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Abstract—The design of hard real-time embedded systems
has to comply with strong requirements with respect to time
determinism and resource consumption. However, interacting
tasks may induce pessimism in schedulability analysis or
introduce significant overheads in memory usage.

In this paper, we restrict the execution and communication
models to enforce an efficient and predictable implementation.
To ensure determinism, a message sent by an emitting task
is delivered at its deadline. We take advantage of a wait-free
specialized message queues to provide predictable and efficient
implementation. The integration of such mechanisms is assisted
by a model driven engineering framework1.

Keywords-scheduling theory; real-time middleware; model
driven engineering

I. INTRODUCTION

Most of real-time embedded software applications involve
concurrent execution of tasks that are not independent. In
practice, these dependencies come from data flows or shared
states between tasks (for instance shared hardware devices
embodied by buffers). The implementation these constructs
may vary depending on the expected inter-task interaction
model (shared objects, message queues...).

In this context, a known issue with dependent tasks is
that the implementation of their interactions deeply affects
the design process, either decreasing the quality of schedu-
lability analysis, or introducing significant overheads in
terms of resources consumption, in particular memory and
execution resources. These implementations can be classified
according to their access methods to shared data objects:
blocking or non blocking (lock-free [8], or wait-free [5] as
usually admitted [1]). Each of these access methods raises
particular issues, either on the side of schedulability analysis
(increasing its complexity), or on the side of resources
consumptions.

Blocking accesses, usually based on shared objects pro-
tected by locks, have a low impact in terms of memory
consumption. The apriori validation of such mechanisms,
due to over-approximation of Worst-Case Execution Times

1This work was partially funded by the FUI/PARSEC project.

(WCET), leads to a sub-efficient usage of the execution
resources. Moreover, such mechanisms often lead to han-
dle priority inversion issues by on-line priority control or
inheritance protocols. These mechanisms entail non-trivial
scheduling anomalies [15], [4] that significantly increase the
complexity of schedulability analysis.

Thus, to our knowledge, schedulability analysis are still
considering rather coarse over-approximations of delays due
to shared resources. Moreover, lock mechanisms themselves
have an execution time that should not be neglected, espe-
cially when privileged execution domains are enforced by
the execution platform (a mechanism now popular in real
time operating systems). The Ravenscar profile [2] provides
relevant guidelines to ensure a correct (i.e. without anoma-
lies) usage of lock-based protected objects. Restrictions
proposed in this profile ensure that associated schedulability
analysis are not over-pessimistic, and that application timing
is fully predictable.

In order to reduce the pessimism of schedulability anal-
ysis, non-blocking mechanisms have been studied [8], [1],
[9], [5]. Non-blocking solutions are usually categorized into
lock-free and wait-free mechanisms. Lock-free mechanisms
deal with shared objects by retrying to access an object
until it becomes available. This technique has a low impact
on memory consumption, but increases significantly the
WCET of tasks thus leading to an important overhead in
terms of execution resources consumption. On the other
hand, wait-free mechanisms deal with concurrent accesses
by duplicating shared data. Helpers are provided to manage
accesses to such data in case of interference.

Several interesting proposals have been made to find lower
and upper bounds on memory consumption overhead when
using wait-free implementations [9], [5]. Similarly, studies
about the implementation of lock-free mechanism aim at
reducing temporal overheads introduced by such approaches
[1]. However, in the worst-case, such solutions introduce an
overhead (both in terms of memory and execution resources)
that is not acceptable for real-time embedded systems.

In this paper, we study an alternative track that adapts the



guidelines of the Ravenscar profile for non-blocking mes-
sage passing communications. Our restrictions to the task
and communication model aim at satisfying the following
objectives:

Objective 1: Maintain schedulability analysis to an ac-
ceptable level of complexity when integrating over-
heads due to task communications.

Objective 2: Provide a fine grain evaluation of resource
consumption in terms of memory and computation time
for communication mechanism implementation.

Objective 3: Ensure that the overhead introduced by
communications is reasonable compared to existing
alternative approaches.

Indeed, wait-free or lock-free shared objects are designed
envisioning rich usages scenarii (multiple readers and writers
at the same time, dynamic message and task loads...).
However, from our experience, in most hard real time
embedded systems, these objects are used in simple usage
scenarii. The complexity rather comes from the computation
of the number of accesses and the restrictions on available
resources. Our restrictions to the task and communication
model are based on these considerations.

The contributions of this paper are:

1) a set of restrictions on inter-tasks communications en-
abling a wait-free implementation of shared message
queues that would be fully predictable from the timing
point of view, with a low storage overhead

2) a proof of concept of the usability of this imple-
mentation, using Model Driven Engineering (MDE)
techniques to (i) capture the execution and com-
munication semantics we rely on, (ii) automate the
resources consumption analysis, and (iii) generate the
implementation of wait-free accesses to the shared
message queues

This paper is organized as follows: section II introduces
the communication model. Then, we describe in section III
our approach to implement the communication primitives
without any locking primitives. We also provide in this
section formula used to assess their cost in terms of memory
and execution time. In section IV, we depict how this com-
munication model can be automatically derived from task set
specification to assist the evaluation of the schedulability
analysis, and to generate the implementation. Section V
compares our result to existing similar approaches. Section
VI concludes this paper.

II. TASK AND COMMUNICATION MODEL

In next subsections, we describe the task and communica-
tion model we propose to rely on. Then, the three objectives
described in section I are refined in terms of constraints on
its implementation.

A. Task model with delayed communications

The key idea is to take advantage of existing dependencies
between communications and task execution model. The
task and communication model we present hereafter is built
upon preemptive fixed priority scheduling of independent
periodic tasks. It is extended with predictable message
passing communication.

Task model: A system is made of a fixed set of periodic
tasks, defined with the following attributes:
• Ti: refers to task i in the task set
• Pi: period of task Ti

• Ci: worst case execution time of task Ti

• Di: deadline of task Ti

The period of a task is the fixed duration between two of
its successive release times. In the sequel, we call a job, the
execution of the sequence of statements started after each
release time t, and completed before t+Di.

We assume that periodic tasks are synchronous: all first
task release times occur at the same time. For simplicity, we
assume for all tasks that its deadline is smaller or equal to
its period (∀i : Di ≤ Pi).

Communication model: The communication model we
consider in this paper is a variant of message passing
communications modeled with ports.
• Communication links are modeled by ports and con-

nections to enable the various configurations regarding
the number of sender and receiver.

• A task can "put" a message on emitting ports executing
the send statement.

• A task can "get" a message on receiving ports executing
the receive statement.

• Any message, put on an emitting port p, is eventually
received on receiving ports connected to p.

This model is refined to ensure deterministic communi-
cations between tasks. We recall the notion of delivery time
defined as the time at which a message is available on a
receiving port. Then, we consider the following additional
constraints:
• Emitting and receiving ports are statically bound to

tasks.
• During each job, exactly one message is sent on each

emitting port of the task.
• A message sent by a job is delivered to the receiving

task at its release time following the emitting job
deadline. More formally, a message sent to Ti by a job
released at time t is considered delivered at d t+Dj

Pi
e·Pi.

• Any message delivered to Ti at t, should be removed
from the receiving port (i.e. can no longer be received)
at t+Di. The message is said outdated.

• Messages delivered simultaneously to a task are re-
ceived in the order of emitting job deadlines. When
emitting job deadlines are simultaneous, a pre-defined
order noted ≺, e.g. task priorities, is used.



The model is said "periodic-delayed" as messages are pe-
riodically sent and their delivery is delayed until sender job
deadlines. Such a communication model can be modeled in
AADL [16]. AADL is an architectural description language
used in several modeling processes dedicated to the design
and the verification of embedded systems.

To illustrate this task and communication model, we
consider the time-line depicted in Figure 1. It illustrates
communications between three tasks: T1,T2, and T3, with
i = 1..3, Pi = Di, and P1 = 5, P2 = 7, P3 = 10. T1

and T2 send periodically messages to T3 according to the
communication model described above.

As illustrated on this figure, exactly one message is sent
during each task job for T1 and T2. Notice that a1,a2,b1 are
only delivered at time 10. Yet, b2 will not be delivered before
20, even though job T2.2 (that produces b2) already finished
its execution when T3.2 starts in this scenario. This model
allows ensuring deterministic time for message reception
independently of task interleaving and actual execution time.
Notice also, that b1 has to be returned to the receiver before
a2 to enforce a deterministic order on message from the
point of view of the receiver. Finally, a1, b1, a2 would be
discarded at completion time of T3.2, even if these messages
were not consumed during this job.
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Figure 1. Sample execution

B. Validation strategy

Given this communication model, the three objectives of
the previous section can be refined in simpler sub-goals.

To reach objective 1 (keep schedulability analysis
tractable):
• The implementation of communications should not

used any lock.
• The execution time and call occurrences of communi-

cation statements should be bounded. It should ensure
computations due to communication are bounded.

To reach objective 2 (evaluate resource consumption over-
head), we propose to:
• instantiate statically (as opposed to at execution time or

at initialization time) the communication mechanisms
and data structures implementing our model

• represent these additional components in a global
model of the system architecture

To reach objective 3 (master the overhead due to tasks
interactions), it is necessary to:
• determine when messages need to be stored, can be

discarded from the data structure, and should be deliv-
ered. It is necessary to determine the amount of memory
required by the structure

• ensure exclusive access to data with minimal or no data
duplication, and computational overhead

In next section, we present an implementation of the
communication model including proof elements w.r.t. its
correctness. Then, a discussion is carried out to explain how
those sub-goals are fulfilled.

III. DETERMINISTIC AND EFFICIENT IMPLEMENTATION

As previously explained, we focus on a restricted commu-
nication model for tasks interacting on the same computing
node. Implementing such a communication model boils
to implement a queue structure that enforces the correct
message queuing and dequeuing policy. Our main concern is
actually to enable concurrent accesses of multiple writers to
the message queue of a single reader without using a lock.

A. The wait-free queue structure and logic

Both the queue structure and logic determine the char-
acteristics of the implementation with respect to message
safety (no message loss), and message delivery order.

In the remainder of the paper, we assume messages are
of fixed or bounded size. Thus, we focus on the number of
messages in the queue structure and not on its memory size.
As outdated messages can be discarded, there is actually a
maximum number of stored messages. In the section III-C,
we describe how to statically compute this number to prevent
message loss and wrong delivery order.

Thus, the implementation of the wait-free queue can be
reduced to a fixed array of slots to store messages. This
array must have a sufficient but fixed capacity, denoted
L. Slots are uniquely identified by integer indexes ranging
from 0 to L − 1. Each time, send and receive operations
are invoked, indexes are computed to determine which slot
should be written or read. Yet, these operations as well as
index computations may be executed concurrently. Our first
objective is to ensure no message is lost or corrupted despite
this concurrency.

A way to prevent conflicts between send operations is
to compute an unique index in which a message can be
stored. This specific index ensures an exclusive access to the
designated slot for a known time interval. If the exclusion
interval is chosen large enough, then write accesses can
be fully ordered. Write operations only overwrite outdated
messages (e.g. messages no longer needed).

Index computation can be modeled as follow : each
time a send operation is invoked a sequence number im



is provided such that the message is stored in the array at
index im modulo L. Thus, the safety requirement (no lost
message) can be specified as follow: for any pair of distinct
messages if their sequence numbers are equal modulo L, it
means that at least one of them is outdated.

Producing sequence numbers that are not affected by the
concurrency between several send operations is necessary.
Because the queue structure has a single reader, the reading
order can be used to build these sequence numbers. Thus,
successive receive operations result in accesses to slots of
consecutive indexes.

We first provide formulas to compute these sequence
numbers as a strictly increasing sequence of integers (e.g.
unbounded). Then we describe the conditions under which
the safety requirement holds.

B. Send and Receive slot selection
As said previously, slot selection is done thanks to a

numbering of messages. This numbering is built according
to the order in which they must be received, as specified by
the communication model. In practice, the sequence number
generated for a message is the cardinal of the set of messages
received strictly before it.

The content of this set has to be clearly identified. Some
notations are introduced to ease its description.
• In the model, a queue q has a set of sender tasks denoted

PTq , and a single receiver task, Tr.
• Deadline of Tj in its kth job is denoted JD(j, k).
• An arbitrary ≺ order is used to order distinct tasks.
• |X| is the cardinal of X, X being a set.
We first formalize the reception order.
Definition 1 (Reception total order):
Let m1, m2 be two messages sent toward the same queue.

Ts1 (resp. Ts2) sends its message m1 (resp. m2) in its kth1
job (resp. kth2 ).
m1 is received strictly before m2 iff both statements hold
• The kth1 job deadline of Ts1 is lower or equal to the

kth2 job deadline of Ts2: JD(s1, k1) ≤ JD(s2, k2)
(condition C1),

• Job deadlines are distinct, or are identical and Ts1

precedes Ts2 in the fixed order ≺ (condition C2).
This definition provides the guidelines to compute the

cardinal of the set of messages received before message m2.
First, we compute the number of pairs (s1, k1) such that
JD(s1, k1) ≤ JD(s2, k2). This number corresponds to the
cardinal of the set of jobs satisfying C1. Then, we subtract
the number of jobs violating condition C2.

Jobs satisfying C1: Let SEJD(q, t) the cardinal of the
set of messages received before t on q. In other words, it
corresponds to the cardinal of the set of sender job deadlines
earlier to t. Remember that Di ≤ Pi.

SEJD(q, t) =
∑

j∈PTq

(⌊
t−Dj

Pj

⌋
+ 1

)
(1)

To find the slot index used in a send operation invoked
by the kth job of Tj , we compute SEJD(q, JD(j, k)), the
number of messages sent by jobs with deadlines expiring
simultaneously or before Tj job deadline.

Jobs violating C2: We now consider the set of tasks
having a job with a deadline equal to Tj job deadline. We
designate as Followers of task Tj all the tasks from this
set which are successors to Tj according the fixed order ≺.

Let N be the set of naturals (positive integers). Note that
if t−Ds

Ps
is a natural, it means that there exists k such that

t = k · Ps +Ds.
We first define the Collide function to identify whether

a task has a job deadline at t.

Collide(s, t) =

{
1 if t−Ds

Ps
∈ N

0 otherwise

Then Followers(q, j, k) is defined as follows:

Followers(q, j, k) =
∑

s∈PTq,j≺s
Collide(s, JD(j, k))

When a send operation is invoked by the kth job of Tj ,
its sequence number is noted MSN(q, j, k), (i.e. Message
Sequence Number) and defined as follows:

MSN(q, j, k) = SEJD(q, k · Pj +Dj)
−Followers(q, j, k)

(2)

Slot Selection for Send: Hence, the corresponding
message is stored in slot MSN(q, j, k) modulo L. Note
that this slot selection does not require to share any state
variable between sender tasks, and will thus be implemented
without lock.

SEJD(q,PR(r,t)-Pr). SEJD(q,PR(r,t)).

available.
messages.

outdated.
messages.

poten=ally.
stored.

messages.with.consecu=ve.indexes..

Figure 2. Status of messages w.r.t to their indexes at t

Slot Selection for Receive: Implementing the receive
primitive requires to specify message availability. PR(r, t)
denotes the latest release time of Tr with respect to t (i.e.
the release time of the currently activated job):

PR(r, t) = b t

Pr
c · Pr

Figure 2 depicts the status of messages with respect
to their sequence numbers at a given time t. Messages
available for reception at t must have been sent from
job with deadlines expiring before PR(r, t). Thus, their
indexes are smaller or equal to SEJD(q, PR(r, t)). Yet,



messages corresponding to jobs with deadlines smaller than
PR(r, t)−Pr are outdated (see dark grey area on figure 2).
Finally, receive deliver messages with MSNs ranging from
SEJD(q, PR(r, t)− Pr) + 1 to SEJD(q, PR(r, t)).

Next section describes how to compute the size of the
fixed message array in order to ensure the safety property.

C. Correctness and Overhead analysis

In this section, we determine the size of the fixed array
and we demonstrate why the sequence numbers MSN allow
to safely access the stored messages. We first determine the
range of sequence numbers used at t to store non-outdated
messages. If the size of this interval is strictly smaller than
the array size, then each slot is associated with at most one
message produced before t.

The lower bound has already been computed in previous
section. Let Tr be the receiving task. The lower bound of
sequence numbers used to store messages not outdated at t
is SEJD(q, PR(r, t)− Pr)+1, denoted ILB(q, t).

The upper bound requires more attention. Let Ts be a
sending task. If its send operation is invoked at t, then to
comply with our communication model, the message deliv-
ery occurs at PR(s, t)+Ds. Hence, its sequence number is
lower or equal to SEJD(q, PR(s, t) +Ds). Let Dmax be
the largest deadline of sending tasks. Note SEJD(q, t) is
a monotonically increasing function w.r.t. t. As PR(s, t) ≤
t ≤ PR(r, t) + Pr, SEJD(q, PR(s, t) + Ds) is always
lower or equal to SEJD(q, PR(r, t)+Pr+Dmax), denoted
IUB(q, t) later.

As a consequence of the two previous results, the size of
the interval of indexes used to store non-outdated messages
is lower than the maximum of IUB(q, t)−ILB(q, t)+1. If
this size is chosen as the maxt∈R+(IUB(q, t)−ILB(q, t)+
1), it leads to a sufficient condition to ensure message safety.
The exact value can be computed by numeric solvers. We
can also provide a very close bound of this formula but its
proof is beyond the scope of this paper. Hence, we provide
another formula for a slightly higher value that can be easily
computed by hand. We use the fact that ba+b

c c − b
a
c c ≤

b bcc+ 1, for positive integers a, b, c. Let apply this result to
aj = PR(r, t)−Pr−Dj , bj = 2∗Pr+Dmax, and cj = Pj .

SEJD(q, PR(r, t) + Pr +Dmax) =
∑

j∈PTq

⌊
aj + bj

cj

⌋
SEJD(q, PR(r, t)− Pr) =

∑
j∈PTq

⌊
aj
cj

⌋

IUB(q, t)− ILB(q, t) + 1 ≤
∑

j∈PTq

(

⌊
2 ∗ Pr +Dmax

Pj

⌋
+ 1)

(3)
We can assess how pessimistic this bound is. SEJD(q, 2∗

Pr) corresponds to a number of messages exactly produced

over two first periods of the receiving task. It is lower to the
optimal value of the array size. In our example of figure 1,
the lower bound is 7 when the bound from equation 3 is 10.

We provide all the guidelines required to instantiate the
wait-free queue such that both safety and orderliness are
achieved. Next section presents how these guidelines are
integrated in an automatic generation process.

IV. MODELLING AND ANALYSES WITH A MDE
APPROACH

In previous sections, we have presented the theoretical and
algorithmic contribution of this paper: (i) a deterministic and
analysable execution and communication model; and (ii) the
mathematical definition for configuring wait-free queue that
implements this execution and communication model. The
Architectural Analysis Description Language (AADL) has
been selected in order to capitalize this work and integrate
it into previous works on assisted software engineering for
embedded systems [3]. In practice, this contribution has been
integrated in RAMSES2, a model transformation and code
generator framework for AADL.

A. AADL in a Nutshell

AADL is an architecture description language that was
mainly experimented in the domain of real-time embedded
systems. First class elements of the language are strongly-
typed components that belong to different categories (e.g.
process, thread, data, subprogram, etc...). Interactions be-
tween components are expressed thanks to predefined fea-
tures (e.g. data ports, event data ports, event ports, data
accesses, etc) that come with a standardized semantics (yet
mostly expressed using natural language). AADL compo-
nents are composed hierarchically according to standardized
composition rules. Features of subcomponents have to be
connected to represent interaction links. Finally, properties
can be associated to any AADL element (component, sub-
component, feature, connection, etc) to precise the execution
and communication semantics.

The reasons for choosing AADL lies in its capability to
model both our design model (execution and communication
model), and a model of its implementation [3]. Indeed,
the execution and communication semantics presented in
section II-A matches with the semantics of a subset of
AADL. Briefly, this subset can be defined as follows:
• The “Dispatch_Protocol” property is set to “Periodic”

for each thread component: tasks are periodic,
• The “Period”, and “Deadline” properties are set for

each thread component, such that deadline ≤ period,
• The “Timing” property is set to “Delayed” for output

ports of tasks: messages are sent at deadline.
Note that the default value of the AADL “Output_Rate”

property already states that one message is produced per

2Refinement of AADL Models for the Synthesis of Embedded Systems:
http://penelope.enst.fr/aadl

http://penelope.enst.fr/aadl


activation of the producer tasks. Similarly, we use “AllItems”
as the default value for the property “Dequeue_Protocol”,
which means that all the messages available at release time
of the recipient will be considered as consumed at the end
of its job.

To conclude, the execution and communication model
defined in section II-A can be modeled in AADL using stan-
dard components and property sets. However, even though
this semantics exists from the beginning of the AADL
definition, there exists no code generation process that (i)
implements this semantics with a wait-free queue, and (ii)
produces an AADL representation of this implementation.
We propose a pragmatic solution to these issues in next
subsection.

B. Assessing Memory and execution time overhead

When deploying the implementation of the queue pre-
sented in section III, we ineluctably introduce overheads.
Considering memory foot-print, the overhead is mostly due
to the size of messages and the array used to store them
(i.e. data structure of the wait-free queue). The worst-case
memory and time consumption due to the execution of
helper functions (delivered, send, receive) can be assessed
for a given task set. The computation method is very similar
for time and memory resources. We focus on execution time
in the remainder of this section.

Considering task execution time, each sending task would
execute once the send primitive but several times the
receive primitive. Thus, assessing the overhead due to the
execution of send can be done using WCET evaluation
techniques on the generated code.

On the other hand, the overhead on the receiving side
requires to evaluate the execution time of the receive prim-
itive, but also the number of calls to this primitive. In case
the AADL model provides a description of the subprograms
that are called in a thread, this number can be computed from
this behavioral model. Otherwise, we can use the fact that,
for a given task, the receive primitive will be called at most
maxk∈N(SEJD(q, (k + 1) · Pi)− SEJD(q, k · Pi)− 1).

As both overheads vary due to task set characteristics,
(i) we propose to model the task set structure in AADL,
and (ii) we derive automatically a refined version of this
architecture in which the components used to implement the
queue are modeled. Finally, the information they are carrying
are collected to assess overheads.

We illustrate the refinement from design model to imple-
mentation model through a brief presentation of both models
(see listing 1 and listing 2) w.r.t. the example of Figure 1.

The design model (listing 1) defines three tasks T1, T2
and T3, with their period, deadline and priority (see lines 3
to 8 on listing 1). Tasks T1 and T2 (of type producer)
have an out event data port (p_out) with value “delayed”
for property “timing” (see lines 16-17 on listing 1). This
property value is used to select the delayed delivery semantic

1 p r o c e s s implementat ion p roc . impl
2 subcomponents
3 T1 : thread p r o d u c e r . impl { P e r i o d => 5 ms ;
4 D e a d l i n e => 5 ms ; P r i o r i t y => 3 ; } ;
5 T2 : thread p r o d u c e r . impl { P e r i o d => 7 ms ;
6 D e a d l i n e => 7 ms ; P r i o r i t y => 2 ; } ;
7 T3 : thread consumer . impl { P e r i o d => 10 ms ;
8 D e a d l i n e => 10 ms ; P r i o r i t y => 1 ; } ;
9 c o n n e c t i o n s

10 cnx1 : port T1 . p_ou t −> T3 . p_ in ;
11 cnx2 : port T2 . p_ou t −> T3 . p_ in ;
12 end p roc . impl ;
13
14 thread p r o d u c e r ex tends P e r i o d i c _ T h r e a d
15 f e a t u r e s
16 p_ou t : out event data port MyType
17 { Timing => Delayed ; } ;
18 end p r o d u c e r ;
19
20 thread implementat ion consumer . impl
21 c a l l s
22 seq : { c a l l 1 : subprogram consumer_ job ; } ;
23 c o n n e c t i o n s
24 cnx1 : parameter p_ in −> c a l l 1 . param_in ;
25 end consumer . impl ;
26
27 subprogram consumer_ job
28 f e a t u r e s
29 param_in : in parameter MyType ;
30 p r o p e r t i e s
31 Execu t ion_Time => 1 ms . . 3 ms ;
32 S o u r c e _ S t a c k _ S i z e => 40 Kbytes ;
33 end consumer_ job ;

Listing 1. Design Model: Example

of messages according to AADL semantics. Output ports of
T1 and T2 are both connected to the input port (p_in) of
task T3 (see lines 10-11 on listing 1).

When task T3 (of implementation consumer.impl) is
activated, it executes the subprogram consumer_job and
passes the available message delivered on port p_in to the
subprogram that perform computations (see lines 22 and 24
on listing 1). Finally, we provide in listing 1 the definition
of subprogram consumer_job: note that this subprogram
comes with a definition of its WCET (3 ms), which by
extension is the WCET of task T3.

The specification model is used to instantiate communi-
cation components to assess their cost in terms of resources
consumption. Listing 2 illustrates the result of the model
transformation that produces the AADL model of the im-
plementation of the wait-free queue resulting from the task
set specified in listing 1. The implementation model provides
a refinement of the design model, in which data structures
and subprograms have been instantiated in order to explicitly
model communication actions. In the mapping between the
design and implementation models, ports and connections
are transformed into data accesses, data subcomponents, and
subprogram calls. This set of model elements represent both
the wait-free queue and the accessors to this queue.

In listing 2, communication components are:



• T3_array, that implements the data structure of the
wait-free queue itself, with a size computed according
to equation 3 described in section III-C,

• delivered_p_in_T3, that returns the indexes
(First and Last) of available data in the queue using
an implementation of the SEJD function presented in
section III-B.

Note that the values of WCET and memory footprint
instantiated in this model result from (i) the computation of
resource consumption per execution of the generated code
(done with usual techniques to assess memory footprint and
execution time), and (ii) the computation, for the worst-
case, of the number of execution of this code. In the
specification model, calls to the receive primitive are not ex-
plicitly represented but hidden in the implementation of the
consumerjob subprogram. As a consequence, the resource
consumption of the delivered_p_in_T3 subprogram
also takes into account the resource consumption due to
multiple executions of the receive primitive.

1 p r o c e s s implementat ion p roc . impl
2 subcomponents
3 . . . −− unchanged subcomponen t s e1 , e2 and r ;
4 T 3 _ a r r a y : data MyType [ 1 0 ] ; −− message b u f f e r
5 c o n n e c t i o n s
6 . . .
7 c3 : data a c c e s s T3_ar ray−>T3 . p _ i n _ a r r a y ;
8 end p roc . impl ;
9

10 thread proc_T3 ex tends P e r i o d i c _ T h r e a d
11 f e a t u r e s
12 p _ i n _ a r r a y : r e q u i r e s data a c c e s s MyType [ 1 0 ] ;
13 end proc_T3 ;
14
15 thread implementat ion proc_T3 . impl
16 subcomponents
17 RLB: data I n t e g e r { I n i t i a l _ V a l u e = >( ’−1 ’) ;} ;
18 RUB: data I n t e g e r { I n i t i a l _ V a l u e = >( ’−1 ’) ;} ;
19 c a l l s
20 s : { c a l l 1 : subprogram d e l i v e r e d _ p _ i n _ T 3 ;
21 c a l l 2 : subprogram consumer_ job ; } ;
22 c o n n e c t i o n s
23 c1 : data a c c e s s p _ o u t _ a r r a y−> c a l l 1 . Array ;
24 c2 : parameter RUB−> c a l l 1 . L a s t ;
25 c3 : parameter RLB−> c a l l 1 . F i r s t ;
26 c4 : parameter c a l l 1 . Val−> c a l l 2 . param_in ;
27 end proc_T3 . impl ;
28
29 subprogram d e l i v e r e d _ p _ i n _ T 3
30 f e a t u r e s
31 Val : out parameter MyType ;
32 Array : r e q u i r e s data a c c e s s MyType [ 1 0 ] ;
33 L a s t : in out parameter I n t e g e r ;
34 F i r s t : out parameter I n t e g e r ;
35 p r o p e r t i e s
36 Execu t ion_Time => 50 . . 60 us ;
37 S o u r c e _ S t a c k _ S i z e => 5 Kbytes ;
38 end d e l i v e r e d _ p _ i n _ T 3 ;

Listing 2. Implementation Model: Example

Finally, this model can be submitted to an existing method
available to check the schedulability of an AADL model

[17]. Of course, this type of method is very accurate on
the implementation model, since it represents tasks that are
independent from a scheduling point of view.

V. RELATED WORKS

The task and communication model proposed in this
article is time-triggered: computations and communications
are triggered at predefined dates. From this time-triggered
computational model, we have shown how to implement it
in order to ease schedulability analysis.

In the sequel, we present approaches that proposed similar
computational models, and the means to implement.

One of the very first time-triggered approaches was
MARS (Maintainable Architecture for Real-Time Systems)
[11]. MARS was the seminal work of TTA (Time-Triggered
Architecture) [10]. The MARS approach is based on a
concept of global clock among a distributed system. This
clock allowed to produce a total ordering of all events in the
system, and thus allowed an efficient analysis of distributed
real-time systems which is usually difficult to achieve. As
opposed to our contribution, TTA users must explicitly
design the system while we propose to automatically map
parts of it into TTA-like components.

Giotto is another example of time-triggered approach
[7]. Systems are modeled with a language providing the
notions of modes, sensors, actuators and periodic tasks.
Tasks communicate through ports in a deterministic man-
ner: time at which data are sent or read through a port
are statically known as they are predefined by the Giotto
language. Giotto illustrates the independency of scheduling
and communications in time-triggered system: with Giotto,
scheduling of tasks is chosen at system compilation time
thanks to compiler directive, and then, is not related to
time-triggered communications. The queue mechanism is
not provided by Giotto, only the last message sent would
be kept for each sender in each receiving period.

Similarly to Giotto, OASIS [12] provides both time-
triggered oriented communications and a tool chain to
implement applications. OASIS applications are written with
an extended C language called Psi-C. Psi-C allows program-
mers to express when communications will occur. Compared
to our approach, OASIS requires a detailed description
based on Psi-C. OASIS also requires a dedicated execution
platform. In contrary, we chose a Ravenscar-like execution
platform. As most of the real-time operating system have
Ravenscar features, we can expect that our implementation
models generator can be used with a larger number of
execution platforms.

Finally, the work presented here is strongly related to
AADL [16] and its seminal work, Meta-H[18]. AADL is
a very rich architecture language and it proposes several
computational models: AADL provides Ravenscar commu-
nications, time-triggered communications and many others
such as remote procedure call or ARINC 653 communication



mechanisms. An AADL model may mix all those mecha-
nisms, allowing designers to model complex architectures.
In this case however, analysis can be difficult to achieve.
This motivated our choice to only focus on a time-triggered
computation model. In [6], the author shows how to perform
schedulability and dimensioning analysis when AADL mod-
els handle time-triggered communications. In the context
of synchronous languages and GALS architectures, [13]
propose to use the Signal language and its Polychrony frame-
work to achieve both verification and implementation with
the same type of AADL models. One of the challenge raised
by this type of approach is to ensure that the synchronous
programs will be correctness-preserving implemented in an
asynchronous execution platform [14]. In this work, as most
of the approaches presented in this section, time-triggered
communications are independent of thread scheduling: with
Polychrony, AADL thread scheduling is supposed to be
computed off-line by a dedicated tool. Implementation mod-
els are generated with the standard Polychrony tools in
contrary to our approach in which, thanks to a MDE process,
generation of the implementation models can be adapted by
specific generators to cope with specific requirements.

VI. CONCLUSION

In this paper, the proposed contribution enable resource
efficient integration of a wait-free specialized message
queues in a predictable way.

In previous work, either the schedulability analysis or
resource consumption were an issue. In order to avoid this
difficult choice, we followed an alternative path restricting
the underlying communication model. The restriction is still
relevant for many communication patterns requiring a strong
determinism on communications. Section III and IV detailed
how Objectives 2 and 3 are fulfilled to our point of view. The
core concept is to avoid synchronization taking advantage of
our ability to predict how messages need to be stored.

In this contribution, we focus on message-based commu-
nication between tasks sharing the same memory space. In
future works, we want to use similar approach to handle
sharing buses to extend the approach to actually distributed
architecture. Another track of investigation is to loosen the
hypothesis made on the communication model for which the
approach can be adapted at a reasonable cost.
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