𝑖 ∈ R3×𝑛 measured at
the 𝐾 points 𝑝𝑖 sampled within the brush of radius 𝑟 when the
stroke started as well as the trajectory (𝑡0, . . . , 𝑡𝑇) of the stroke.
The solution Δ𝝅 returned by the solver must ensure the following
properties:

exactness The points originally lying inside the brush must
still be inside the brush at the end of the stroke.

ACM Trans. Graph., Vol. 40, No. 4, Article 173. Publication date: August 2021.

DAG Amendment for Inverse Control of Parametric Shapes • 173:7

(a) (b) (c) (d)

Fig. 7. To evaluate a column of the jacobian at a sample point 𝑝𝑖 , (a) we use
its co-parameter 𝑎𝑖 interpolated from the face corners, then (b) vary the
hyper-parameter by𝛿𝑘 and (c) look for the new point 𝑝′

𝑖
whose co-parameter

equals 𝑎𝑖 . (d) The column of the jacobian w.r.t. this hyper-parameter is
(𝑝′

𝑖
− 𝑝𝑖)/𝛿𝑘 .

sparsity The hyper-parameter update must have an amplitude
as low as possible; the user does not expect a single stroke to
apply too significant changes.

continuity The hyper-parameter update must be continuous
along the trajectory, i.e. adding a new way point 𝑡𝑇+1 close
to 𝑡𝑇 must not suddenly change Δ𝝅 .

speed A result must be found at interactive frame rate. The user
should not feel that hyper-parameters are changing while
she is not moving the mouse.

5.1 Inversion
At the first order, we know that for each of the single-point paramet-
ric subshapes C̄(𝑎𝑖) that we sample – denoted simply C̄𝑖 below – we
can approximate the new location of the point using the jacobian
𝐽𝑖 = 𝐽 C̄𝑖 (𝝅) computed at step 2 of Figure 3:

C̄𝑖 (𝝅 + Δ𝝅) ≃ C̄𝑖 (𝝅) + 𝐽𝑖 · Δ𝝅 (1)

The stroke trajectory is expressed in the viewport, so we compose
equation 1 with a function Proj : R3 → R2 mapping the world space
to the screen space. Since C̄𝑖 (𝝅) = 𝑝𝑖 is the point that was clicked
on, it is mapped to 𝑡0 – the beginning of the stroke. To fulfill the
objective of exactness, we want the new position C̄𝑖 (𝝅 +Δ𝝅) of this
point to match the new position 𝑡𝑇 of the user’s cursor:

𝑡𝑇 = 𝑡0 + 𝐽 ′𝑖 · Δ𝝅
where 𝐽 ′

𝑖
= 𝐽Proj · 𝐽𝑖 is the jacobian of the composition with

the projection. The jacobian 𝐽Proj of this projection is detailed in
Appendix A.

This is a typical problem of inverse kinematics which can be
solved with a damped least square method [Baerlocher and Boulic
2004; Deo and Walker 1992]. Such a method finds the solution Δ𝝅
that has a near minimal 𝐿2 norm while avoiding discontinuities at
singularities (where the rank of 𝐽 ′

𝑖
changes):

Δ𝝅 = 𝐽 ′+𝑖 · Δ𝑡
where Δ𝑡 = 𝑡𝑇 − 𝑡0 and 𝐽 ′+

𝑖
is a singularity robust pseudo-inverse

of 𝐽 ′
𝑖
.

Domain boundaries. In order to account for the boundaries of
the domain Π of allowed hyper-parameters, we use the active-set
method shown in Algorithm 1, inspired from the Prioritized Inverse
Kinematics presented in [Baerlocher and Boulic 1998]. We iterate

Algorithm 1: Our solver uses an active-set method to ac-
count for hyper-parameter boundaries. Diag(active_set)
returns a diagonal matrix whose 𝑗-th coefficient is 1 iff 𝑗 ∈
active_set in order to freeze hyper-parameters that are no
longer in the active set.
Input: Jacobian matrix 𝐽 , target move Δ𝑡
Output: An update Δ𝝅 of the hyper-parameters
active_set← {0, . . . , 𝑛 − 1};
Δ𝝅 ← (0, . . . , 0);
repeat

𝐽+ ← PseudoInverse(𝐽 · Diag(active_set));
𝛿𝝅 ← 𝐽+ · (Δ𝑡 − 𝐽 · Δ𝝅);
Δ𝝅 ← Δ𝝅 + 𝛿𝝅 ;
for 𝑗 ∈ active_set do

if IsOutOfBounds(Δ𝝅 𝑗) then
active_set← active_set \ { 𝑗};
Δ𝝅 𝑗 ← Clamp(Δ𝝅 𝑗);

end
end

until 𝛿𝝅 is null;

resolution steps and projections onto the domain, and freeze hyper-
parameters affected by the projection to their clamped values for
the remaining steps. Freezing is done by setting the corresponding
column of the jacobian to zero. To avoid breaking the continuity of
the solution, we add to the IsOutOfBounds test of Algorithm 1 a
maximum distance to the hyper-parameter update that was returned
at the previous execution of the function (i.e. for Δ𝑡 = 𝑡𝑇−1 − 𝑡0).
We also initialize Δ𝝅 to the previously returned solution.

We are thus able to handle a point-wise constraint and fulfill
the requirements listed above. We see in the next section how we
combine multiple such constraints over the extent of the brush.

5.2 Jacobian buffer filtering
The variations of a single point may not be representative of those
of the patch of surface surrounding it, so we sample multiple points
within the extent of the brush and average their jacobians. This is
still fast because the bottleneck is the evaluation of the parametric
shape which is common to all samples (see Section 6.1).
The second motivation for filtering the jacobian buffer is that

the 𝐿2 norm, minimized above, is not the most appropriate way
to model sparsity. Indeed, we rather need to limit the number of
hyper-parameters that have a non-zero update i.e., the 𝐿0 norm. For
instance, when two hyper-parameters have a similar influence over
the dragged points, we want to use only one of them rather than
applying a small change to both.
Hence we refine the user intent with the following model. (i)

All other things being equal, we want to foster hyper-parameters
that show less variation within the extent of the brush. And (ii) we
want to favor hyper-parameters whose influence over the dragged
area would change notably if the brush radius would be increased.
Intuitively, this corresponds to making the assumption that the user
chose the maximal brush radius fitting their intent, as illustrated in

ACM Trans. Graph., Vol. 40, No. 4, Article 173. Publication date: August 2021.

173:8 • Michel, É. and Boubekeur, T.

Drawer position
Handle size

(b) small radius

(a) large radius

same Jacobian

Fig. 8. Both hyper-parameters of this scene have the very same influence on
the drawer’s handle. Yet our jacobian buffer filtering enables to distinguish
the intent behind the choice of a large (a) or small (b) brush (the dotted
circle).

the drawer example in Figure 8. We inject extra knowledge about
the use case by setting some columns of 𝐽𝑖 to zero, thus ignoring
the influence of the hyper-parameter over the 𝑖-th point.

For objective (i), we compare the coefficients of variation 𝑣𝑘 (stan-
dard deviation over mean) of the norms of the columns of the 𝐽𝑖
within the brush. We discard hyper-parameters such that min 𝑣𝑘′

𝑣𝑘
is

lower than a threshold 𝜆𝑣 ∈ [0, 1].
Among the remaining hyper-parameter, we address (ii) by mea-

suring a contrast factor 𝑐𝑘 which is the ratio of the average norm
of the 𝑘-th column of 𝐽𝑖 inside of the brush over the one outside of
the brush. We foster hyper-parameters that have a high contrast
factor, so if 𝑐𝑘

max𝑐𝑘′ is lower than a threshold 𝜆𝑐 ∈ [0, 1], the 𝑘-th
hyper-parameter is discarded.
Thus a larger brush is more likely to affect hyper-parameters

whose influence has lower frequencies and a pickier brush will affect
hyper-parameters with faster variations in the Jacobian buffer. The
thresholds translate a global trade-off between 𝐿2 and 𝐿0 sparsities,
which would depend on the kind of object that is manipulated.
Empirically, 𝐿2 is more important for organic shapes while 𝐿0 is
more critical for mechanic ones. In practice, we use 𝜆𝑣 = 0.2 and
𝜆𝑐 = 0.75. A high value for 𝜆𝑐 favors sparsity in the modified hyper-
parameters, while a high value for 𝜆𝑣 favors regularity in the hyper-
parameter selection i.e., ignoring noisy hyper-parameters.

Single Direction. At an extreme edge of this trade-off, we add the
possibility to keep only one hyper-parameter. We consider that the
beginning of the stroke is moremeaningful than the end, because the
jacobian information that we have is only valid for small variations
of 𝝅 , so we pick the one hyper-parameter based on the direction at
the beginning of the stroke only, Δ𝑡 = 𝑡1 − 𝑡0. For each column 𝑗 ′

𝑘
,

we look at the cosine similarity (𝑐sim) between 𝑗 ′𝑘 and Δ𝑡 , as well
as the norm ∥ 𝑗 ′

𝑘
∥2. We favor columns with high norm in order to

reduce the 𝐿2 norm of the output Δ𝝅 . On another hand, the higher
the cosine similarity, the more exact the solution. Hence we pick
hyper-parameter �̃� based on:

�̃� = argmin
𝑘

𝑐sim (𝑗 ′𝑘 ,Δ𝑡) + 𝜆 ·
 𝑗 ′
𝑘

2

with 𝜆 = 1/2 in practice.

6 RESULTS
We implemented our method as an add-on for the Blender open
source package. Its direct manipulation capabilities are illustrated
on a few examples in Figure 9. In particular, we can observe that
examples (a) and (b) exhibit changes of connectivity while the last
edit in example (b) shows that clicking in an area not affected by any
hyper-parameter induces, as expected, a null update. These examples
are available as animations in the supplementary video. Our DAG
automatic amendment (Section 4.2) is exemplified in Figure 11.

6.1 Performances
For all the examples illustrating this paper, the execution time of the
DAG amendment is negligible, boiling down to a few milliseconds
each time the graph topology is updated. Hence, we focus here on
the runtime performance of our system during interaction.

Figure 10 gives execution time measurements on five scenes. The
bulk of the computation is located at the beginning of the brush
stroke since the finite differences require many evaluations of the
input parametric shape F . Then, when the stroke sees its extent
evolving under the user input event, the overhead introduced by
the solver is negligible compared with the time required to evaluate
F , which is needed anyway to display the current state of the
parametric shape.
The overall jacobian evaluation time is only indirectly related

to the number of vertices in the geometry and rather depends on
the complexity of the DAG and its nodes’ logic. The time needed to
retrieve the position of the points from their co-parameters depends
on the number of vertices, but since they are grouped by path index
𝑙 the relation is not strictly proportional. For instance, the table in
example (c) has twice as much vertices as the curtain in example (d),
but this complexity is mostly concentrated in the legs. The average
position evaluation time is 11.3ms, lower than for the curtains, but
it has a much wider standard deviation. It peaks around 27ms when
points are sampled on the legs but goes below 1ms when dragging
elements of the plate.
Performances were measured with 64 sampled jacobians. This

count linearly affects the initial sampling of co-parameters, the
evaluation of positions from their co-parameters and the filtering of
the jacobian buffer. Other elements are not modified. Empirically 64
is a high number of samples in the sense that the output jacobian is
already robust enough for an intuitive interaction at lower values.
In practice we use 32 samples, which was way enough for all our
examples.

6.2 Ablation study
To assess the symbiosis of the elements composing our approach,
we study here the influence of three of them over the whole system:
sample discarding, outbound sampling and path indexing.
Figure 12 illustrates the importance of discarding sample points

after unprojection. Even if they are close to the center of the brush
in screen space, the drawers are not on the same plane than the
likely area of focus of the user so they should not get affected by
the stroke.

ACM Trans. Graph., Vol. 40, No. 4, Article 173. Publication date: August 2021.

DAG Amendment for Inverse Control of Parametric Shapes • 173:9

Wave
Belt Height

Openning

Hyper-parameters

Length
Width

Thickness
Shelf Z

Hyper-parameters

Ears
Eyes

Hyper-parameters

(c)

(d)

(a)

(b)

Height
Spacing

Hole Y
Hole X

Hyper-parameters

Hyper-parameters

(e)

Hyper-parameters

Wheel Angle
Wheel Size

Foretank Size
Tank Size

Tank Door

Chemneys Size
Cabin Size

Button size
Display Size

Blade Height
Carving

Stylize
Blade Size

(f)

Fig. 9. Examples of sequences of edits using our method on various scenes. Corresponding DAG amendments can be found in the supplementary material.

ACM Trans. Graph., Vol. 40, No. 4, Article 173. Publication date: August 2021.

173:10 • Michel, É. and Boubekeur, T.

80.2ms (±10.4ms) 40.5ms (±17.6ms)

9.3ms (±1.09ms)

65.5ms (±6.84ms)

3.34ms (±0.426ms)

0.375ms (±0.06ms)

31.8ms (±21.1ms)
1.35ms (±0.154ms)

76.7ms (±22.8ms) 12.5ms (±3.85ms)

10.1ms (±3.49ms)

62.1ms (±22.7ms)

3.6ms (±0.286ms)

0.532ms (±0.461ms)

10.8ms (±6.08ms)
0.841ms (±0.186ms)

175.0ms (±87.2ms) 21.2ms (±9.16ms)

29.9ms (±9.26ms)

144.0ms (±83.9ms)

0.299ms (±0.117ms)

0.391ms (±0.171ms)

15.7ms (±12.1ms) 11.2ms (±13.2ms)

114.0ms (±52.7ms) 13.8ms (±4.57ms)

18.5ms (±5.45ms)

89.4ms (±51.8ms)

3.44ms (±0.416ms)

0.379ms (±0.11ms)

11.2ms (±5.98ms) 10.5ms (±10.6ms)

136.0ms (±7.25ms) 28.4ms (±9.86ms)

13.5ms (±0.678ms)

116.0ms (±4.07ms)

3.46ms (±0.231ms)

0.4ms (±0.0588ms)

23.0ms (±12.7ms) 13.7ms (±0.784ms)

83.1ms (±14.0ms) 11.4ms (±1.51ms)

10.8ms (±5.5ms)

66.4ms (±12.5ms)

5.04ms (±3.1ms)

0.534ms (±0.106ms)

8.61ms (±4.09ms) 2.13ms (±1.17ms)

41.4ms (±9.64ms) 4.49ms (±1.47ms)

11.1ms (±4.74ms)

24.5ms (±6.07ms)

3.57ms (±0.246ms)

0.425ms (±0.154ms)

3.57ms (±1.59ms) 2.47ms (±1.22ms)

When stroke starts

On mouse move

Measure Jacobians

Coparams to Posi�on

Evaluate F

Solve

Filter Jacobian Buffer
Sample Coparams

Evaluate F

2 hyperparams
2188 tris

3 hyperparams
36560 tris

(b)

(d)

4 hyperparams
2248 tris

4 hyperparams
70720 tris

(a)

(c)

6 hyperparams
94478 tris

4 hyperparams
25426 tris

(f)

(g)

7 hyperparams
54487 tris

(e)

(b)

(d)

(a)

(c)

(f)

(g)(e)

Fig. 10. Detailed profiling breakdown on several example scenes with varying complexity of DAG and output geometry. All examples are given for 64 sample
points. The time needed to evaluate F does not depend on our method but on the parametric shape engine that we have built onto, and its standard deviation
is due to caching mechanisms.

(a) Original DAG (b) Amended DAG

l=0
w=uv

l=0
w=uv

l�=1

l�=2j

Lever
Toast

Merge

Duplicate
Transform

Transform

Fig. 11. Preview of the DAG amendment applied on the example of Figure 1.
Small pink nodes in (b) are the node we insert. A more detailed version of
this figure can be found in the supplementary material.

In the absence of samples outside of the brush (Section 5.2), the
only way to change the size of the handle in the drawer example of
Figure 8 would be to first change the drawer position all the way to
its boundary then change the handle and finally move the drawer

(b) without discard

(a) with discard

Fig. 12. Interaction is better localized when we discard samples far from
the center of the brush once unprojected in world space (a) than when
keeping all points (b). Middle column shows the consequences of a stroke.
Right-hand column shows the same interaction under another viewpoint.

back to the desired location. Our method makes this same change
possible in a single stroke.

ACM Trans. Graph., Vol. 40, No. 4, Article 173. Publication date: August 2021.

DAG Amendment for Inverse Control of Parametric Shapes • 173:11

Path indices generated by our DAG amendment ensure that there
is not two points with the same co-parameter in the output geometry.
Without so, if 𝑝𝑖 and 𝑝 𝑗 share the same co-parameter, there is a risk
that a row of the jacobian is set to 𝑝 ′

𝑗
− 𝑝𝑖 instead of 𝑝 ′

𝑖
− 𝑝 𝑗 , where

𝑝 ′ is the new location of the point 𝑝 after a slight change of an
hyper-parameter. This leads to jacobians totally unrepresentative
of the influence of hyper-parameters.

7 DISCUSSION

7.1 Properties
As it stands, our method allows intuitive interaction with a paramet-
ric shape directly in the 3D view. In particular, a single mouse event
can yield multiple hyper-parameters to be updated concurrently.
The seminal parametric shape may also be exposed with various
alternative control spaces easily, by simply masking/exposing a sub-
set of its hyper-parameters, making it easy to “publish” the shape
for various application scenarios. Moreover, our DAG amendment
is non intrusive since we only insert new nodes, which is an au-
tomation of a process that a parametric shape creation tool exposes
to the user anyways.

Our approach opens the possibility to apply the many works that
have been carried out on inverse kinematic to parametric shapes
that are generated by complex graphs including operations that
drastically affect a mesh connectivity like boolean operations. Not
only do we give sense to the notion of jacobian of a point of the
surface but also we propose a filtering scheme to adapt their raw
value to the needs of intuitive direct manipulation.

Our approach is agnostic of the dimension of the interaction
space. We have focused mainly on screen based interaction, but any
other input device such as VR handles could be used as well. In
this case, the projection of manipulation-space sample points onto
the geometry at Step 1 of the interaction loop becomes a nearest
neighbor search rather than a ray casting.

Implementation Guidelines. To integrate our method to an ex-
isting shape engine, the latter must expose a way to insert a non
destructive operation on texture coordinates before/after existing
operations. The implementation must list for each available opera-
tion the number of duplicates it may create and a mean to retrieve
the duplicate index 𝑗 . The interaction loop expects that the host
software provides the user input, a way to query the geometry at-
tributes at sample points on the screen and a way to evaluate the
DAG programmatically.

User Feedback. We presented the tool to 19 users whose profi-
ciency with 3D software ranges from absolute beginner to profes-
sional, asked them to reach a target configuration of the parametric
shape, then collected their feedback on scales from 1 to 5. Users were
able to manipulate almost all the hyper-parameters they wanted
(only 1/4 felt blocked and it was at most on a single hyper-parameter)
and felt confortable with completing the task (63% found it rather
easy). In the majority of cases (63%), they used our brush exclu-
sively or felt back only a few times to the sliders (resp. 42% and
21%). Professional users used to hand designed manipulators were
sometimes frustrated not to be able to target for certain a given
hyper-parameter, but we recall that such manipulators require extra

Fig. 13. Limitation: The only operation of this parametric shape consists in
moving a vertex and its neighborhood. The hyper-parameter defines which
vertex is selected rather than how to move it, so the Jacobians of single-point
subshapes (lines shown in the middle figure) do not match the intuitive
influence of the hyper-parameter.

work when originally creating the parametric shape, which our
method does not. On average, users were leaning towards our brush
rather than the sliders and would be likely to use it in their usual 3D
software. More extensive results are available in the supplementary
material.

7.2 Limitations
Co-parameterization. Our proposed model of co-parameterization

relies on the practical ability of the DAG nodes to forward extra
attributes on face corners. Although this can be seen as a restriction,
it is a very reasonable assumption provided that production-ready
parametric shape engines usually need this feature in order to con-
serve texture coordinates.
Some nodes though introduce overlaps in UVs even when there

was none in their input (e.g. some smoothing algorithms). Some
other nodes are simply not able to assign face corner attributes to
their output (e.g. a convex hull node). Discrete hyper-parameters
like the number of repetition of a duplication operation are not
handled by our approach as is because it makes the single-point
subshapes non differentiable.

It is nonetheless always possible for the shape’s designer to manu-
ally overcome these cases by adding extra nodes dedicated to fixing
the 𝑤 attribute. The supplementary material shows an example
where a continuous box proxy is used to override the value of 𝑤
after a duplication.

Unintuitive jacobians. When an hyper-parameter acts on the se-
lection from a geometry that gets affected by an operation rather
than the way the operation itself moves points, the jacobians of
single-point subshapes may no longer match the intuition of the
end-user (see Figure 13).

Homogeneity. Measuring the norm of an hyper-parameter update
Δ𝝅 is ill-defined because hyper-parameters are in general not homo-
geneous to each other, namely they are expressed in different units.
This is why our jacobian buffer filtering takes care of only com-
paring affine invariant properties (coefficient of variation, contrast
factor), but it remains a problem to properly define the objective of
sparsity of Δ𝝅 in the presence of diverse units.

First order. We currently only measure first order information
about the parametric shape – the jacobians – and do it only once,
at the beginning of the stroke. For long strokes, hyper-parameters
that have a non linear behavior are thus incorrectly interpreted.

ACM Trans. Graph., Vol. 40, No. 4, Article 173. Publication date: August 2021.

173:12 • Michel, É. and Boubekeur, T.

Furthermore, when the evaluation time of F increases, the delay
needed to compute the jacobians starts to be noticeable, between
the click and the first update of the hyper-parameters.

7.3 Future prospects
Global sampling. We could try to precompute jacobians before

the beginning of the stroke – while the user is changing the view
point for instance – to avoid the slight lag when the interaction
begins. This might require to use an acceleration structure to find
the nearest neighbor of 𝑤 in the new geometries as there would
be more sample points to consider, or would require to store the
cooked geometries 𝐺 ′, costing memory.

Such a global measure would also enable the use of global criteria
in the solver such as the conservation of volume. Sampling points all
over the object would also help homogenizing the hyper-parameters;
defining what is a "small" or "large" change to them.

More semantic. One of the strengths of our approach is to leverage
the semantic information carried by the DAG. One could look for
other ways of using it. For instance, the depths of the nodes using
a particular hyper-parameter could be used to prioritize some of
them during filtering.

Proxies. In cases where limitations occur in the construction of the
co-parameterization, hand-tuned workarounds based on geometry
proxies are possible. We could explore ways to automate this.

DAG pruning. The restriction C̄(𝑎) of the parametric shape F
to the single point of co-parameter 𝑎 ∈ A may not be affected by
all the nodes of the DAG. The graph could hence be pruned while
measuring finite differences in order to alleviate its evaluation cost.

Auto-differentiation. Using automatic differentiation can make
the nodes of the DAG output a jacobian as part of their computa-
tion process. This replaces the time consuming evaluation of finite
differences and also enables to update the jacobian buffer at each
frame during a stroke. We experimented with auto-differentiation
on simple scenarios only. Advanced mesh processing nodes like
boolean operations are non trivial to implement using an automatic
differentiation framework. So we did not stress test its scalability,
especially in terms of complexity in memory.

Other surface representation. Our practical construction of the
co-parameter 𝑎 = (𝑤, 𝑖) focuses on mesh-based representation
of 3D surfaces, but the overall approach and the notion of co-
parameterization is more general. We show for instance in the
supplementary material an experiment with signed distance fields
enriched so that they also return a co-parameter.

7.4 Conclusion
Our method leverages the information provided by the parametric
shapes when seen as programs – described in general as graphs of
operations – tomake inverse control available to them in an intuitive
brush-based interaction loop. Our approach may pave the way for
more advanced uses of graph-based shape representations, explor-
ing our local differentiation scheme with alternative optimization
strategies.

REFERENCES
Rinat Abdrashitov, Fanny Chevalier, and Karan Singh. 2020. Interactive Exploration

and Refinement of Facial Expression Using Manifold Learning. In Proceedings of
the 33rd Annual ACM Symposium on User Interface Software and Technology (UIST
’20). Association for Computing Machinery, New York, NY, USA, 778–790. https:
//doi.org/10.1145/3379337.3415877

Dicko Ali-Hamadi, Tiantian Liu, Benjamin Gilles, Ladislav Kavan, François Faure,
Olivier Palombi, and Marie-Paule Cani. 2013. Anatomy Transfer. ACM Trans. Graph.
32, 6, Article 188 (Nov. 2013). https://doi.org/10.1145/2508363.2508415

Daniel G. Aliaga, İlke Demir, Bedrich Benes, and Michael Wand. 2016. Inverse Proce-
dural Modeling of 3D Models for Virtual Worlds. In ACM SIGGRAPH 2016 Courses
(SIGGRAPH ’16). Association for Computing Machinery, New York, NY, USA, 1–316.
https://doi.org/10.1145/2897826.2927323

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers,
and James Davis. 2005. SCAPE: Shape Completion and Animation of People. In ACM
SIGGRAPH 2005 Papers (SIGGRAPH ’05). Association for Computing Machinery,
New York, NY, USA, 408–416. https://doi.org/10.1145/1186822.1073207

A. Aristidou, J. Lasenby, Y. Chrysanthou, and A. Shamir. 2018. Inverse Kinematics
Techniques in Computer Graphics: A Survey. Computer Graphics Forum 37, 6 (2018),
35–58. https://doi.org/10.1111/cgf.13310

Grégoire Aujay, Franck Hétroy, Francis Lazarus, and Christine Depraz. 2007.
Harmonic Skeleton for Realistic Character Animation. In SCA ’07 - ACM-
SIGGRAPH/Eurographics Symposium on Computer Animation, Michael Gleicher
and Daniel Thalmann (Eds.). Eurographics Association, San Diego, United States,
151–160. https://doi.org/10.2312/SCA/SCA07/151-160

Quentin Avril, Donya Ghafourzadeh, Srinivasan Ramachandran, Sahel Fal-
lahdoust, Sarah Ribet, Olivier Dionne, Martin de Lasa, and Eric Paque-
tte. 2016. Animation Setup Transfer for 3D Characters. Computer
Graphics Forum 35, 2 (2016), 115–126. https://doi.org/10.1111/cgf.12816
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12816

P. Baerlocher and R. Boulic. 1998. Task-Priority Formulations for the Kinematic Con-
trol of Highly Redundant Articulated Structures. In Proceedings. 1998 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Innovations in The-
ory, Practice and Applications (Cat. No.98CH36190), Vol. 1. 323–329 vol.1. https:
//doi.org/10.1109/IROS.1998.724639

Paolo Baerlocher and Ronan Boulic. 2004. An Inverse Kinematics Architecture Enforcing
an Arbitrary Number of Strict Priority Levels. The visual computer 20, 6 (2004),
402–417.

Ilya Baran and Jovan Popović. 2007. Automatic Rigging and Animation of 3D Characters.
In ACM SIGGRAPH 2007 Papers (SIGGRAPH ’07). ACM, New York, NY, USA, Article
72. https://doi.org/10.1145/1275808.1276467

Santiago Barroso, Gonzalo Besuievsky, and Gustavo Patow. 2013. Visual Copy & Paste
for Procedurally Modeled Buildings by Ruleset Rewriting. Computers & Graphics
37, 4 (2013), 238–246. https://doi.org/10.1016/j.cag.2013.01.003

Volker Blanz and Thomas Vetter. 1999. A Morphable Model for the Synthesis of
3D Faces. In Proceedings of the 26th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co.,
USA, 187–194. https://doi.org/10.1145/311535.311556

Martin Bokeloh, Michael Wand, Hans-Peter Seidel, and Vladlen Koltun. 2012. An
Algebraic Model for Parameterized Shape Editing. ACM Transactions on Graphics
31, 4 (July 2012), 78:1–78:10. https://doi.org/10.1145/2185520.2185574

Mario Botsch, Mark Pauly, Markus H Gross, and Leif Kobbelt. 2006. PriMo: Coupled
Prisms for Intuitive Surface Modeling. In Symposium on Geometry Processing. 11–20.

M. Botsch and O. Sorkine. 2008. On Linear Variational Surface Deformation Methods.
IEEE Transactions on Visualization and Computer Graphics 14, 1 (Jan. 2008), 213–230.
https://doi.org/10.1109/TVCG.2007.1054

Steve Capell, Matthew Burkhart, Brian Curless, Tom Duchamp, and Zoran Popović.
2005. Physically Based Rigging for Deformable Characters. In Proceedings of the
2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’05).
Association for Computing Machinery, New York, NY, USA, 301–310. https://doi.
org/10.1145/1073368.1073412

Chia-Hsing Chiu, Yuki Koyama, Yu-Chi Lai, Takeo Igarashi, and Yonghao Yue. 2020.
Human-in-the-Loop Differential Subspace Search in High-Dimensional Latent Space.
ACM Trans. Graph. 39, 4, Article 85 (July 2020). https://doi.org/10.1145/3386569.
3392409

Paul D. Debevec, Camillo J. Taylor, and Jitendra Malik. 1996. Modeling and Rendering
Architecture from Photographs: A Hybrid Geometry-and Image-Based Approach.
In Proceedings of the 23th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’96).

A. S. Deo and I. D. Walker. 1992. Robot Subtask Performance with Singularity Robust-
ness Using Optimal Damped Least-Squares. In Proceedings 1992 IEEE International
Conference on Robotics and Automation. 434–441 vol.1. https://doi.org/10.1109/
ROBOT.1992.220301

Matheus Gadelha, Giorgio Gori, Duygu Ceylan, Radomir Mech, Nathan Carr, Tamy
Boubekeur, Rui Wang, and Subhransu Maji. 2020. Learning Generative Models of
Shape Handles. In Proceedings of the IEEE/CVF Conference on Computer Vision and

ACM Trans. Graph., Vol. 40, No. 4, Article 173. Publication date: August 2021.

https://doi.org/10.1145/3379337.3415877
https://doi.org/10.1145/3379337.3415877
https://doi.org/10.1145/2508363.2508415
https://doi.org/10.1145/2897826.2927323
https://doi.org/10.1145/1186822.1073207
https://doi.org/10.1111/cgf.13310
https://doi.org/10.2312/SCA/SCA07/151-160
https://doi.org/10.1111/cgf.12816
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12816
https://doi.org/10.1109/IROS.1998.724639
https://doi.org/10.1109/IROS.1998.724639
https://doi.org/10.1145/1275808.1276467
https://doi.org/10.1016/j.cag.2013.01.003
https://doi.org/10.1145/311535.311556
https://doi.org/10.1145/2185520.2185574
https://doi.org/10.1109/TVCG.2007.1054
https://doi.org/10.1145/1073368.1073412
https://doi.org/10.1145/1073368.1073412
https://doi.org/10.1145/3386569.3392409
https://doi.org/10.1145/3386569.3392409
https://doi.org/10.1109/ROBOT.1992.220301
https://doi.org/10.1109/ROBOT.1992.220301

DAG Amendment for Inverse Control of Parametric Shapes • 173:13

Pattern Recognition. 402–411.
Ran Gal, Olga Sorkine, Niloy J. Mitra, and Daniel Cohen-Or. 2009. IWIRES: An Analyze-

and-Edit Approach to Shape Manipulation. In ACM SIGGRAPH 2009 Papers (SIG-
GRAPH ’09). Association for Computing Machinery, New York, NY, USA, Article 33.
https://doi.org/10.1145/1576246.1531339

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, and Oriol Vinyals.
2018. Synthesizing Programs for Images Using Reinforced Adversarial Learning.
(2018). arXiv:1804.01118 [cs.CV]

Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian Coros,
and Markus Gross. 2012. Rig-Space Physics. ACM Trans. Graph. 31, 4, Article 72
(July 2012). https://doi.org/10.1145/2185520.2185568

M. Hecher, P. Guerrero, P. Wonka, and M. Wimmer. 2018. How Do Users Map Points
Between Dissimilar Shapes? IEEE Transactions on Visualization and Computer
Graphics 24, 8 (Aug. 2018), 2327–2338. https://doi.org/10.1109/TVCG.2017.2730877

Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L. Kunii. 2001.
Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes. In
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’01). Association for Computing Machinery, New York, NY,
USA, 203–212. https://doi.org/10.1145/383259.383282

Daniel Holden, Jun Saito, and Taku Komura. 2015. Learning an Inverse Rig Mapping
for Character Animation. In Proceedings of the 14th ACM SIGGRAPH / Eurographics
Symposium on Computer Animation. ACM, Los Angeles California, 165–173. https:
//doi.org/10.1145/2786784.2786788

Takeo Igarashi, Tomer Moscovich, and John F. Hughes. 2005. As-Rigid-as-Possible
Shape Manipulation. ACM Trans. Graph. 24, 3 (July 2005), 1134–1141. https:
//doi.org/10.1145/1073204.1073323

Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. 2011. Bounded Biharmonic
Weights for Real-Time Deformation. ACM Trans. Graph. 30, 4 (2011), 78.

R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero,
Niloy J. Mitra, and Daniel Ritchie. 2020. ShapeAssembly: Learning to Generate
Programs for 3D Shape Structure Synthesis. ACM Trans. Graph. 39, 6, Article 234
(Nov. 2020). https://doi.org/10.1145/3414685.3417812

Javor Kalojanov, Michael Wand, and Philipp Slusallek. 2016. Building Construction Sets
by Tiling Grammar Simplification. Computer Graphics Forum 35, 2 (2016), 13–25.
https://doi.org/10.1111/cgf.12807

T. Kelly, P. Wonka, and P. Mueller. 2015. Interactive Dimensioning of Parametric Models.
Computer Graphics Forum 34, 2 (May 2015), 117–129. https://doi.org/10.1111/cgf.
12546

Martin Kilian, Niloy J. Mitra, and Helmut Pottmann. 2007. Geometric Modeling in Shape
Space. In ACM SIGGRAPH 2007 Papers (SIGGRAPH ’07). Association for Computing
Machinery, New York, NY, USA, 64–es. https://doi.org/10.1145/1275808.1276457

Vladislav Kraevoy and Alla Sheffer. 2004. Cross-Parameterization and Compatible
Remeshing of 3D Models. ACM Trans. Graph. 23, 3 (Aug. 2004), 861–869. https:
//doi.org/10.1145/1015706.1015811

V. Krs, R. Mech, M. Gaillard, N. Carr, and B. Benes. 2020. PICO: Procedural Iterative
Constrained Optimizer for Geometric Modeling. IEEE Transactions on Visualization
and Computer Graphics (2020), 1–1. https://doi.org/10.1109/TVCG.2020.2995556

C. Kurz, X. Wu, M. Wand, T. Thormählen, P. Kohli, and H.-P. Seidel. 2014. Symmetry-
Aware Template Deformation and Fitting. Computer Graphics Forum 33, 6 (2014),
205–219. https://doi.org/10.1111/cgf.12344

Francis Lazarus and Anne Verroust. 1999. Level Set Diagrams of Polyhedral Objects. In
SMA’99 Proceedings of the Fifth ACM Symposium on Solid Modeling and Applications.
ACM, Ann Arbor, United States. https://doi.org/10.1145/304012.304025

Kurt Leimer, Lukas Gersthofer, Michael Wimmer, and Przemyslaw Musialski. 2017.
Relation-Based Parametrization and Exploration of Shape Collections. Computers &
Graphics 67 (Oct. 2017), 127–137. https://doi.org/10.1016/j.cag.2017.07.001

Zohar Levi and Craig Gotsman. 2015. Smooth Rotation Enhanced As-Rigid-as-Possible
Mesh Animation. IEEE Transactions on Visualization and Computer Graphics 21, 2
(Feb. 2015), 264–277. https://doi.org/10.1109/TVCG.2014.2359463

J. P. Lewis and K. Anjyo. 2010. Direct Manipulation Blendshapes. IEEE Computer
Graphics and Applications 30, 4 (July 2010), 42–50. https://doi.org/10.1109/MCG.
2010.41

Hao Li, Thibaut Weise, and Mark Pauly. 2010. Example-Based Facial Rigging. ACM
Trans. Graph. 29, 4, Article 32 (July 2010). https://doi.org/10.1145/1778765.1778769

Tianye Li, Timo Bolkart, Michael J. Black, Hao Li, and Javier Romero. 2017. Learning
a Model of Facial Shape and Expression from 4D Scans. ACM Trans. Graph. 36, 6,
Article 194 (Nov. 2017). https://doi.org/10.1145/3130800.3130813

Stefan Lienhard, Cheryl Lau, Pascal Müller, Peter Wonka, and Mark Pauly. 2017. Design
Transformations for Rule-Based Procedural Modeling. Computer Graphics Forum
36, 2 (May 2017), 39–48. https://doi.org/10.1111/cgf.13105

M. Lipp, M. Specht, C. Lau, P. Wonka, and P. Müller. 2019. Local Editing of Procedural
Models. Computer Graphics Forum 38, 2 (2019), 13–25. https://doi.org/10.1111/cgf.
13615

Han Liu, Ulysse Vimont, Michael Wand, Marie-Paule Cani, Stefanie Hahmann, Damien
Rohmer, and Niloy J. Mitra. 2015. Replaceable Substructures for Efficient Part-Based
Modeling. Computer Graphics Forum 34, 2 (2015), 503–513. https://doi.org/10.1111/

cgf.12579
Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan, and Kun Zhou. 2019. Neu-

roSkinning: Automatic Skin Binding for Production Characters with Deep Graph
Networks. ACM Trans. Graph. 38, 4, Article 114 (July 2019). https://doi.org/10.1145/
3306346.3322969

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graph. 34, 6,
Article 248 (Oct. 2015). https://doi.org/10.1145/2816795.2818013

Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J.
Black. 2019. AMASS: Archive of Motion Capture as Surface Shapes. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV).

Aman Mathur, Marcus Pirron, and Damien Zufferey. 2020. Interactive Programming
for Parametric CAD. Computer Graphics Forum 39, 6 (Sept. 2020), 408–425. https:
//doi.org/10.1111/cgf.14046

Bruce Merry, Patrick Marais, and James Gain. 2006. Animation Space: A Truly Linear
Framework for Character Animation. ACMTrans. Graph. 25, 4 (Oct. 2006), 1400–1423.
https://doi.org/10.1145/1183287.1183294

Christian Miller, Okan Arikan, and Don Fussell. 2010. Frankenrigs: Building Character
Rigs from Multiple Sources (I3D ’10). Association for Computing Machinery, New
York, NY, USA, 31–38. https://doi.org/10.1145/1730804.1730810

Niloy J. Mitra, Mark Pauly, Michael Wand, and Duygu Ceylan. 2012. Symmetry in 3D
Geometry: Extraction and Applications. In EUROGRAPHICS State-of-the-Art Report.
https://doi.org/10.1111/cgf.12010

Niloy J. Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or, Vladimir Kim, and Qi-Xing
Huang. 2014. Structure-Aware Shape Processing. In ACM SIGGRAPH 2014 Courses
(SIGGRAPH ’14). Association for Computing Machinery, New York, NY, USA, 1–21.
https://doi.org/10.1145/2614028.2615401

Ahmed A A Osman, Timo Bolkart, and Michael J. Black. 2020. STAR: A Spare Trained
Articulated Human Body Regressor. In European Conference on Computer Vision
(ECCV).

Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, and Ajith Mascarenhas. 2007.
Robust On-Line Computation of Reeb Graphs: Simplicity and Speed. In ACM SIG-
GRAPH 2007 Papers (SIGGRAPH ’07). Association for Computing Machinery, New
York, NY, USA, 58–es. https://doi.org/10.1145/1275808.1276449

G. Patow. 2012. User-Friendly Graph Editing for Procedural Modeling of Buildings.
IEEE Computer Graphics and Applications 32, 2 (March 2012), 66–75. https://doi.org/
10.1109/MCG.2010.104

D. Raunhardt and R. Boulic. 2007. Progressive Clamping. In Proceedings 2007 IEEE
International Conference on Robotics and Automation. 4414–4419. https://doi.org/10.
1109/ROBOT.2007.364159

Nadine Abu Rumman and Marco Fratarcangeli. 2016. State of the Art in Skinning
Techniques for Articulated Deformable Characters. In Proceedings of the 11th Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and Appli-
cations: Volume 1: GRAPP (GRAPP 2016). SCITEPRESS - Science and Technology
Publications, Lda, Setubal, PRT, 200–212. https://doi.org/10.5220/0005720101980210

L. Saab, O. E. Ramos, F. Keith, N. Mansard, P. Souères, and J. Fourquet. 2013. Dy-
namic Whole-Body Motion Generation Under Rigid Contacts and Other Uni-
lateral Constraints. IEEE Transactions on Robotics 29, 2 (April 2013), 346–362.
https://doi.org/10.1109/TRO.2012.2234351

John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. 2004. Inter-Surface
Mapping. In ACM SIGGRAPH 2004 Papers (SIGGRAPH ’04). Association for Com-
puting Machinery, New York, NY, USA, 870–877. https://doi.org/10.1145/1186562.
1015812

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji.
2018. CSGNet: Neural Shape Parser for Constructive Solid Geometry. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Olga Sorkine and Marc Alexa. 2007. As-Rigid-as-Possible Surface Modeling. In Pro-
ceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP ’07).
Eurographics Association, Goslar, DEU, 109–116.

Robert W. Sumner, Matthias Zwicker, Craig Gotsman, and Jovan Popović. 2005. Mesh-
Based Inverse Kinematics. ACM Transactions on Graphics 24, 3 (July 2005), 488–495.
https://doi.org/10.1145/1073204.1073218

Jerry O. Talton, Daniel Gibson, Lingfeng Yang, Pat Hanrahan, and Vladlen Koltun. 2009.
Exploratory Modeling with Collaborative Design Spaces. 28, 5 (Dec. 2009), 1–10.
https://doi.org/10.1145/1618452.1618513

Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Měch, and Vladlen Koltun.
2011. Metropolis Procedural Modeling. ACM Trans. Graph. 30, 2, Article 11 (April
2011), 11:1–11:14 pages. https://doi.org/10.1145/1944846.1944851

Julien Tierny, Jean-Philippe Vandeborre, andMohamed Daoudi. 2006. 3DMesh Skeleton
Extraction Using Topological and Geometrical Analyses. In 14th Pacific Conference on
Computer Graphics and Applications (Pacific Graphics 2006). Tapei, Taiwan, s1poster.

Yea-Fu Tsao and King-Sun Fu. 1984. Stochastic Skeleton Modeling of Objects. Computer
Vision, Graphics, and Image Processing 25, 3 (1984), 348–370. https://doi.org/10.
1016/0734-189X(84)90200-7

Nobuyuki Umetani. 2017. Exploring Generative 3D Shapes Using Autoencoder Net-
works. In SIGGRAPH Asia 2017 Technical Briefs (SA ’17). Association for Computing

ACM Trans. Graph., Vol. 40, No. 4, Article 173. Publication date: August 2021.

https://doi.org/10.1145/1576246.1531339
https://arxiv.org/abs/1804.01118
https://doi.org/10.1145/2185520.2185568
https://doi.org/10.1109/TVCG.2017.2730877
https://doi.org/10.1145/383259.383282
https://doi.org/10.1145/2786784.2786788
https://doi.org/10.1145/2786784.2786788
https://doi.org/10.1145/1073204.1073323
https://doi.org/10.1145/1073204.1073323
https://doi.org/10.1145/3414685.3417812
https://doi.org/10.1111/cgf.12807
https://doi.org/10.1111/cgf.12546
https://doi.org/10.1111/cgf.12546
https://doi.org/10.1145/1275808.1276457
https://doi.org/10.1145/1015706.1015811
https://doi.org/10.1145/1015706.1015811
https://doi.org/10.1109/TVCG.2020.2995556
https://doi.org/10.1111/cgf.12344
https://doi.org/10.1145/304012.304025
https://doi.org/10.1016/j.cag.2017.07.001
https://doi.org/10.1109/TVCG.2014.2359463
https://doi.org/10.1109/MCG.2010.41
https://doi.org/10.1109/MCG.2010.41
https://doi.org/10.1145/1778765.1778769
https://doi.org/10.1145/3130800.3130813
https://doi.org/10.1111/cgf.13105
https://doi.org/10.1111/cgf.13615
https://doi.org/10.1111/cgf.13615
https://doi.org/10.1111/cgf.12579
https://doi.org/10.1111/cgf.12579
https://doi.org/10.1145/3306346.3322969
https://doi.org/10.1145/3306346.3322969
https://doi.org/10.1145/2816795.2818013
https://doi.org/10.1111/cgf.14046
https://doi.org/10.1111/cgf.14046
https://doi.org/10.1145/1183287.1183294
https://doi.org/10.1145/1730804.1730810
https://doi.org/10.1111/cgf.12010
https://doi.org/10.1145/2614028.2615401
https://doi.org/10.1145/1275808.1276449
https://doi.org/10.1109/MCG.2010.104
https://doi.org/10.1109/MCG.2010.104
https://doi.org/10.1109/ROBOT.2007.364159
https://doi.org/10.1109/ROBOT.2007.364159
https://doi.org/10.5220/0005720101980210
https://doi.org/10.1109/TRO.2012.2234351
https://doi.org/10.1145/1186562.1015812
https://doi.org/10.1145/1186562.1015812
https://doi.org/10.1145/1073204.1073218
https://doi.org/10.1145/1618452.1618513
https://doi.org/10.1145/1944846.1944851
https://doi.org/10.1016/0734-189X(84)90200-7
https://doi.org/10.1016/0734-189X(84)90200-7

173:14 • Michel, É. and Boubekeur, T.

Algorithm 2: Our DAG rewriting algorithm.
CountPaths(dag.root);
for 𝑛 ∈ dag.nodes do

𝑐 ← GetMaxDuplicates(𝑛);
if IsLeaf(𝑛) then

InsertAfter(𝑛, MakeInitNode());
else if 𝑐 > 1 then

InsertAfter(𝑛, MakePostDuplicateNode(𝑐));
sum← 0;
for input ∈ 𝑛.inputs do

if input.index > 0 then
InsertAfter(𝑛, MakeIncrementNode(sum));

end
sum← sum + input.𝑝𝑎𝑡ℎ_𝑐𝑜𝑢𝑛𝑡 ;

end
end

Algorithm 3: The recursive pseudo code of CountPaths.
It is memoizing the result at each node input in the field
path_count.
Input: Some DAG node 𝑛
Output: The number count of path flowing through this

node
if IsLeaf(𝑛) then

count← 1;
else

count← 0;
for input ∈ 𝑛.inputs do

if input.path_count is not defined then
input.𝑝𝑎𝑡ℎ_𝑐𝑜𝑢𝑛𝑡 ←
CountPaths(input.connected_node);

end
count← count + input.𝑝𝑎𝑡ℎ_𝑐𝑜𝑢𝑛𝑡 ;

end
count← count · GetMaxDuplicates(𝑛);

end

Machinery, New York, NY, USA, Article 24. https://doi.org/10.1145/3145749.3145758
Oliver van Kaick, Hao Zhang, Ghassan Hamarneh, and Daniel Cohen-Or. 2011. A

Survey on Shape Correspondence. Computer Graphics Forum 30, 6 (2011), 1681–1707.
https://doi.org/10.1111/j.1467-8659.2011.01884.x

Noranart Vesdapunt, Mitch Rundle, HsiangTao Wu, and Baoyuan Wang. 2020. JNR:
Joint-Based Neural Rig Representation for Compact 3D Face Modeling. (2020).
arXiv:2007.06755 [cs.CV]

L. Wade and R. E. Parent. 2000. Fast, Fully-Automated Generation of Control Skeletons
for Use in Animation. In Computer Animation. IEEE Computer Society, Los Alamitos,
CA, USA, 164. https://doi.org/10.1109/CA.2000.889075

Kevin Wampler. 2016. Fast and Reliable Example-Based Mesh IK for Stylized Deforma-
tions. ACM Trans. Graph. 35, 6, Article 235 (Nov. 2016). https://doi.org/10.1145/
2980179.2982433

Emily Whiting, John Ochsendorf, and Frédo Durand. 2009. Procedural Modeling of
Structurally-Sound Masonry Buildings. (2009).

XiaokunWu, Michael Wand, Klaus Hildebrandt, Pushmeet Kohli, and Hans-Peter Seidel.
2014. Real-Time Symmetry-Preserving Deformation. Computer Graphics Forum 33,
7 (2014), 229–238. https://doi.org/10.1111/cgf.12491

Z. Xu, Y. Zhou, E. Kalogerakis, and K. Singh. 2019. Predicting Animation Skeletons for
3D Articulated Models via Volumetric Nets. In 2019 International Conference on 3D
Vision (3DV). 298–307. https://doi.org/10.1109/3DV.2019.00041

Yong-Liang Yang, Yi-Jun Yang, Helmut Pottmann, and Niloy J. Mitra. 2011. Shape
Space Exploration of Constrained Meshes. In Proceedings of the 2011 SIGGRAPH Asia
Conference (SA ’11). Association for Computing Machinery, New York, NY, USA,
Article 124. https://doi.org/10.1145/2024156.2024158

Jianfeng Zhang, Xuecheng Nie, and Jiashi Feng. 2020. Inference Stage Optimization
for Cross-Scenario 3d Human Pose Estimation. Advances in Neural Information
Processing Systems 33 (2020).

Xin Zhao, Cheng-Cheng Tang, Yong-Liang Yang, Helmut Pottmann, and Niloy J. Mitra.
2013. Intuitive Design Exploration of Constrained Meshes. In Advances in Architec-
tural Geometry 2012, Lars Hesselgren, Shrikant Sharma, Johannes Wallner, Niccolo
Baldassini, Philippe Bompas, and Jacques Raynaud (Eds.). Springer Vienna, Vienna,
305–318.

A APPENDICES

A. Jacobian of the projector
Let Proj : R3 → R2 be the projection of the user’s view. Usually,
this projection is expressed in the form Proj (𝑋) = 𝑃 ·𝑋

[𝑃 ·𝑋]𝑤 with 𝑃
an arbitrary projection matrix. In this case, we derive the following
Jacobian:

𝐽Proj (𝑋) =
1

[𝑃 · 𝑋]𝑤
(
𝑃 − Proj (𝑋) · 𝑃𝑤,·

)
(2)

where 𝑃𝑤,· is the row of 𝑃 corresponding to the component 𝑤
and 𝑋 is a column vector.

B. Pseudo-code of DAG rewriting
Algorithms 2 and 3 describe a base implementation of the method
presented in Section 4.2.

ACM Trans. Graph., Vol. 40, No. 4, Article 173. Publication date: August 2021.

https://doi.org/10.1145/3145749.3145758
https://doi.org/10.1111/j.1467-8659.2011.01884.x
https://arxiv.org/abs/2007.06755
https://doi.org/10.1109/CA.2000.889075
https://doi.org/10.1145/2980179.2982433
https://doi.org/10.1145/2980179.2982433
https://doi.org/10.1111/cgf.12491
https://doi.org/10.1109/3DV.2019.00041
https://doi.org/10.1145/2024156.2024158

	Abstract
	1 Introduction
	2 Related work
	3 Overview
	4 Co-parameterization
	4.1 Co-parameter definition
	4.2 Automatic DAG Amendment
	4.3 Sampling and differentiation

	5 Solving
	5.1 Inversion
	5.2 Jacobian buffer filtering

	6 Results
	6.1 Performances
	6.2 Ablation study

	7 Discussion
	7.1 Properties
	7.2 Limitations
	7.3 Future prospects
	7.4 Conclusion

	References
	A Appendices

