
EMF course - PACT

Etienne Borde
www.etienneborde.fr

Objectives

 Collective software development requires
to focus on integration.

 John develops functionality A;
Mike develops functionality B

 How to ensure A will work with B when
starting the project (T0)?

 How to ensure A will work with B latter in
the project (T0+dT)?

Anticipating Integration: Example

 At T0, John and Mike agree on a common
data structure they will both rely on; they
start their developments.

 At T0+dT, John and Mike have changed the
data structure because of their own needs.

 What if John and Mike talk about these
changes 1 week before delivery?

Anticipating Integration

 Share a common data structure and the evolutions
of this data structure

 Discuss and motivate the modifications of this
data structure

What is EMF and How is that useful to do that?

EMF Introduction

 EMF stands for “Eclipse Modeling Framework”

•  E : EMF is integrated to the Eclipse IDE, one of the
most used IDE today. EMF is used in many Eclipse
projects.

•  M : EMF defines a format (ecore) to “model” data
structures instead of “coding” data structures

•  F : EMF is a “framework” offering different services,
in particular Java code generation.

How is EMF helpful for integration

 EMF helps to
•  Define a common architecture
•  Communicate on this architecture
•  Produce the code of this architecture

Here, architecture means “assembly of software
components”

Visual and compact representation of classes and
relationships among them

Organization of the presentation

1.  Presentation of EMF

-  an extension to the Java Course

-  how to use it in PACT

2.  Tutorial about “how to install, initialize, and use EMF”
in Eclipse.

page 6 16/05/2011 EMF Course - PACT

Key concepts of Modeling

•  Modeling is an activity of software engineering that
aims at representing the architecture (assembly of
components) of a software application in order to:

-  Ease discussions between experts (this feature will be useful
for PACT reviews)

-  Anticipate integration by centralizing the definition of the
software architecture

-  Generate the concrete implementation (code) corresponding
to the modelled architecture (this will be the main practical
feature used in the scope of PACT)

-  Analyse the model to ensure the application meets a given
set of requirements (this is out of the scope of PACT)

When to use EMF in PACT

 For the Analysis review:
•  To represent the decomposition of the system into

subsystems and components
•  To represent interactions between components

-  Existing (reused) components

-  Components to be produced during the project

page 8 16/05/2011 EMF Course - PACT

When to use EMF in PACT

 For the specification review

•  Represent the implementation of components with
classes, methods, attributes, etc….

•  Ensure traceability with the results of the analysis
review

page 9 16/05/2011 EMF Course - PACT

Class Diagram: the model part of EMF

 Graphical representation of
•  Packages (EPackage)
•  EMF data types
•  Classes (EClass), with their attributes (EAttribute)

and methods (EOperation)
•  Inheritence between classes
•  References (EReference) between classes
•  Enums (EEnum)
•  Personalized data types (EDataType)

Used for
analysis
review

Packages in Java

 A package is a folder that groups other packages and
classes

 A package defines a namespace in order to allow
several classes to have the same name without
ambiguities (for instance when referencing other
classes with the import instruction)

Packages in EMF

 Packages (Epackage)

Primitive Data types in EMF

 EMF defines its own data types, simply wrapping Java
data types
•  EInt  Integer
•  ELong  Long
•  EDouble  Double
•  …

 Generally, the mapping Java data  EMF data type is
trivial.

 Besides, the Java data type is indicated next to an EMF
data type.

Classes in Java

  In a Java program, objects are represented by classes
that describe operations and data contained in this
object.

 Data is represented by attributes, which type can be a
primitive data type (int, long, etc…) or another class

 Operations are represented by methods with
parameters and return type

Classes in EMF

 Classes (EClass), with their attributes (EAttribute) and
methods (EOperation)

 Note that attributes are represented this way only when
their type is a simple type (not a class typically)

Attributes of type “another class”

 References (EReference) between classes

 A reference represents an attribute of a class (or
interface) which type is another class or interface.

About references
  A reference represents an attribute of a class (or interface) which type

is another class or interface
  A reference has
•  A direction: the source of the reference holds an attribute of type the target of the

reference.
•  A name: the name of the attribute in the source class
•  A numeration: 1, N..* (N>0), or *. It mainly tells if the attribute is a list of reference or

a simple reference
•  Optional properties: EContainment, EOpposite.

Note the default position of the
name and numeration:
next to the destination of the
reference

Interfaces in Java

 An interface defines a contract for the implementation of
software components:
•  Classes that implement an interface I have to implement

all the methods defined in I
•  Classes that use an interface I can use all the methods

defined in I

Interfaces in EMF

  Interfaces, with their attributes (EAttribute) and
methods (EOperation)

 Note that the “implements” relationship between
interfaces and classes does not explicitly exist in
EMF. To represent this in EMF, a class can inherit an
interface even though IT IS NOT ALLOWED IN JAVA.

Abstract Classes in Java

 An abstract class is almost like a class, except that it
cannot be instantiated.
•  It represent an incomplete class, with some default

attributes and methods
•  It must be specialized thanks to inheritance and the

concrete versions that inherit an abstract class can be
instanciated

Inheritance in Java

 A class can inherit another class,
•  to extend the definition of the super-class
•  To override the definition of methods from the super-class

 An interface can also inherit another interface
 Three rules must be respected in Java:
•  A class can inherit from one and only one class
•  An interface can inherit from several interfaces
•  A class can implement several interfaces

 These rules are not true for EMF, but the Java code
generated by EMF respects those three rules

Inheritance in EMF

  Inheritance in EMF is more permissive that in Java

 However, the Java code generated from an EMF model
will respect the rules of Java

page 22 16/05/2011 EMF Course - PACT

Inheritance in EMF

  Inheritance between classes

  In this example, OutOfEurope, Europe, RemoteArea, and LocalArea
inherit Destination

  Note that Destination appears in Italic because it is an abstract class
  Note that as opposed to Java, Classes can inherit interfaces … Which

(almost) means that the class implements this interface

How to use EMF for analysis review

 For the analysis review:

•  Represent subsystems with BLUE packages
•  Represent components with RED packages
•  Represent interactions with GREEN interfaces and

classes responsible for components interactions

page 24 16/05/2011 EMF Course - PACT

Example

page 25 16/05/2011 EMF Course - PACT

Class Diagram: the model part of EMF

 Graphical representation of
•  Packages (EPackage)
•  EMF data types
•  Classes (EClass), with their attributes (EAttribute)

and methods (EOperation)
•  Inheritence between classes
•  References (EReference) between classes
•  Enums (EEnum)
•  Personalized data types (EDataType)

Used for
specification

review

Enumerated data type (enum)

 Enums (EEnum) : data type that can take a value
among a predefined list of possible values

 Here, a variable of type “ScanningAlgorithms” can take
2 possible values:
•  precise
•  fast

page 27 16/05/2011 EMF Course - PACT

Existing data types in EMF

 Personalized data types (EDataType)

•  Personalized data types aim at representing classes
defined in existing Java code

•  For instance, types defined in a library “math” or in a
library “kinect” will be referenced in a EMF diagram using
the EDataType

•  The existing type is identified in the EDataType by its
“qualified name”: the name of the class prefixed by the
name of the package in which it is defined

EOpposite reference, example

 When a class Mail references a class Destination that
also references Mail:

 Reference mail and destination can be set as
EOpposite:

EOpposite reference, good consequence

 When an object m of class Mail set an object d as its
destination, then m is automatically set as the mail of d.

How to use EMF for specification review

  In the analysis review:
•  Components were represented by RED packages
•  Interactions between components were represented with

GREEN interfaces and classes

 For the specification review:
•  Represent the internals of components (RED packages)

by giving the class diagram of their implementations.
Use default (yellow) color for this.

page 31 16/05/2011 EMF Course - PACT

Example

page 32 16/05/2011 EMF Course - PACT

Organization of the presentation

1.  Presentation of EMF

2.  Tutorial about “how to install, initialize, and use EMF”
in Eclipse.

-  Install

-  Create and edit a diagram

-  Generate Java code (for advanced Java programmers)

page 33 16/05/2011 EMF Course - PACT

Installation procedure

  In Eclipse,
•  Go to Help --> Install New Software
•  Click on "Add »
•  Fill in the form

 Name: Juno
 Location: http://download.eclipse.org/releases/juno

•  Then select "Juno" for "work with"
•  Extend the menu "Modeling" and select

 "Ecore Tools SDK" and
 "EMF - Eclipse Modeling Framework SDK".

•  Click on "Next" then "Finish ».

page 34 16/05/2011 EMF Course - PACT

Initialization

Initialization

Initialization

Initialization

Initialization

Initialization

Initialization

EMF Edition

  Two types of editable files are created:
•  Ecore model (.ecore)
•  Ecore diagram (.ecorediag)

  They are automatically synchronized by the EMF Framework: a
modification in the .ecore will be visible in the .ecorediag and vice-
versa.

  The diagram (. ecorediag) is just a graphical representation of the
content of the model (.ecore).

  The diagram does not necessarily represent all the content of the
model

  There can exist several diagrams for one model, called “views” of
the model. To do this, copy paste the ecorediagram file and change
its name.

Edition of the Ecore model

  For each type of element (class,
attribute, method, etc…) most of its
configuration will be done in the
“Property view”

Edition of the Ecore model

  When the ECore file is open, its content
appears as a tree of packages, classes,
methods, attributes, etc…

  To create a new element, write click on an
existing element (by default there is at
least a root package)
•  Go to “New Child” or “New Sibling”
•  New Child => elements to be created as a

sub-element of the selected element
•  New Sibling => elements to be created as

a sub-element of the parent of the selected
element

  To delete an element, right click on the
element  Delete.

One file per subsystem or component

  Behind the graphical editor, EMF models are stored in files
with an ugly format…

  If you have conflicting modifications in one of these file,
merging modifications will be tricky…

  Practical advice:
•  Create one EMF model for the whole system, to be defined all

together
•  Create one EMF model per subsystem, or component, so that

only 2 students are working together on a model

•  Referencing a model from another model is easy, a drag and
drop from the package explorer to the content of the diagram
should do the thing.

Edition of the Diagram

•  To add an element, select the element type in the
palette, then click on the part of the diagram where
you want to add it (empty space, package, attributes
section of a class, methods section of a class,
etc…).

•  To configure an element, select it in the diagram
and edit the properties in the “Property view”.

•  To delete an element, right click on it

delete from model will delete it from the diagram
(.ecorediag) and the model (.ecore).

  delete from diagram will delete it from the diagram
(.ecorediag) but the element will remain in the model
(.ecore).

Change the color of an element

page 47 16/05/2011 EMF Course - PACT

Select the element you want to change the color, and go to the property view.
Then click on the painting sign and select the color

Code Generation (advanced programmers)

 ONE WAY code generation: no synchronization of
modifications of the Java classes in the EMF
model

 EMF will generate the Java code corresponding to
your model:
•  Interfaces
•  Classes
•  Attributes
•  Inheritance
•  References
•  Etc…

Configure the Code Generation

 The code generation is
driven by the content of
a .genmodel file

 We explain hereafter how
to create this file:
•  Right click on the foldre

where you want to ad the
file

•  Click on New  Other
•  Select EMF Generator

Model (see picture)

Create .genmodel file

 Fill in the name of the file, then select ecore as type of
importation

Create .genmodel file

 Select ecore model (via the Browse workspace button)
and click on next, then click on finish

Configure .genmodel file

  “everything” is in the property view
•  when you select the root of the genmodel content, fill in:

•  The value of these properties will tell EMF where to generate
code. Preferably select a folder in a Java Project.

Edit Directory, Editor Directory,
Model Directory, Test Directory.

/ identifies the root of the workspace
fr.tpt. … .generated.code identifies a
Java project in the workspace
src is a source folder in this Java
project

Configure .genmodel file

 “everything” is in the property view
•  When you select a package of in the genmodel content,

fill in:

•  The value of this property will tell EMF which prefix to use
to generated Java Packages

BasePackage. Choose a name that respect you naming
conventions (they should be documented)

Code generation actions

 Right-click on the root of the
genmodel tree, click on Generate
All

Result of the code generation

  After generation, the generated
code is generally compiled

  Compilation Errors are generally
due to unresolved dependencies,
Class “fr.tpt.types.Time” in our
example (used in the personalized
data type Time)

  This type of errors are fixed by
updating the build path of the Java
project

Re-generate the code

 When you have modified the
EMF model and you want to
regenerate the code, reload the
model (.ecore) into the
generation model (.genmodel)
 Click on next, next, finish.

 Then re-execute the code
generation actions

Generated code

public final class ScanningAlgorithms extends AbstractEnumerator {	
 … 	
 public static final int FAST = 0;	
 public static final int PRECISE = 1;	
 …	
}

Generated code
public interface SortingCenter	
{	
 long getIdentificationNumber();	
 void setIdentificationNumber(long value);	
 Time readChronoStamp();	
 …	
}

public class SortingCenterImpl implements SortingCenter {	
 protected static final long IDENTIFICATION_NUMBER_EDEFAULT = 0L;	
 protected long identificationNumber = IDENTIFICATION_NUMBER_EDEFAULT;	

 protected SortingCenterImpl() {	
 super();	
 }	

 public long getIdentificationNumber() {	
 return identificationNumber;	
 }	

 public Time readChronoStamp() {	
 // TODO: implement this method	
 // Ensure that you remove @generated or mark it @generated NOT	
 }	
 …	
}	

Incremental code generation

  There is no synchronisation between the Java code and the
EMF model, and ONLY EMF TO JAVA is possible (modifying
the java code will not change the EMF model).

  When executed the first time, EMF generates code with
annotations of type:
@generated

  When re-executed, code that is not preceded by this
annotation is not modified. Another way (more explicit) to
have this result is to complete the annotation by @generated
NOT

  This is useful to modify the generated code, for instance to
implement a skeleton of method generated by EMF

Generated code in PACT (for advanced
programmers)

 Once generated
•  Should be put under version control (Git) in order to

avoid systematic regeneration of code by all the users.
•  The EMF model should not be modified anymore…

  In other words, EMF is not supposed to be used
during the implementation phase.

Sources of information

  Official Eclipse – EMF web page:
http://www.eclipse.org/modeling/emf/

  Interesting (up-to-date) turorial:
http://www.vogella.com/articles/EclipseEMF/article.html

  Interesting (a bit outdated) tutorials
http://www.eclipse.org/articles/Article-Using%20EMF/
using-emf.html
http://www.openarchitectureware.org/pub/
documentation/4.2/html/contents/emf_tutorial.html

  General course about modeling
http://www.idt.mdh.se/kurser/dva411/index.php?
pageId=lectures

Key concepts of Eclipse
(key = used in this course)

 Project: any directory that contains a “.project” file
created by Eclipse

 Workspace: any directory that contains a
“.metadata” folder created by Eclipse. Note that
the information contained in the “.metadata” folder
point to the projects used in the workspace.

 Update site: a web interface to install plugins
 Resource: a file in Eclipse is called a resource

