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Abstract

This paper presents a new algorithm for multi-view

reconstruction that demonstrates both accuracy and effi-

ciency. Our method is based on robust binocular stereo

matching, followed by adaptive point-based filtering of the

merged point clouds, and efficient, high-quality mesh gen-

eration. All aspects of our method are designed to be highly

scalable with the number of views.

Our technique produces the most accurate results among

current algorithms for a sparse number of viewpoints ac-

cording to the Middlebury datasets. Additionally, we prove

to be the most efficient method among non-GPU algorithms

for the same datasets. Finally, our scaled-window matching

technique also excels at reconstructing deformable objects

with high-curvature surfaces, which we demonstrate with a

number of examples.

1. Introduction

Multi-view stereo (MVS) algorithms have seen a surge

of interest in recent years. Much progress has been made,

both in terms of precision and in terms of performance, al-

though methods with a combination of both high efficiency

and high quality remain elusive.

In this paper, we revisit one of the most simple ap-

proaches to multi-view reconstruction, namely that of merg-

ing multiple depth maps estimated using binocular stereo.

We show that, with careful design, this simple approach

can yield some of the highest quality reconstructions of any

multi-view stereo algorithm, while remaining highly scal-

able and offering excellent performance.

MVS algorithms that rely on depth maps can typically

be divided into two separate processes. First, a depth map

is computed for each viewpoint. Secondly, the depth maps

are merged to create a 3D model, and a triangle mesh is gen-

erated. In this paper we introduce new methods for both of

these stages. A state-of-the-art surface meshing algorithm

allows us to reliably remove outliers and high frequency

noise. This in turn enables the use of a simple and fast

binocular stereo algorithm that produces very dense, but po-

tentially unreliable points. In particular, our MVS algorithm

has the following characteristics:

• The binocular stereo algorithm makes use of scaled

window matching to improve the density and precision

of depth estimates. Filtering and constraints are used

to further improve the robustness.

• Our surface reconstruction algorithm uses adaptive,

point-based filtering and outlier removal of the joint

depth information from multiple views. This point-

based formulation of the filtering process avoids

resampling and quantization artifacts of other ap-

proaches.

• The meshing algorithm works in a lower dimensional

space, resulting in high performance and well-shaped

triangles.

All geometry processing algorithms work only on local

neighborhoods, and have a complexity ofO(k log k), where

k is the number of points processed by the respective algo-

rithm. Since the binocular stereo part is linear in the number

of images, the complete algorithm remains highly scalable

despite the high quality reconstructions it produces.

In the following, we will first review related work (Sec-

tion 2) and provide a more detailed overview of our method

(Section 3). We then discuss the individual stages of our

method, including the binocular stereo matching (Section 4)

and the surface reconstruction (Section 5). We conclude

with results and a discussion in Sections 6 and 7.

2. Related Work

As mentioned, the MVS problem has received a lot of

attention recently, yielding a variety of reconstruction algo-

rithms. Following the taxonomy of Seitz et al. [33], MVS

algorithms can be categorized into four classes: 3D volu-

metric approaches [21, 39, 40, 35, 34, 23], surface evolu-

tion techniques [9, 30, 14, 45], algorithms that compute and

merge depth maps [37, 16, 36, 44, 25], and techniques that

grow regions or surfaces starting from a set of extracted fea-

ture or seed points [17, 24, 12, 19]. Our algorithm falls into



the third category, and thus our discussion of earlier work

focuses on other techniques using a similar approach. We

refer the reader to [33] and the MVS evaluation website [26]

for a more thorough discussion of the other techniques.

A multi-view framework for computing dense depth es-

timates was first proposed by Szeliski [37], who formu-

lates the problem as a global optimization over the unknown

depth maps. Szeliski also recovers motion estimates.

Strecha et al. [36] propose to jointly solve for depth

and visibility using a generative model, where input im-

ages are assumed to be generated by either an inlier pro-

cess or an outlier process. Depth and visibility are modeled

as a Hidden Markov Random Field in conjunction with the

Expectation-Maximization algorithm. Computation times

are comparatively low for a sparse set of viewpoints, how-

ever they do not scale well. In addition, the focus of their

work is to obtain only the depth map and outlier estimation

for each view, and so they do not discuss merging the data

to create a 3D scene.

A complimentary algorithm is presented by Zach et

al [44], which takes as input a set of depth maps and vol-

umetrically integrates them to create a 3D model using total

variation regularization and an L1 norm to measure data fi-

delity. Merrell et al. [25] also address the problem of merg-

ing depth maps to produce a 3D surface with a real-time

GPU technique. They recursively merge depth maps from

adjacent viewpoints by minimizing violations of visibility

constraints. Two different approaches are presented, one

that favors stability and one that is based on confidence. The

fused depth maps are then converted to a consistent triangu-

lar surface with a multi-resolution quad-tree.

Our work is most similar to that of Goesele et al. [16],

who showed that simple modifications to original window-

based stereo algorithms can produce accurate results. In

their algorithm, depth maps are computed by backproject-

ing the ray for each pixel into the volume and then reproject-

ing each discrete location along the ray onto neighboring

views where window-based correlation is performed with

sub-pixel accuracy. They choose only the points that cor-

relate well in multiple views, and thus reconstruct only the

portion of the scene that can be matched with high confi-

dence. Finally, depth maps are merged with an off-the-shelf

volumetric technique [8]. Although their method is simple

to implement, their models suffer from a large number of

holes and very long processing times. In contrast, our al-

gorithm is very efficient and achieves very high accuracy

combined with high density, when compared to other state-

of-the-art MVS techniques.

3. Algorithm Overview

Our multi-view reconstruction algorithm takes as input a

set of calibrated images, captured from different viewpoints

around the object to be reconstructed. We assume that a seg-

mentation of the object from the background is provided, so

that the visual hull is represented as a set of silhouette im-

ages. As mentioned in the introduction, our MVS method

is performed in two steps, binocular stereo on image pairs,

followed by surface reconstruction. Figure 1 shows a dia-

gram of the individual stages.

Figure 1. Acquisition pipeline: the binocular stereo algorithm gen-

erates a 3D point cloud that is subsequently processed and con-

verted to a triangle mesh.

The binocular stereo part of our algorithm creates depth

maps from pairs of adjacent viewpoints. We first rectify the

image pairs, and then observe that the difference in projec-

tion between the views causes distortions of the compari-

son windows. We compensate for the most prominent dis-

tortions of this kind by employing a scaled-window match-

ing technique, which improves the quality especially in high

curvature regions and for sparse viewpoints (i.e. large base-

lines). The depth images from the binocular stereo pairs are

converted to 3D points and merged into a single dense point

cloud.

The second part of the algorithm aims at reconstructing

a triangular mesh from the initial point cloud. It consists of

three steps:

1. Downsampling: The point cloud is usually much

denser than required for reproducing the amount of ac-

tual detail present in the data. Our first step is thus to

downsample the data using hierarchical vertex cluster-

ing [5, 31, 32].

2. Cleaning: The simplified point cloud remains noisy.

While some methods integrate the noise removal in the

meshing algorithm [29, 22], we believe that this im-

portant data modification must be controlled explicitly,

prior to any decision concerning the mesh connectiv-

ity.

3. Meshing: The final step is to generate a triangle mesh

without introducing excessive smoothing. We build

on lower dimensional triangulation methods [6, 18],

which are fast and run locally, ensuring scalability and

good memory-computational complexity.

In the following sections, we elaborate on the two main

steps of our algorithm.

4. Stereo Matching

The first step of our MVS algorithm involves estimating

depth maps for each camera view using binocular stereo



with one of the neighboring cameras as a reference view.

For each image pair, the views are first rectified [13], such

that corresponding scanlines in the primary and reference

view correspond to epipolar lines. For each pixel in the rec-

tified primary view we then find the closest matching pixel

on the corresponding epipolar (scan)line in the rectified ref-

erence view. Specifically, we assume brightness constancy,

and use normalized cross correlation (NCC) on square pixel

regions as a metric for the best match:

NCC(v0, v1) =

PN2

j=1
(v0(j) − v0) · (v1(j) − v1)

q

PN2

j=1
(v0(j) − v0)2 ·

PN2

j=1
(v1(j) − v1)2

,

(1)

where v0 and v1 are local neighborhoods of size N ×N in

the primary and the reference view, and v0 and v1 represent

the intensity averages over the same neighborhoods. We

ignore very bad matches by thresholding the NCC metric to

the range of [0.5 - 1]. Because some uncertainty remains

in the resulting matches, we further remove outliers with

constraints and filtering, as discussed below.

Scaled window matching. As observed previously [10,

27, 28, 17], the difference in projection between the pri-

mary and reference view can distort the matching window,

such that a square window in the primary view is non-square

in the reference view. In our rectified setup, the vertical

scale is identical in both views, since corresponding scan-

lines represent corresponding epipolar lines. The horizontal

scale, however, depends on the 3D surface orientation.

A first-order differential model of this effect can be de-

scribed as follows. Consider a differential surface patch dA
in the tangent plane of an object point with normal n (see

Figure 2). Let dw denote the (differential) length of the in-

tersection of dA and the epipolar plane. This line segment

dw projects to a segment dw1 = (dw · cosφ1)/(cosψ1 · z)
on the image plane of the primary view (IP ), and to a seg-

ment dw2 = (dw · cosφ2)/(cosψ2 · z) on the image plane

of the reference view (IR). Here, z is the perspective depth,

the φi correspond to the angles between the viewing rays

and the projection of n into the epipolar plane, and the ψi
correspond to the incident angles of the viewing rays on the

respective image planes (see Figure 2). As a first-order ef-

fect, we therefore expect that any window in the primary

view will appear scaled horizontally by a factor of

cosψ1

cosψ2
· cosφ2

cosφ1
. (2)

This horizontal scaling is particularly pronounced for

wide camera baselines, i.e. “sparse” MVS setups with few

cameras, as well as horizontally slanted surfaces, common

when imaging high curvature geometry. To improve ro-

bustness in those settings, we employ a similar approach

to Ogale and Aloimonos [27, 28], by performing window

matching between the rectified primary view and a number

Epipolar
Lines

φ1

n

dA

dw

dw2

Reference (IR)

θ

Primary (IP )

ψ1

ψ2

φ2

dw1

Figure 2. Corresponding pixel windows in the primary and refer-

ence view can have different width depending on the orientation

of the 3D surface.

of versions of the rectified reference view with different hor-

izontal scale factors. The best match is then defined as the

largest NCC of any N × N neighborhood on the epipolar

line in any of the differently scaled reference views.

We experimentally found that scale factors of 1√
2

, 1,

and
√

2 yield excellent results for most datasets. Larger

scale factors do not generate a significant number of reli-

able matches since view dependent effects start to domi-

nate. For strongly asymmetric camera configurations, we

first pre-scale the reference image with a global average of

cosψ1/ cosψ2, and then use window matching at the three

scales mentioned above.

The above first order approximation is valid for small

window sizes and surface orientations where the normal n
is close to parallel to the epipolar plane. Larger angles of

θ introduce a shear along the horizontal direction in addi-

tion to the horizontal scaling. We analyzed this issue, and

determined that the shear is negligible for moderate cam-

era baselines (up to 45◦ between viewing rays), and θ up to

about 60◦. We therefore decided against also using sheared

versions of the reference view for the block matching.

Subpixel Optimization. The result of the window match-

ing is a highly quantized disparity image for each viewpoint.

We compute subpixel disparity values by performing a lo-

cal search at the subpixel level. For each pixel pP and its

matched pixel pR we perform correlation at a number of lin-

early interpolated positions between pR−1 and pR+1, that

is, between the previous and next pixel in the scanline. With

2n additional correlation evaluations per pixel we achieve

nominal subpixel precision of 1/n pixels. The calculations

can be optimized by pre-computing an interpolated version

of IR which is n ·width(IR) × height(IR). In our experi-

ments, we found that n = 10 gives us good precision; larger

values have a diminishing return.



Constraints. In order to improve accuracy and reduce the

number of outliers in the point cloud, we incorporate two

constraints when performing window matching. Like many

previous algorithms, we use the visual hull of the recon-

struction object as a first constraint. We then use a disparity

ordering constraint [4] for scenes where this assumption is

valid, including the datasets in this paper.

Filtering. As a final step, outliers in the disparity images

are removed with a median-rejection filter. If a disparity

value is sufficiently different from the median of its local

neighborhood, then it is rejected. To remove some high-

frequency noise already in image space, disparity images

are then smoothed with a trilateral filter, which is a stan-

dard bilateral filter [38] weighted by the NCC value that

corresponds to the best match for each disparity pixel. The

NCC value is a good indication of the confidence of each

pixel, and we incorporate this into the smoothing function

so that points of low confidence have less influence on their

neighbors. Further denoising is later performed in 3D, as

described in the next section.

At the end of the binocular stereo stage, all depth maps

are backprojected into 3D, and merged into a single point

cloud.

5. Surface Reconstruction

In this section, we describe our method for generating

a triangle mesh from the unorganized point cloud obtained

with binocular stereo. In addition to a position pi, the al-

gorithm requires a normal estimate ni for each point. We

generate a mesh M from the point-normal sampling

PN = {{p0, n0}, ...{pm, nm}}
by downsampling, cleaning and meshing (see Figure 1).

Normal Estimate. One way to compute an approximate

normal vector at each point is to use image-space gradient

calculations on the individual depth maps. For better qual-

ity, taking into account several depth maps, we rather use

a Principal Component Analysis (PCA) [20] in 3D space,

once the individual depth maps have been merged into a

point cloud. In this approach, the normal is given as ui,
the eigen vector associated with the smallest eigen value of

the covariance matrix of the k-nearest-neighborhood of pi.
In practice, we choose k ∈ [20, 50], and use a kD-Tree to

efficiently compute the k-neighborhood queries.

In our case, the sign of the normal can be resolved using

additional information available from the acquisition pro-

cess: the vector ci from the surface point to the camera al-

ways points from the surface to the outside of the object.

Thus, we get

ni =
ni

||ni||
with ni =

{

ui if ui · ci > 0
−ui otherwise

.

Note that ni is only an estimate, with a smoothness con-

trolled by k. In order to increase the quality of this estimate

for later stages of the reconstruction pipeline, the normals

are re-estimated after simplification and cleaning.

5.1. Downsampling

After merging of the depth maps, the resulting point

cloud PN contains large amounts of redundant information

due to oversampling of smooth regions, as well as dupli-

cate reconstructions of parts of the geometry from multiple

views. In order to quickly and adaptively remove the redun-

dant information, we apply a hierarchical vertex clustering

to PN . This recursive approach does not require connectiv-

ity and works as follows:

1. compute a bounding box B around PN ;

2. instantiate a hierarchical space partitioning structure

H in B;

3. partition PN recursively in H until each subset of PN

respects a given error metric;

4. replace each subset by a single representative sample.

Here, we choose H as a Volume-Surface Tree [5] for its

hybrid octree-quadtree structure, which is almost as fast as

a simple octree while performing fewer splits for a given

error bound. We combine it with a linear L2 error metric

computed over the subsets of PN at each level (bounded to

10−3 of the diagonal of B in our experiments). We choose

this metric in order to trade quality for efficiency, however it

can be seamlessly replaced by alternative ones, such as the

L2,1 [7] or the Quadratic [15] error metrics. The representa-

tive samples are computed as simple averages of positions

and normals in the cluster. The union PS of these repre-

sentative samples forms the set of points we process in the

following stages of the pipeline.

5.2. Cleaning

Even after simplification, PS remains a noisy model, and

thus needs to be filtered. In practice, we can identify two

kinds of noise:

• outliers, which are samples located far away from the

surface, usually grouped in small isolated clusters.

• small scale high frequency noise, generated as in any

physical acquisition process.

We address the former using an iterative classification. We

compute the Plane Fit Criterion proposed by Weirich et

al. [42], remove the detected outliers, and restart with a

quadratically decreasing bound until a user-defined thresh-

old. Our experiments show that the number of iterations can

be fixed to 3.

The high frequency noise is removed using a point-

normal filtering inspired by Amenta and Kil [3] and is basi-



cally a simplification of the Moving Least Square projec-

tion [1] using the per-sample normal estimate. This fil-

tering process is based on an iterative projection proce-

dure, which can be made local: considering a point q =
{pq, nq} ∈ PS , we compute the projection of q onto the

plane Hq = {c(q), n(q)}, where

c(q) =

∑

i ω(||pq − pi||)pi
∑

i ω(||pq − pi||)
,

and

n(q) =

∑

i ω(||nq − ni||)ni
||∑i ω(||nq − ni||)ni||

are computed over a local neighborhood of points near q.

For efficiency reasons, we use Wendland’s [41] compactly

supported, piecewise polynomial kernel function

ω(t) =

{

(1 − t
h
)4( 4t

h
+ 1) if 0 ≤ t ≤ h

0 if t > h
,

where h controls the size of the support (i.e. smoothness).

This procedure converges very quickly in the vicinity of

PS , a conservative condition that always holds in our case,

since the only points we filter are actually the samples of

PS . Therefore, we fix the number of iterations to 3. Note

that ω(t) has compact support, so that the filtering process is

local and allows us to process the data with only knowledge

of a bounded and small neighborhood.

5.3. Meshing

The last part of our surface reconstruction pipeline gen-

erates the connectivity between filtered samples PF in or-

der to obtain a reliable triangle mesh. As we have already

filtered the point samples, we seek an interpolation of PF ,

rather than an approximation. Thus we discard dynamic and

implicit surface reconstruction approaches. We propose to

use a fast interpolating meshing approach based on the De-

launay triangulation. This combinatorial structure offers a

canonical way to define a connectivity over a set of points.

Basically, it provides a n-D simplicial connectivity for a set

of samples in an n-D space, which means that, applied on

the 3D sampling PF , we obtain a tetrahedral mesh, from

which we have then to extract a 2-manifold made of tri-

angles. Unfortunately, this last procedure is very slow [2]

and prone to artefacts when the surface sampling ratio is

unknown, which is the case here. In fact, the Delaunay tri-

angulation can, in practice, only be performed efficiently

with small and low dimensional point sets. Therefore, we

build on [18] and [6] and design an algorithm that solves the

problem using the following principles:

• locality: in order to replace a global triangulation by a

collection of local ones, we split PF into clusters using

a density-driven octree (we bound the density to 100
points in our experiments). A Delaunay triangulation

is then performed independently in each cluster.

• dimension reduction: clusters are split more finely if

they violate a predicate indicating that the local set of

points can be projected onto a plane without folding,

i.e. if the cluster is not a height field. This approach

allows us to project the samples in a leaf cluster onto a

least-squares plane and to perform the Delaunay trian-

gulation in the 2D space defined by this plane.

When processing the local clusters, this lower-dimensional

Delaunay triangulation leads to a collection of disjoint mesh

patches. To establish a single connected mesh, one efficient

method is to generate overlap between neighboring clusters

prior to triangulation. As such, we volumetrically inflate

each cluster by adding points from neighboring octree cells,

then perform the 2D triangulation in the cluster, and finally

remove overlapping triangles afterwards using the following

aggressive classification of the triangles:

• outside: a triangle that lies completely outside the

original (i.e. pre-inflation) cluster it was generated for;

• redundant: more than one instance of the triangle is

present in the overlapping zone (i.e. perfect overlap-

ping, which happens frequently with Delaunay trian-

gulations);

• dual pair: the triangle forms, with a triangle sharing a

common edge, the dual configuration of two triangles

present in a neighboring partition;

• valid: in all other cases.

Outside, redundant and dual pair triangles are removed.

This process creates well-shaped triangles and rarely fails

at avoiding non-manifold configuration thanks to the lo-

cal uniqueness of the Delaunay triangulation. Artefacts ap-

pear when the sampling-to-curvature ratio exceeds a certain

threshold, but fortunately our binocular stereo process pro-

duces dense enough sample sets to avoid such problems.

Our performance-driven approach processes larger clusters,

minimizing the number of lower-dimensional projections.

Additionally it allows the algorithm to straightforwardly run

in parallel.

Rapid Height-Field Detection. In order to estimate if a

given (inflated) cluster can be orthogonally projected in the

lower dimension (i.e. single-valued bivariate function), we

use Boubekeur’s aggressive predicate [6, 5]. In cluster i
with ki samples, we fit a plane Hi = (ci, ni). Then, the

cluster can be projected if:

∀j ∈ [0, ki]

{

nij · ni > δnwith δn ∈ [0, 1], and
|(pij−ci)·ni|

maxki
(||piki

−ci||)< δdwith δd ∈ [0, 1]

The value δn bounds the cone of normals of the cluster

while the δd bounds the displacement from the tangent

plane leading to more planar clusters, more suitable for tri-

angulation. We use δn = δd = 1/6 in our experiments.



5.4. Performance

All three steps in the geometry reconstruction stage are

designed for high performance, as well as high quality. For

each input point, each algorithm only processes a small lo-

cal neighborhood of fixed size. Such neighborhoods can be

found in logN time using kD-Trees. Thus, the asymptotic

complexity of each algorithm is O(N logN), where N is

the number of input points of the respective algorithm.

In absolute terms, the algorithms are very fast, each tak-

ing no more than a few seconds on a single CPU for the

examples in the paper. For example, the mesh generation

algorithm processes 100k samples in less than 5 seconds.

These times are negligible compared to the binocular stereo

stage, which takes several minutes on typical datasets.

6. Results

We demonstrate our multi-view stereo algorithm with a

number of reconstructions. First, we quantitatively evaluate

our results using the Middlebury datasets [26, 33]. The data

consists of two objects, a dinosaur and a temple (see Fig-

ures 3 and 4), and three different sets of input images for

each one, with viewpoints forming a sparse ring, a full ring,

and a full hemisphere around the object.

Our method is well-suited for viewpoints arranged in

a ring setup since the grouping of cameras into binocular

pairs is straightforward. Thus we perform our evaluation

on the dinoRing (48 images), dinoSparseRing (16 images),

templeRing (47 images), and the templeSparseRing (16 im-

ages) inputs. The quantitative results of our algorithm are

shown in Table 1. For each of the datasets our method is

compared to a number of the state-of-the-art techniques.

Algorithms are evaluated on the accuracy (Acc) and com-

pleteness (Cmp) of the final result with respect to a ground

truth model, as well as processing time (Time). We high-

light the best performing algorithm for each metric. Our

technique proves to be the most accurate for the sparse-

viewpoint datasets. Additionally, ours is the most efficient

among non-GPU methods for all four datasets. For refer-

ence, we include a short list of methods that make use of the

GPU. These results are of much lower quality. We show our

reconstruction of the dinoSparse dataset in Figure 3, includ-

ing an image of the points generated by the stereo matching

step. Note that it would be possible to use our method in

camera setups other than rings. For instance, a full spher-

ical setup could be handled by computing a Delaunay tri-

angulation of the camera positions, and then computing a

binocular image for each edge in that triangulation. This

approach would still scale linearly in the number of cam-

eras, since the number of edges in a Delaunay triangulation

is linear in the number of vertices.

We highlight the effectiveness of the scaled-window

matching technique (described in Section 4) by re-coloring

Figure 3. Dino reconstruction from sparse (16) viewpoints. Left:

one input image (640x480 resolution). Middle: 944,852 points

generated by the binocular stereo stage. Right: reconstructed

model (186,254 triangles).

Figure 4. Scaled window matching on the templeRing dataset.

Left: one of 47 input images (640x480 resolution). Middle:

two disparity images re-colored to show which horizontal win-

dow scale was used for matching. Red =
√

2, Green = 1, and

Blue =
1
√

2
. Right: reconstructed model (869,803 triangles).

two of the recovered disparity images from the templeR-

ing model, showing which of the three horizontal window

scales were used to recover each depth estimate. In this vi-

sualization (shown in Figure 4) green pixels represent the

un-scaled window, red pixels represent matches using
√

2
scaling, and blue pixels correspond to 1√

2
scaling.

In addition to being accurate and efficient, our algo-

rithm works particularly well for objects with deformable

surfaces, which we demonstrate by reconstructing a shirt

sleeve (Figure 5), a crumpled blanket (Figure 6), and a bean-

bag chair (Figure 7). These datasets were captured using a

Canon Digital SLR camera calibrated using the technique of

Fiala and Shu [11]. For the shirt sleeve we include a zoom

region to show the high-resolution mesh reconstruction that

captures the individual wrinkles. Previously, a result of this

visual quality has only been achieved by placing colored

markers directly on the shirt [43]. For the blanket model, we

include a window-scale image similar to Figure 4. Here we

can see the different horizontal window scales that are used

in a single binocular pair as a result of the high-curvature

surface of the blanket. Finally, we reconstruct a bean-bag

chair showing deformation before and after placing a heavy

weight on it. With a number of synchronized video cameras,

we could reconstruct this deformation over time by applying

our MVS technique at each time-step. Since typical video

sequences of deforming objects can have hundreds or even

thousands of frames, the efficiency of our method makes

it very suitable for such applications. A list of parameters

used in all experiments is shown in Table 2.



dinoSparseRing dinoRing templeSparseRing templeRing

Method Acc Cmp Time Acc Cmp Time Acc Cmp Time Acc Cmp Time

Our technique 0.38 94.7 7 0.39 97.6 23 0.48 93.7 4 0.57 98.1 11

Furukawa [12] 0.42 99.2 224 0.33 99.6 544 0.62 99.2 213 0.55 99.1 363

Zaharescu [45] 0.45 99.2 20 0.42 98.6 42 0.78 95.8 25 0.55 99.2 59

Gargallo [14] 0.76 90.7 18 0.60 92.9 35 1.05 81.9 35 0.88 84.3 35

Goesele [16] 0.56 26.0 843 0.46 57.8 2516 0.87 56.6 687 0.61 86.2 2040

Hernandez [9] 0.60 98.5 106 0.45 97.9 126 0.75 95.3 130 0.52 99.5 120

Strecha [36] 1.41 91.5 15 1.21 92.4 146 1.05 94.1 6 0.86 97.6 57

GPU Methods

Sormann [35] 0.81 95.2 5 0.69 97.2 5

Merrell stab [25] 0.73 73.1 0.5 0.76 85.2 0.4

Merrell conf [25] 0.84 83.1 0.3 0.83 88.0 0.3

Zach [44] 0.67 98.0 7 0.58 99.0 7

Table 1. Results for the Middlebury Datasets. The top performing algorithm in each category is highlighted. Accuracy is measured in

millimeters, Completeness as a percentage of the ground truth model, and Normalized Running Time is in minutes.

Parameter Value

Stereo window matching size 5 × 5
NCC lower threshold 0.5
Sub-pixel matching precision 1/10 pixels

Median-rejection filter (size, threshold) 15 × 15, 2 × median
Tri-lateral filter (size, σdomain, σrange) 15 × 15, 15/4, 10

k-neighborhood size 50
L2 error bound for downsampling 10−3

Outlier removal iterations 3
Filtering support size h 5.10−3

Filtering iterations 3
Cell density for meshing 100
δn and δd for height-field predicate 1/6

Table 2. Summary of parameters used in the experiments (top:

stereo matching, bottom: surface reconstruction). Surface recon-

struction values are rescaled in the unit cube.

Figure 5. Sleeve reconstruction. Left: cropped region of 1 of 14

input images (2048x1364). Middle: final reconstruction (290,171

triangles). Right: zoom region to show fine detail.

Figure 6. Crumpled blanket. Left: 1 of 16 input images

(1954x1301). Middle: re-colored disparity image to show win-

dow scales. Right: final reconstruction (600,468 triangles).

7. Discussion

In this paper, we have introduced a novel multiview

stereo algorithm based on merging binocular depth maps

Figure 7. Bean-bag chair reconstruction, before (top) and after

(bottom) deformation. Left: 1 of 16 input images (1954x1301).

Right: final reconstruction (4,045,820 and 3,370,641 triangles).

with a state-of-the-art meshing algorithm. By employing an

efficient, yet high-quality point-based processing pipeline,

we are able to effectively remove outliers and suppress

high-frequency noise. This robustness allows us to use rel-

atively simple but efficient methods for the binocular stereo

part, without paying too much attention to the reliability

of the stereo matches. In addition we increase the number

of stereo matches by employing a scaled window match-

ing approach that, in turn, provides the meshing stage with

additional information. It is this combination of a simple

stereo algorithm producing lots of matches with sophisti-

cated point-based post-processing that allows us to create

high-quality reconstructions very efficiently.
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