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Many computer graphics applications use simpler yet faithful approxima-
tions of complex shapes to conduct reliably part of their computations. Some
tasks, such as physical simulation, collision detection, occlusion queries or
free-form deformation, require the simpler proxy to strictly enclose the input
shape. While there are algorithms that can output such bounding proxies
on simple input shapes, most of them fail at generating a proper coarse
approximant on real-world complex shapes, which may contain multiple
components and have a high genus. We advocate that, before reducing the
number of primitives to describe a shape, one needs to regularize it while
maintaining the strict enclosing property, to avoid any geometric aliasing
that makes the decimation unreliable. Depending on the scale of the de-
sired approximation, the topology of the shape itself may indeed have to be
�rst simpli�ed, to let the subsequent geometric optimization be free from
topological locks.

We propose a new bounding shape approximation algorithm which
takes as input an arbitrary surface mesh, with potentially complex multi-
component structures, and generates automatically a bounding proxy which
is tightened on the input and can match even the coarsest levels of approxi-
mation. To sustain the nonlinear approximation process that may eventually
abstract both geometry and topology, we propose to use an intermediate reg-
ularized representation in the form of a shape closing, computed in real time
using a new fast morphological framework designed for e�cient parallel
execution. Once the desired level of approximation is reached in the shape
closing, a coarse, tight and bounding polygonization of the proxy geometry is
extracted using an adaptive meshing scheme. Our underlying representation
is both geometry- and topology-adaptive and can be optionally controlled
accurately by a user, through sizing and orientation �elds, yielding an in-
tuitive brush metaphor within an interactive proxy design environment.
We provide extensive experiments on various kinds of input meshes and
illustrate the potential applications of our method in scenarios that bene�t
greatly from coarse, tight bounding substitutes to the actual high resolution
geometry of the original 3D model, including freeform deformation, physical
simulation and level of detail generation for rendering.
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1 INTRODUCTION
When facing complex 3D shapes, numerous geometric and spatial
algorithms rely on simpli�ed versions of these shapes to maintain

�is work is partially supported by the French National Research Agengy (ANR) under
grant ANR 16-LCV2-0009-01 ALLEGORI and by BPI France, under grant PAPAYA.
�is is the authors dra� version. Resources such as data, source code and supple-
mental materials will be posted upon �nal publication date on the project webpage:
h�ps://tsi.telecom-paristec.fr/cg, in the ”Bounding Proxies” publication section.
�e �nal version will be published in ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2017). Go on www.acm.org for accessing the �nal version with the
references recalled below.
© 2017 ACM. 0730-0301/2017/7-ART57 $15.00
DOI: h�p://dx.doi.org/10.1145/3072959.3073714

their scalability. �ese algorithms infer the existence of a proxy
to produce either a faster result and/or a good enough approxi-
mate solution to the problem they aim at solving (e.g., conservative
collision-detection or visibility tests). �is is usually achieved by
formulating and solving the problem with the proxy before mapping
the result to the original shape (e.g., collision response or drawing
call). For a number of applications, the coarse proxy is not only
expected to be made of a minimal number of primitives, but also to
completely enclose the original shape. Such a bounding proxy takes
the form of a coarse, closed 2-manifold triangle mesh.

On one hand, the automatic construction of bounding proxies is
tedious, as optimizing the few degrees of freedom of its geometry
may require highly non-linear energies to recover the bounding
property while remaining a faithfull i.e., tight approximation of the
input. On the other hand, the interactive design of such objects is
even more challenging, as the user needs a form of real time feed-
back on the proxy geometry while exploring the space of possible
bounding approximations. Ideally, the user shall only focus on the
(adaptive) level-of-detail of the proxy, le�ing the generation process
preserve the bounding property and minimal polygonal resolution.

Bounding Proxies. Although highly dependent on the application,
ideal bounding proxies share a number of desirable properties that
make them a�ractive for multiple scenarios. Each application then
emphasizes on some (or all) of these properties:

• bounding: crucial for conservative collision-detection and
occlusion queries, but also for artifact-free motion transfer
like cage-based free form deformation (FFD) and physical
simulation, where the compute-intensive physical interac-
tions are solved on the proxy and the resulting motion is
then transferred back to the original input shape,

• coarser: a high vertex count in the proxy damages its
utility, requiring the system (or user) to manipulate more
elements to reach its purpose; ideally, the proxy should
have the minimum number of vertices to achieve its goal,

• tight: although bounding, it is important to locate the
proxy geometry as closely as possible to the mesh to prevent
over-conservativity and ultimately cause more computation
or memory usage than needed,

• geometry adaptive: the proxy structure and resolution
should adapt to the geometry of the mesh, re�ecting its
main components, dominant features and, to a certain ex-
tent, topological structures,

• user adaptive: the proxy structure, topology and resolu-
tion should also account for a user-driven control mecha-
nism, specifying at which scale she intends to use it, remain-
ing coarser on some regions and �ner on others; this also
translates into topological variations, where the proxy may
have a simpler topology than the input object wherever the
scale is larger than a particular topological structure (e.g.,
small tunnel, handles, multiple components),
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Fig. 1. Starting from a complex mesh (56 components, genus 49, le�), our approximation algorithm generates adaptive bounding proxies with both geometry
and topology evolving as the desired scale grows (middle le� to right). This scale can optionnally be interactively controlled with a scale field.

While previous methods usually rely entirely on a combinatorial
or numerical optimization procedure, we argue that these objectives
can be achieved thanks to an intermediate representation that mod-
els them explicitly: we adopt a morphological approach to achieve
these properties (Sec. 3). Speci�cally, we de�ne a simpler yet faithful
domain from the input object, in which the proxy is meshed. We
design this domain to ful�l the aforementioned desirable properties
by construction, using a spatially varying morphological closing to
obtain a simpler and tight bounding shape. �e spatially varying
behaviour of this closing o�ers an intuitive interactive control for
the user, who can either prescribe a single scale value for the entire
proxy and let the approximation procedure run automatically, or
design �nely the scale of the proxy at a given location in space to
force the algorithm to coarsify or re�ne it, using an intuitive brush
metaphor to rule the underlying scale �eld interactively.

Granting the closing operator guarantees both the bounding and
tightness properties. It also supports asymmetric structuring ele-
ments i.e., two structuring elements of di�erent shapes can be used
for the dilation and erosion steps of the closing. In particular, we
show that a cube for dilation, together with a sphere for erosion,
while tightening closely the proxy to the original object, give rise,
at the same time, to large �at areas, which ease the generation of
large coarse(r) polygons in a �nal proxy structure that maintains
the enclosing property (see Fig. 5). By widening the possible shape
abstractions, this asymmetric morphological �ltering also be�er
perserves salient structures already present in the input (see Fig. 9)
and mimics the box-like aspect one can observe in hand-cra�ed
proxies (see Fig. 19).

With this speci�c closing domain in hand, we provide a feature-
aware meshing strategy which generates the (coarse) proxy poly-
gons while preserving the aforementioned properties, the strict-
enclosing property being full�lled in practice and le�ing foresee
a possible formal guarantee, as we discuss in Sec. 6. As a result
(Sec. 4), our method generates bounding proxies entirely automati-
cally at any resolution (see Fig. 1) and also allows users to model
them interactively, providing them with a high level control over the
local scale the proxy shall re�ect, before extracting a mesh structure
which is ready for the target application.

We illustrate the suitability of our tight and coarse bounding
proxies for various applications, including physical simulations,
freeform deformations and level-of-detail (LoD) generation (Sec. 5).

Contributions. We propose the following original contributions:
(1) a new shape approximation model based on an asymmet-

ric morphological closing, coupled with spatially varying
scale and orientation, which comes with remarkable prop-
erties that are not achieved with former methods, such as
topology simpli�cation and tightness at the same time;

(2) a new GPU algorithm which, for the �rst time, o�ers the
ability to perform a high resolution morphological alter-
ation at interactive rates;

(3) a fully-featured bounding shape approximation algorithm
which combines these new pieces with state-of-the-art vox-
elization and constrained mesh simpli�cation, able to han-
dle any input 3D shape as long as a coherent inside/outside
space partition can be inferred from it.

To our knowledge, our approach is the �rst to introduce mor-
phological closings for the purpose of shape approximation. While
being instrumental for coarse bounding proxies, this morphologi-
cal regularisation appears to be useful for an even wider range of
applications, as we discuss in the end of the manuscript.

2 PREVIOUS WORK
Mesh Simpli�cation. An impressive body of work covers the pro-

cess of simplifying a mesh by reducing its polygon count while pre-
serving as much as possible its overall shape. Such methods range
from progressive decimation [Garland and Heckbert 1997; Hoppe
et al. 1993; �iery et al. 2013], to variational partitioning [Cohen-
Steiner et al. 2004; Mehra et al. 2009] and spatial clustering [Legrand
and Boubekeur 2015; Lindstrom 2000; Rossignac and Borrel 1993].
�ey usually di�er in their geometric �delity, speed and scalability.
However, they do not focus on producing bounding proxies i.e.,
the bounding property is not accounted for and the behavior of
some of them may not even be guaranteed when operating at coarse
scale, where intricated geometry and complex topology cannot be
properly captured by the local model of the algorithm (e.g., planes,
spheres, quadrics, see Sec. 4).
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Convex representations. Widely used in conservative collision de-
tection and occlusion queries, these representations approximate
the input shape by a convex enclosing shape, including spheres,
(oriented) bounding boxes or k-dops for instance. �ey are basi-
cally di�erent approximations of the convex hull i.e., the unique
convex object of minimal volume enclosing the input shape. While
e�cient to generate and process, their inherent convexity becomes
a bo�leneck on highly non-convex shapes, for which many colli-
sion/intersection computations could be avoided with a non-convex
proxy containing a few additional primitives. Although, for some
applications, one can decompose the input shape into clusters, ap-
proximate each of them with a convex primitive and organize the
resulting set in a hierarchical data structure, bounding proxies re-
main more general and applicable to a wider set of scenarios. Alpha
shapes [Edelsbrunner et al. 1983] extend convex hulls by localizing
the notion of convexity, but retain arbitrarily high resolution in
locally convex regions of the input, which discards them from being
good candidates for coarse proxy generation.

Cage generation methods. Bounding proxies are o�en used in con-
jonction with space coordinates to perform freeform deformation
transfer. �ey are o�en referred to as ”cages” in such scenarios. Sev-
eral methods [Ben-Chen et al. 2009; Shen et al. 2004; Xian et al. 2009]
rely on o�sets to compute bounding proxies: given an iso-contour of
the input, they extract its o�seted version and compute a low resolu-
tion mesh of its boundary. �ese methods share the same drawback
as those relying on dilated version of the input [Faraj et al. 2012]:
the more the input is simpli�ed, the looser the resulting proxy is,
limiting the extent of a practical simpli�cation (see Sec. 4). Contrary
to dilation, if the input iso-contour is not a proper distance �eld, an
o�seting operator does not prevent the creation of new spurious
structures [Jackway and Deriche 1996]. Even though, most of these
methods use a polygon decimation process to reduce the actual
number of primitives, the looseness of the simpli�ed version helps
in producing a strict-enclosing and self-intersection-free proxy.

Others methods [Deng et al. 2011; Sander et al. 2000] rely on
the direct simpli�cation of the input to generate bounding meshes
using progressive edge-collapse algorithms and ensuring a local
strict-enclosing property by including local linear constraints to the
optimization performed during the simpli�cation. �ese methods,
which do not necessarly intend to produce FFD-ready proxies, o�er
limited quality and regularity in their output, exhibiting spikes and
favoring shape approximation (minimal error to the input) over
structure simplicity.

Xian et al. [2012] generate automatic bounding meshes by dis-
tributing oriented bounding boxes (OBBs) over the input mesh, op-
timizing and subsequently merging them. During the merging
process, if OBBs fail at being fused, the system fallbacks to boolean
operations (unions) which may lead to unintended local complex
structures in the bounding mesh connectivity, and di�ers signi�-
cantly from typical hand-designed cages in the context of freeform
deformation. Similarly, Le and Deng [2017] let the user manually
place cuts on the input mesh for every section (i.e., planar edge loop)
of the intended cage structure and mesh the resulting set of quads
using an inter-quad projection.

With Nested Cages, Sacht et al. [2015] recently demonstrated high
quality bounding mesh creation for a variety of shapes. Given a
self-intersection free decimated version of the input, they �ow the
original shape into the decimated version, and rein�ate it back while
solving for all the collisions on the decimated proxy. �e proxy is
e�ectively pushed back by the rein�ating the input shape until it is
restored at its exact original state. As a result, the proxy ends up
strictly enclosing the input shape and free of self-intersections i.e.,
it is a proper cage for freeform deformation. We conduct a large
part of our comparison experiments against this approach which
can currently be considered as the state-of-the-art. (see Sec. 4).

Mathematical Morphology. Mathematical morphology (MM) is a
non-linear shape analysis framework which measures how shape
components get (dis-)connected or disappear when swept with a
speci�c inspection element, called the structuring element (or SE).
�is framework [Serra 1983] is particularly e�cient at processing
2D/3D binary grids modelling space occupancy. Speci�cally, let G
be a binary voxel grid discretizing a given object and B the binary
voxel grid of the SE (typically a sphere or a cube). �en, the two
fundamental operators of MM – namely the dilation D and erosion
E – are de�ned as:

DB(G) = G ⊕ B and EB(G) = G 	 B

with ⊕ (reps. 	) the Minkowski sum (resp. subtraction) opera-
tor. Chaining these operators yields advanced morphisms a�ecting
both the geometry and the topology of G, with in particular the
morphological opening O and closing C:

OB := DB ◦ EB and CB := EB ◦ DB .

Giving a full survey of MM is beyond the scope of this paper and we
refer the reader to the book of Najman and Talbot [2010] for a com-
plete introduction and to the work of Calderon and Boubekeur [2014]
for a recent study in the context of point-based modeling. As we will
make use of a spatially varying SE, our approach also relates to the
work of Söderström and Museth [2010] who use spatially adaptive
morphological �lters to track interfaces in �uid simulations.

Morphological closings have been used to process scalar �elds on
meshes [Rössl et al. 2000]. However, to our knowledge our method is
the �rst to exploit morphological closings to process surface meshes
in general – and more speci�cally to compute tight and bounding
proxies. Based on the work of El-Sana and Varshney [1998], one
could examine the existence of a theoretical link between an alpha
shape and a closing with a sphere of radius alpha. However, beyond
the previously mentioned inherent limitations of such methods in
terms of resolution reduction, alpha shapes provide only approxima-
tions of simple spherical closings and do not provide the versatility
of a morphological closing, which gives a clean theoretical and prac-
tical foundation to spatially varying and exotic shape alterations,
as we will discuss later with our asymmetric instance. Moreover,
alpha shapes computations are inherently based on a Delaunay tri-
angulation which prevents their use at high input resolution and
under interactive constraints. Finally, the balance between the key
properties of bounding proxies, namely the bounding constraint
and the target coarse resolution polygonization, neither is addressed
nor easily achievable with existing alpha-shape transformations.
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Fig. 2. Overview: our bounding shape approximation algorithm uses a morphological closing to decorrelate the geometric and topological simplification
from the actual mesh decimation. The bounding proxy geometry can be optionally controlled adaptively with a scale field, typically tailored interactively
with a virtual brush, that enforces the proxy scale. As our new hierarchical collision algorithm closes the shape in realtime, this closing also provides an
interactive feedback. When the polygon count ma�ers more than the approximation quality, an asymmetric closing is performed instead of a symmetric one.

E�cient Spatially Varying Morphology. �ere exist many algo-
rithms to compute morphological operations on grids. However,
while several can compute dilations/erosions e�ciently [Gil and
Werman 1993; Gil and Kimmel 2002; van Herk 1992], or even in
parallel [Boulos et al. 2012; Hopf and Ertl 2000; Jagannathan et al.
2014; Museth 2013; �urley and Danell 2012] with a separable SE,
or an arbitrary one [Soille et al. 1996], they cannot be generalized to
a spatially varying framework, where the size of the SE (i.e., scale
of the morphism) changes over space. Some e�cient methods ex-
ist for a non-uniform SE but are limited in the choice of the SE
(balls [Cuisenaire 2006] or rectangles [Hedberg et al. 2009]) and do
not provide parallel-scalablility. In constrast, we propose a method
that computes in parallel (e.g., on the GPU) a spatially varying di-
lation (resp. erosion) with an arbitrary (resp. spherical) SE, fast
enough to provide interactive feedback to users. We refer to Bouay-
naya et al. [2008] for more formal elements on spatially-varying
mathematical morphology.

3 METHOD

3.1 Overview
Our algorithm constructs a bounding proxy C from an input mesh
M as follows (see Fig. 2):

(1) voxelization: a multi-resolution voxel grid G is built using
a fast, state-of-the-art 3D rasterization ofM, followed by a
bo�om-up mip-map construction,

(2) closing: given a 3D scale �eld S, a spatially varying clos-
ing is computed on G, using S to tailor the size of the
two structuring elements of this morphological alteration,
namely a sphere (resp. a cube) to dilate G isotropically
(resp. giving rise to cuboidal structures), and a sphere to
erode the dilation and tighten G toM,

(3) meshing: the coarse proxy C is meshed by (i) densely
meshing G, (ii) simplifying this mesh with a progressive
edge-collapse that preserves local bounding conditions and
upper bounded to the local scale modeled by S.

�e morphological operators are computed with a new fast algo-
rithm that enables real-time feedback on the bounding proxy geom-
etry through the dense closing visualization.

3.2 Voxelization
We typically consider closed 2-manifold, multi-components meshes
as the input, although any shape representation providing a clear
inside/outside indicator function can be used with our approach.
To achieve high performance morphological �ltering, we base our
framework on a discrete voxel grid G that is generated from the
input mesh on GPU using the conservative voxelization method
proposed by Schwarz et al. [2010]; up to the voxel size, small holes in
the input are handled at this stage. We pack the resulting 3D binary
grid by coding a cube of 8 voxels onto a single byte (uchar8). As the
resolution of this grid is then inherited by the upcoming closing and
meshing stages, we choose it dense enough to capture the feature
structures that may rise from our closing (see the close-ups in Fig. 2).
However, when the scale �eld is chosen coarse enough everywhere,
this resolution may be diminished strongly. In practice, we use
5123 as the initial resolution. In any case, since the voxelization is
running in real time, this resolution may be changed dynamically if
necessary. �e resulting grid G is used for two purposes: �rst as the
base input of the morphological transformation yielding the proxy
geometry (see Sec. 3.3) and second, while being morphologically
transformed, as an interactive visual feedback.

3.3 High Speed Closing
Mathematical morphology provides us with the perfect tool to build
a coarser, bounding yet tight geometry ofG: closings. Just as a simple
dilation, the closing operator guarantees the bounding condition
expected for our proxy geometry. Moreover, by adjusting the size of
the structuring element to the local scale value, a closing naturally
simpli�es the topology of G when this desired scale becomes too
large to maintain �ne handles and tunnels. However, contrary to the
dilation, it maintains the �nal geometry close to the input wherever
possible, leading to a tight enclosing. Speci�cally, we de�ne our
closings as:

G := EαS ◦ DβS (G)

�is is the authors dra� - Final version to be published in ACM Transactions on Graphics, Vol. 36, No. 4, Article 57. Publication date: July 2017.



Bounding Proxies for Shape Approximation • 57:5

3D grid

InputInput

3D mipmap

1

max

Structuring Elem
ent

SE field

ilation

Fig. 3. Dilation by hierarchical collision. Le�: voxelized input grid G. Middle-le�: creation of the 3D mipmap Ĝ = {Gi }. Middle-right: Structuring
Element (SE) field βS(p). Right: at each voxel p, the collision test between βS(p) and the hierarchy Ĝ, se�ing p to 1 if a collision occurs.

Fig. 4. Closings. Staring from the Beast model (le�), a symmetric closing
(middle) with a spherical SE and an asymmetric closing (right) are generated.
The la�er is tight while exhibiting large flat regions later captured in the
coarse proxy meshing stage.

Fig. 5. Asymmetry. A symmetric closing (blue shell) with small (le�) and
larger (middle) scale, and an asymmetric closing (right). Note how with
the asymmetric operator the blobby figure is perfectly abstracted to the
simplest bounding shape.

with αS (resp. βS ) a spherical (resp. spherical or cubical) structuring
element of varying size S : <3 →<+, a positive 3D scale �eld. To
preserve the bounding condition, we assume αS ⊆ βS in the rest
of the manuscript.

Asymmetry. While conventional closings use a spherical SE for
both the dilation and the erosion (see Sec. 2), we designed our
algorithm to support asymmetric closing, allowing the use of other
geometric primitives (e.g., a cube) for the dilation (see Fig. 3) and
keeping a sphere for the erosion (see Fig. 6). �is design choice is
motivated by the �nal format of the proxy – a coarse polygonal
mesh – for which, under bounding conditions, having large �at areas
enables a lower resolution mesh structure at a moderate volume
cost (see Fig. 4 and Fig. 5 for illustrations of this phenomenon). �is
also allows exploring a wider range of shape abstractions in the
proxy with box-like features perserved (Fig. 9) for instance and
accomodates some speci�c applications (e.g cage-based deformation
in Fig. 19). Since we use this spatially varying closing of G as
the main visual feedback for the user, we formulate it through a
parallel algorithm designed for e�cient GPU execution, expressing
the dilation/erosion operators through a hierarchical collision of the
structuring elements onto the mipmapped grid G. In the following

paragraphs, we describe the successive steps to compute the spatially
varying closing through two pyramid constructions (and collisions)
interleaved by a contour extraction.

Hierarchy on G. Given the binary grid G, we build a pyramid
Ĝ = {Gi } with Gi : N 3

i 7→ {0, 1} and Ni =
N0
2i . We ensure the

inclusive property (i.e., bounding behaviour) of the hierarchy with
the following construction rule:

∀p ∈ N 3
i G

i [p] = max
t∈{0,1}3

Gi�1[2p + t] (1)

with, ∀p ∈ N 3
i , G0[p] = G[p].

Spatially Varying Dilation D. Let’s consider ν = (i, q) a node
of Ĝ encoding a level i ∈ N, a position q ∈ N3 and a value
Ĝ[ν ] = Gi [q] ∈ {0, 1} and let ν = {q + y, y ∈ [0, 2i ]3} be
the spatial cell representing ν . We perform a parallel spatially
varying dilation through the hierarchical collision summarized in
Alg. 1 and illustrated in Fig. 3. �is collision algorithm between
a hierarchy Ĝ and a �eld of structuring elements (βS ) works for
any type of SE, even though we only use it here with the sim-
ple �eld: βS(p) = {p + y, y ∈ [�S[p],S[p]]3} for a cubic SE or
βS(p) = {p + y, ‖y‖ < S[p]} for a spherical one.

Hierarchy onDc . OnceD is computed, we extract its 6-connected
contour Dc . �en, given S and Dc , we build a scale-augmented
pyramid D̂c = {Di

c } with Di
c : N 3

i 7→ {0, 1} × R. We ensure the
inclusive property of D̂c with the following construction rule:

∀p ∈ N 3
i D

i
c [p] = max

t∈{0,1}3
Di�1
c [2p + t] (2)

with ∀p ∈ N 3
i D

0
c [p] = (Dc [p],S[p]) and the max operator being

applied separately for the binary occupation and the scale. Note
that working on the contour Dc instead of D reduces the number
of cells to visit during the traversal of the hierarchy (less occupied
cells) and does not change the �nal result (as we initialize the grid
E with D).

Spatially Varying Erosion E. Given a node ν = (i, q) and its value
D̂c [ν ] = Di

c [q] = (b, s), we de�ne ν , the dilation of ν with a
sphere of size s . �e spatial cell of a voxel p is de�ned by p = {p +
y, y ∈ [0, 1]3}. To perform the second step of the closing operator,
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Fig. 6. Spherical erosion by hierarchical collision. Le�: input D (i.e., the previous dilation grid) with its contour Dc that contains both occupation and
scale information from the scale field S; here, we exemplify the scale along with the corresponding spherical SE for some voxels of the contour p0 and p1.
Middle-le�: creation of the 3D contour mipmap in which the max operator takes into account both the occupation and scale. Middle-right: a collision test

between a voxel x and the hierarchy Dc ; we also show, for a node ν of the hierachy, the dilated node ν , computed from the cell ν and used during the

hierarchy traversal. Right: finally, a voxel x inheritates the occupation value D[x] from D if it does not collide with the hierarchy Dc (set to 0 otherwise).

Algorithm 1 Parallel spatially varying dilation.
Require: G a binary grid . voxelized input
Require: Ĝ a pyramid constructed using Eq. 1
Require: r ∈ {0, 1}3
D ← G
for all voxel p ∈ N 3

i | D[p] = 0 in parallel do . outside nodes
τ ← (imax , 0) . a stack of nodes of Ĝ
while τ , ∅ and D[p] , 1 do

ν = (i, q) ← peek of τ
τ ← τ \ ν . pop the peek of the stack
if i = 0 then
D[p] ← 1

else
for all sub-cell νr = (i � 1, 2q + r) of ν do

if βS(p) ∩ νr , ∅ and Ĝ[νr] = 1 then
τ ← τ ∪ νr . push the node to the stack

end if
end for

end if
end while

end for
return D

we propose a parallel spatially varying erosion summarized in Alg. 2
and illustrated in Fig. 6.

As a result, E contains the spatially varying closing and we can
�nally set G := E. Note that, contrary to the dilation case, this
collision algorithm between a scale augmented hierarchy and a
voxel grid works only for a spherical SE �eld, the whole �eld simply
being encoded in the scale-augmented hierarchy itself.

Additional Speed-Up. To improve even further the e�ciency of
our algorithm, we break up each spatially-varying morphology D
and E into two parts. First we compute the grid at half the resolution
(D1/2, E1/2), and extract a conservative contour of this result, then
we run the full resolution computation solely on this sparse set of
contour cells (Dsparse , Esparse , see Fig. 7). As such, the burden of
the volumetric complexity is reduced by a factor 8, leaving the full

Algorithm 2 Parallel spatially varying erosion.
Require: G a binary grid . voxelized input
Require: D a binary grid . spatially varying dilated input
Require: D̂c a pyramid constructed using Eq. 2
Require: r ∈ {0, 1}3
E ← D
for all voxel p ∈ N 3

i | E[p] , 0 and G[p] = 0 in parallel do
τ ← (imax , 0) . a stack of nodes of D̂c
while τ , ∅ and E[p] , 0 do

ν = (i, q) ← peek of τ
τ ← τ \ ν . pop the peek of the stack
if i = 0 then
E[p] ← 0

else
for all sub-cell νr = (i � 1, 2q + r) of ν do

if νr ∩ p , ∅ and D̂c [νr] = (1, ·) then
τ ← τ ∪ νr . push the node to the stack

end if
end for

end if
end while

end for
return E

Fig. 7. Morphological Pipeline. D (resp. E) is the full dilation (resp.
erosion); D1/2 (resp. E1/2) the dilation (resp. erosion) on a half resolution
grid; Dsparse (resp. Esparse ) is the full resolution dilation (resp. erosion)
computed on a sparse set of contour cells; ∆ is an extracted contour, and
Dc the intermediary contour necessary to compute E from D.

resolution to a much lighter surface bound complexity. Fig. 4 shows
an example of our asymmetric closing compared to a symmetric
closing (with a spherical SE).
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Fig. 8. Constrained QEM. From le� to right: the neighboring triangles of
an edge (in red), the optimal collapse without constraints, which violates
the strict inclusion and the optimal collapse with constraints (optimized
vertex in green and optimal triangle configuration in opaque material).

Fig. 9. Meshing. A Lego helicopter (120 components, le�), our bounding
proxy mesh with a symmetric closing (middle) and with an asymmetric
closing (right), which be�er detects large flat and salient structures.

3.4 Meshing
�e �nal stage of our pipeline extracts a coarse meshed proxy C from
the voxel closing G. During this operation, we aim at both reaching
the (coarse) resolution enforced by S and maintaining the bounding
condition carefully preserved at the previous steps (see Fig. 9). To
do so, we start by extracting a dense mesh C which contours exactly
G before performing an error-driven progressive edge collapse,
combining the classical �adric Error Metric (QEM) [Garland and
Heckbert 1997] with linear constraints (see Fig. 8) guaranteeing
local bounding conditions [Deng et al. 2011; Sander et al. 2000],
and upper-bounding edge length w.r.t. the scale �eld. �e error
stopping criterion is set to 10�3 (resp. 10�2) for the symmetric (resp.
asymmetric) closings.

Fig. 10. Approximation scale. Top: Nested Cages (layered). Bo�om: clos-
ing followed by Nested Cages. It requires around 4400s and 2 nested layers
to reach the coarser approximation with Nested Cages (in this case the
nested layers are mandatory to get flows that properly converge), while we
reach any coarse approximation in a maximum 150s (a x30 speed-up) by
using an intermediate Closing transform.

Default resolution 1/8 resolution 1/64 resolution

Fig. 11. Influence of the voxelization resolution on the closing. Even
at coarse resolution, the main dominant structures are still reflected in the
final morphology.

4 RESULTS AND COMPARISONS
Performances. We have implemented our method in C++, using

CUDA for GPU computations1. We report performance measures
on an Intel Core2�ad (single thread) at 2.7GHz with 8 Gb of mem-
ory and a nVidia GTX680 GPU. In Fig. 12, we report the detailed
performance measures of our spatially-varying asymmetric closing
operator (timings are similar for the symmetric one), for some mod-
els illustrating this paper. We observe that the system remains inter-
active, even at coarse scale (i.e., large structuring element), which
preserves the mandatory feedback during proxy design. Compared
to a naive implementation, we reach a ×70 speed-up. For instance
on the Beast model we obtain 86ms and 120ms for a symmetric clos-
ing of 20 and 37 voxels respectively, while the straightforward GPU
Minkowski sum based on spla�ing (see Sec. 2) takes 1200ms and
8800ms. Note that one of the fastest algorithm [Cuisenaire 2006]
to compute a spatially varying closing takes around 2 minutes (on
CPU due to its sequential nature) with comparable SE sizes and the
same grid resolution. We also illustrate in Fig. 11 the evolution of
our closing when changing the underlying initial voxel resolution.
We conducted initial experiments on a more powerful GPU (nVidia
GTX 980ti) also, measuring on average a 2x speed up compared to
our GTX 680, which illustrates the parallel scalability of our high
speed morphology. �e �nal (o�ine) proxy meshing stage takes
usually between 30 and 100 sec. (CPU execution). Depending on
the application, this delay can be signi�cantly reduced by using a
lower initial grid resolution. Although this remains the bo�leneck
of the process, one should note that the proxy geometry is de�ned at
interactive rate thanks to our high speed voxel morphology, le�ing
this meshing stage as a �nal ”baking” step executed only to export
the bounding proxy in mesh format toward its target application.

Comparison. In order to evaluate our bounding shape approx-
imation method, we compare three scenarios on a collection of
models spanning a variety of geometric and topological characteris-
tics. In Fig. 14, (i) the le� column shows the proxy resulting from
the simpli�cation of the input using a state-of-the-art QEM mesh
simpli�cation [Garland and Heckbert 1997] followed by the Nested
Cage (NC) method [Sacht et al. 2015] (in both cases, we use the pub-
licly available implementation); (ii) in the central column, we �rst
compute our morphological closing before simplifying the dense ge-
ometry and using Nested Cages to compensate for the non-bounding
1Our implementation will be made publicly available to support research in this area.

�is is the authors dra� - Final version to be published in ACM Transactions on Graphics, Vol. 36, No. 4, Article 57. Publication date: July 2017.



57:8 • Calderon, S. and Boubekeur, T.

Model
[scale;margin]

D
1/2

D
sparse

E
1/2

E
sparse

Total
+contours
+mipmap

mammoth
[0.07;0.5] 9.0 7.8 7.16 13.8 68.8

horse
[0.048;0.07] 22.2 16.9 16.4 37.8 124.3

�ligree
[0.25;0.5] 19.7 13.5 23.6 36.3 123.1

goro
[0.079;0.5] 13.1 7.5 9.1 17.0 76.7

�ower
[0.043;0.5] 6.2 2.8 2.5 5.0 47.5

dino
[0.046;0.5] 7.9 5.2 4.7 8.7 56.5

neptune
[0.039;0.5] 7.6 6.0 6.2 10.8 61.6

chair
[0.12;0.5] 13.2 10.4 10.8 18.0 52.4

Fig. 12. Closing timings. Performances (in milliseconds) for both cubic
dilation (D) and sperical erosion (E) with the collision algorithm traversal
on the half grid (D 1/2 and E 1/2) and the sparse set of contour cells at full
resolution. Building the 3 contours (between each morphological operations)
takes about 21 ms. Building the intermediate mipmap on Dc (the only one
being computed at each modification of the scale field S) takes about 10
ms. For each model we indicate the scale, along with the margin added to
the input bounding box to compute the morphological operations (they are
both expressed w.r.t. the bounding box diagonal of the input).

violations caused by the simpli�cation; (iii) in the right column, we
use our morphological closing with constrained QEM [Deng et al.
2011; Sander et al. 2000] (or CQEM), as described in Sec. 3.4. For
the comparison with NC (without our closing, second column in
Fig. 13) we also tested the decimation stage suggested by Sacht et
al. [2015] (named regular and adaptive). Although the QEM decima-
tion usually performs best, when the �ow for NC fails, it also fails
for the decimations methods used in the original NC publication.

Note that our initial list of desirable properties for good proxies
is matched by our appoach and has one main di�erence with the
one proposed by Jacobson et al [2014]. We advocate that depending
on the scale of the proxy w.r.t. the input mesh, the topology of the
input shall not always be preserved. As can be seen in the Mammoth,
Hand Skeleton, Flower and Chair models, such a behavior is o�en
useful to reach a low budget of vertices/faces while maintaining a
meaningful approximation. Indeed, in our experiments, when the
model becomes too complex and the target bounding approximation
too coarse, state-of-the art methods fail at producing a result. For
instance, the Nested Cages shrink �ow does not converge completely
inside the decimated input. It happens when the decimation itself
outputs a non reliable result, where too many intricated geometric
structures and/or a complex topology cannot be handeld by the
decimation.

Our method, on the contrary, regularizes this complexity and
makes any further decimation much more robust. As can be seen in
Fig. 14 and Fig. 13, using our closing before any decimation is o�en

Model
(% orig.; #f) CQEM QEM

+ NC

Closing
+ QEM +

NC

Closing
+ CQEM

octopus
(0.5; 3082)

t 83 682 180 50
v 0.0733 0.0724 0.0890 0.0980

boy
(2.1; 778)

t failed 1278 502 64
v 0.1540 0.1611 0.1778

animal
(0.5; 808)

t failed 1901 182 38
v 0.2034 0.2100 0.2279

beast
(0.12; 706)

t failed 3496 155 28
v 0.0309 0.0317 0.0363

�ligree
(0.14; 2000)

t failed failed 420 70
v 0.1935 0.2287

chair
(0.04; 1024)

t failed failed 420 60
v 0.0340 0.0347

�ower
(0.04; 918)

t failed failed 1480 23
v 0.0126 0.0157

hand skel.
(6.2; 680)

t failed failed 61 36
v 0.0796 0.0975

blade
(0.05; 924)

t failed failed 650 100
v 0.0645 0.0709

mammoth
(0.5; 1080)

t failed failed failed 80
v 0.1022

Fig. 13. Comparisons measures. We reports the timings (t) in seconds
for di�erent pipelines, and the volume (v) of the final approximation.

mandatory to build a bounding proxy using NC. �is does not only
hold for high genus shapes, but also for multi-components objects
transformed in a single bounding proxy, such as the 56-components
Robot model in Fig. 1. As objective measures of the proxy optimality
(see Fig. 13), we use its volume (v) since we use the volumetric ARAP
energy in NC, as well as the generation time (t). From a performance
point-of-view, our method is up to 125 times faster than NC, with
only a slight di�erence in tightness: on the Beast model for instance,
we output a bounding proxy with a volume only 20% higher, while
remaining visually very close.

Also, our approach can be combined with alternatives: by re-
moving geometrical intrication, the NC algorithm computes proxies
signi�catively faster (up to 20 times) since the �ow and the rein�a-
tion bene�t from our morphological regularization (less iterations
for the �ow, less collisions for the rein�ation step). Note that the
sole use of CQEM outputs meshes having self-intersections with
almost all tested models (see Fig. 13).

Additional examples and comparisons. Most algorithms [Ben-Chen
et al. 2009; Faraj et al. 2012; Shen et al. 2004; Xian et al. 2009] besides
Nested Cages need an o�seting/dilation step before the decimation
stage to work properly (i.e., to ful�ll the bounding property). In
Fig. 15, we use the CQEM algorithm as a decimation stage, on three
di�erent geometric states: the input, a dilation and an asymmetric
closing. Used directly on the input, the decimation does not pro-
duce a strictly bounding shape (226 self-intersections) and typically
exhibits spiky, non-regular structures; thanks to the dilation (that
also simpli�es the shape), the resulting proxy is strictly bounding
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(a) QEM + NC (b) Closing + QEM + NC (c) Closing + CQEM

Fig. 14. Comparisons. (a) QEM then Nested Cages. (b) Our closing then QEM then Nested Cages. (c) Our algorithm (closing then CQEM). Closeups are
shown in case the Nested Cages shrink flow fails. �antitative measures are provided in Fig. 13.
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Fig. 15. Impact of dilation/o�seting: constrained QEM collapse applied
to the input mesh (le�), to an o�set/dilation (middle) and to our asymmetric
closing (right).

Fig. 16. Comparison with IATV [Mandad et al. 2015]. Le�: the input
with the IATV mesh in overlay and the mesh alone. Right: the input with
our bounding proxy in overlay and the bounding proxy alone. To ensure the
strictly enclosing property while using IATV, the input needs to be dilated
first, explaining the loss of tightness in the resulting mesh (its volume is
63% higher than ours). Our method performs 20 times faster.

but loosely �ts the input, while our asymmetric closing produces a
tight and cuboidal proxy, suitable for cage-based FFD for instance.

Another type of methods [Cohen et al. 1996; Mandad et al. 2015;
Zelinka and Garland 2002], relying on bounded error/distance sim-
pli�cation, guarantees that the resulting proxy surface lies at a given
distance (usually Haudor� based) τ of the input. Although they do
not target bounding approximation, they can serve that purpose
by �rst dilating the input using the same τ . In Fig. 16 we show a
comparison with the IATV algorithm from Mandad et al. [2015].
Even if guarantees are provided by this combined approach, the
result loosely �ts the input and performs about 20 times slower than
ours.

�e method from Xian et al. [2012] produces e�ective cubic-like
structures, well-suited for user interaction. However our proxies
(with an asymmetric closing) are much tighter and signi�cantly
faster to compute. On the same Octopus model, the bounding proxy
is computed in 20 minutes with the method of Xian et al., compared
to about 30 seconds with our approach. Moreover, based on a very
coarse oriented bounding box shape decomposition (to target cage-
based FFD), this method cannot produce moderately coarse, tight
approximations, contrary to ours (see Fig. 14 for instance).

5 APPLICATIONS

5.1 Interactive Bounding Proxy Design
Our system provides the user with a simple and intuitive means to
tailor the proxy geometry through a single component: the scale
of the intended bounding object. At �rst, the user can control a
base scale globally, leading to a uniform proxy resolution. �en,
as some regions of the object may require �ner proxy resolution
than others, the user can adjust this scale locally, by interactively
brushing the desired scale directly on the object (see Fig. 17 and 18).
�is brush tool comes with three modes, that either increase the base

scale, decrease it or reset it to the default value (i.e., classical eraser
metaphor). Consequently, at any time, this interactive environment
provides our previously described approximation machinery with
two objects: the input mesh M and a user de�ned scale �eld S
(see Appendix A for the precise de�nition of the scale �eld in this
case). Since both voxelization and closing are designed to run in
real time, the user bene�ts from an instantaneous feedback on the
proxy geometry through the adaptive closing.

As voxel aliasing may disturb this visual feedback during edit-
ing, we additionally compute a piecewise smooth normal �eld by
estimating a per-boundary-voxel normal vector and performing a
bilateral �ltering on them, with domain support adjusted to ignore
voxel-wide wavering. As a result, the visual feedback exhibits large
dominant feature lines while eliminating the individual voxel edges
in the rendering (see Fig. 18). In Fig 17, we illustrate a proxy design
sequence using our proxy brush. �e user starts by se�ing a global
(background) scale for the bounding proxy and then paints interac-
tively on the model to re�ne the proxy structure around the head
and the hands of the model. �e interactive visual feedback provided
by the closing geometry is critical here, as the user progressively re-
�nes it until reaching the desired adaptive level-of-detail. Moreover,
the coarse proxy which is ultimately extracted has a resolution that

(a) Input (b) Closing (c) Closing (d) Proxy

Fig. 17. Interactive bounding proxy design: starting from the 4-
components Goro model (a), the scale of the bounding proxy is first globally
set by the user (b), before being interactively refined in regions of interest
using the proxy brush (c) and finally meshed (d).

Fig. 18. Interactive bounding proxy design: bounding proxy geometry
before (le�), during (middle) and a�er (right) max brush editing on the Goro
model (top) and min brush editing on the beast model (bo�om) with an
asymmetric closing. Here, the piecewise-smooth normal field for aliasing-
free shading is activated for a be�er visual feedback.
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can be intuitively guessed from the closing shape and scale, with
long edges in coarse scale regions and more degrees of freedom
in �ne scale areas. An additional feature of our system resides on
the fact that the scale �eld is painted on the surface ofM, which
allows to accurately specify the location that requires local scale
adjustment directly on the input geometry.

5.2 Freeform Space Deformation
Space deformation using cage coordinates is one family of freeform
deformation (FFD) methods and has recieved an increasing inter-
est over the last decade, with today’s cage coordinate systems
providing high quality deformation with good geometric proper-
ties such as smoothness, boundary interpolation or local quasi-
conformality [Joshi et al. 2007; Ju et al. 2005; Lipman et al. 2008].
By expressing each vertex of the target shape in the coordinate sys-
tem stemming from a closed bounding mesh (called ”cage” in this
context), users are able to deform smoothly complex meshes using
the small set of cage vertices. However, it still induces a tedious
manual construction of the underlying cage geometry and topology
for which the design interface described in Sec. 5.1 is particularly
well-suited. In particular, the asymmetric nature of our morpholog-
ical closing gives rise to bounding proxies with box-like features,
mimicking hand-cra�ed cages, and favors large �at areas modeled
by fewer polygons, making them good candidates for acting as FFD
cages.

In the context of FFD, the cage shall not obscure the underlying
mesh, and be exposed in a simple and light way to the user; in
particular, with a cuboidal structure, a quite natural quad-dominant
mesh can be extracted on our proxies on-the-�y [Tarini et al. 2010],
the resulting visual tri-quad mesh structure being exposed to the
user for FFD interaction (see Fig. 15; more results are provided in
the supplemental materials).

Last, although an axis-aligned structuring element does not pro-
duce axis-aligned cuboidal features only, our system supports also
an additional volumetric rotation �eld, used to orient the cubic SE
in order to roughly follow the main structures of the input, result-
ing in more feature-preserving and tighter bounding proxies. �is
rotation �eld, represented as quaternions, is computed by solving a
grid-based biharmonic equation with a sparse set of constraints (no
more than 3 in the examples of Fig. 19) provided by the user. More
evolved rotation �elds may also be injected instead.

5.3 Physical Simulation
Our proxies can be used as economic substitutes to high resolution
meshes for physical simulation. �eir bounding property can be

Fig. 19. Rotation Field. Le�: a bounding proxy computed with a simple
axis-aligned closing. Right: with a non-axis aligned asymmetric closing
(using a rotation field). The resulting proxy is tighter and be�er respect the
features of the input shape.

Fig. 20. So� body simulation with our proxies, using cage-based motion
transfer. In this experiment, the speed-up was at least of x100 thanks to
the lighter proxies.

original 
geometry

simulation
proxy

original 
geometry

simulation
proxy

Fig. 21. Cloth simulation. Le�: simulation with a simple QEM decimation
proxy. Right: with our bounding proxy. Our proxy does not exhibit any pass-
through artifact of the sheet during the simulation. For this experiment, we
achieve a x18 speed-up thanks to the lighter proxies. Note that while both
proxies have the same face count (6656), ours has a much be�er distributed
complexity thanks to the regularization of the closing (note the oversized
elements on the petals of the QEM proxy).

leveraged to use cage coordinates systems for so� body simulation
(see Fig. 20), or to ensure proper results in cloth simulations with no
pass-through artifacts when rendering the high resolution meshes
a�er simulation (see Fig. 21). �anks to the reduced number of ele-
ments of our proxies, solving for the elasticity/plasticity equations
and the collisions/self-collisions is at least x100 faster than with the
full resolution models, while a 18x speed-up is achieved on the cloth
simulation. For both setups, the result remains visually plausible
despite the approximation (see our supplemental video). We used
Blender as a physical simulator along with its internal Harmonic
Coordinates [Joshi et al. 2007] deformation transfert system.

5.4 LoDs Generation for Many-Components Meshes
Our morphological closing decouples the geometry and topology
of a shape from its mesh sampling, regularizing the shape for the
upcoming decimation process. Although critical for constrained
bounding approximations, this particular behavior can indeed also
be leveraged for traditional, non-bounding shape approximations,
as we can see in Fig. 22 where our morphological approach leads
to a be�er coarse scale model than a direct simpli�cation. For 3D
objects made of multiple small components, our strategy allows
meshing even very coarse level-of-details considering the shape
”as a whole” instead of individual elements. To that respect, the
hairy ball example (in Fig. 22, top row) illustrates how traditional
surface simpli�cation algorithms, o�en topology-preserving, fail at
generating a faithful coarse LoD from the input, on the contrary
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(a) Hairball: 2.8M faces, 5k components, simpli�ed to 1k faces.

(b) Powerplant: 12M faces, 176k components, simpli�ed to 478 faces.

Fig. 22. Coarse LoD extraction from complex multi-components
meshes: even under no bounding condition, our morphological approach
can be instrumental. From le� to right: input, direct QEM simplification,
our intermediate closing and our final proxies (QEM simplification). The
top (reps. bo�om) row uses a symmetric (resp. asymmetric) closing.

to our method which easily recovers the underlying simple shape
emaneting from the high resolution mesh. We can also see, with
the powerplant model (Fig. 22, bo�om row), that our asymmetric
closing operator retains and enforces the inherent large dominant
�at and salient structures.

6 CONCLUDING REMARKS
We have introduced a new shape approximation algorithm that
generates e�ciently coarse bounding proxies from complex input
meshes. Our approach is based on a morphological closing which
acts as an intermediate representation providing, by construction,
all the good properties the bounding proxy geometry and topology
shall exhibit. We also designed a high performance GPU closing algo-
rithm that runs at interactive framerate, supports spatially-varying
structuring elements, both in size and orientation, and asymmetry.
We encapsulated it within e�cient voxelization and meshing stages
to generate tight bounding proxies at any scale automatically. More-
over, we provide an (optional) intuitive and adaptive interactive
control mechanism for the proxy scale, topology and resolution
by the mean of a brushed scale �eld together with a user-de�ned
rotation �eld. We demonstrated, on a number of examples, that not
only our bounding shape approximation behaves be�er and more
robustly than alternatives for complex shapes, but also that it can be
combined with state-of-the-art decimation and caging algorithms
to achieve even be�er results. Last, we illustrated potential applica-
tions of our bounding proxies with interactive proxy design, so�
body simulation, cloth simulation, FFD and many-components LoD
generation.

Currently, our framework supports spatially varying size, shape
and orientation for the dilating structuring element. However, carv-
ing intricate regions very close to the objects (e.g., between the
legs of a character) remains a tedious task for which the interface
of our system could give explicit control on the anisotropy of the

dilating cube while brushing. �e scale �eld itself could be procedu-
rally generated using a preliminary, application-dependent, shape
analysis to dictate where to re�ne the resolution of the proxy, ex-
ploiting di�erent measures such as visibility or perceptual saliency.
As suggested by Jacobson et al. [2014], detecting and modelling
explicitly symmetries on the input mesh to re�ect them in the proxy,
in particular when used as a FFD cage, could also be useful to some
applications (e.g., editing).

Although our intermediate closing geometry guarantees the bound-
ing condition, the progressive decimation of the meshing step en-
sures this property only locally and cannot bring global guarantees
on self-intersections for instance. In our experiments, we never
encountered any problem in practice, as the morphological closing
regularizes the geometry of G to a safe state that strongly discour-
ages such defects. We show in Fig. 23 a model for which we set a
smaller scale at a location where the geometry would have been
fused otherwise. In this setup, our scale-adaptive decimation pre-
vents long edges – the ones that most likely would have produced
self-intersections – to appear at this location. Nevertheless a formal
guarantee for the full pipeline would be interesting to develop in
future work. In practice though, in case our method would fail at
producing a self-intersection-free result, one can always use the
mesh�x [A�ene 2010] algorithm followed by a NC pass.

While we focused our work on surface mesh input, there is li�le
to no assumption made once the voxelization is performed. �ere-
fore, one can envision much diverse input representations to our
framework, coupled with speci�c methods to guarantee a proper
voxelization, including point clouds equipped with an implicit mov-
ing least square operator or largely damaged meshes processed with
robust hole �lling methods [Sacht et al. 2013].

Last, our approximation algorithm supports an optional orienta-
tion �eld, which is de�ned rather naively at the moment and for
which an e�ective design environment would be valuable.
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Fig. 23. Pinch configuration. Le�: our scale-adaptive meshing matches
the prescribed scale at the pinch, producing a locally more tessellated result
and avoiding non-local self-intersection. Right: when desactivating scale-
adaptive meshing, the large edges at both side of the pinch self-intersect.
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A BRUSH-BASED SCALE FIELD DEFINITION
We model the positive 3D scale �eld S : <3 →<+ that tailors the
bounding proxy scale and resolution as a 3D scalar grid, uniformly
initialized to a base scale sbase by the user. During interactive
editing, when the brush is applied at position p onM, S is altered
according to a support σ , de�ning the size of its in�uence region,
and a target scale s as follow:

S[x] :=


max(ϕ(x,S[x], s),S[x]) in increase mode
min(ϕ(x,S[x], s),S[x]) in decrease mode
ϕ(x,S[x], sbase ) in erase mode

with the modi�cation smoothness being ensured by an interpolation
kernelϕ that regularizes the desired scale around p w.r.t. its previous
value:

ϕ(x, sprev , s) = (1 − γ (‖x − p‖))sprev + γ (‖x − p‖)s

with

γ (t) =


1 if t ∈ [0, s[
(1 − ( tσ )2)2) if t ∈ [s, s + σ [
0 otherwise
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A. Söderström and K. Museth. 2010. A Spatially Adaptive Morphological Filter for

Dual-Resolution Interface Tracking of Fluids. In Eurographics. 5–8.
Pierre Soille, Edmond J. Breen, and Ronald Jones. 1996. Recursive Implementation

of Erosions and Dilations Along Discrete Lines at Arbitrary Angles. IEEE Trans.
Pa�ern Anal. Mach. Intell. 18, 5 (1996), 562–567.

Marco Tarini, Nico Pietroni, Paolo Cignoni, Daniele Panozzo, and Enrico Puppo. 2010.
Practical quad mesh simpli�cation. Computer Graphics Forum 29, 2 (2010), 407–418.
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