Cours RT-POSIX

Etienne Borde,
Bertrand Dupouy

Pourquoi POSIX?

* Qu’est-ce que POSIX?
— Un standard IEEE
— Une API, et donc une librairie
— Fournis par le Systeme d’Exploitation (SE)
— Gestion des processus et threads (processus légers)

* Alors, pourquoi POSIX?
— Portabilité: Portable Operating System Interface

— Une application utilisant I’API POSIX pourra étre
exécutée sur n‘importe quel SE qui implémente POSIX
(Linux, ... mais aussi ... INTEGRITY, LynxOS, RTEMS,
VxWorks, ...)

Pourquoi RT-POSIX?

* De plus en plus d’applications temps-réels

* SE classiqgue non-adaptés a un gestion
deterministe du temps

 Une des raison de sa popularité est d’étre
utilisable sur une machine Linux, puis portable

sur des OS propriétaires

En bref, POSIX=API systeme... Va-t-on parler
1h30 d’une API? ...

Plan du cours

Introduction aux systemes temps-réels d’un
point de vue SE.

Facteurs intervenants dans la gestion du
temps, toujours d’un point de vu SE

Propositions RT-POSIX (I’API)

Patron d’'implémentation pour modele
d’ordonancement théorique

Les composants d’un SE

e Gestionnaire de fichiers
e Gestion de la mémoire
e Gestion de |I'acces aux resources

— de calcul (processeur)
— entrées/sorties (périphériques)

Gestion du temps dans un SE? ...
Ordonnaceur! ... Mais pas seulement

Le temps dans un SE classique

* Un systeme d’exploitation classique doit
organiser et optimiser |'utilisation des
ressources de facon a ce que |'acces a ces
ressources soit équitable.

 Un SE n'a donc pour seule contrainte de
temps que celle d'un temps de réponse
satisfaisant pour les applications

=>» Critere de qualité: temps de réponse.

Le temps dans un SE classique

* Le SE ne prend pas en compte les contraintes
d’échéances dans I'ordonnacement

* 'ordonnacement, basé sur des priorités
dynamiquement attribuées, dépend du type
d'événement attendu/recu et de la
consommation de temps cpu des processus
(vieillissement)

 'ordonnancement ne prend pas en compte
I’échéance de réalisation de la tache.

Rappels sur les Systemes Temps-Réels
(STR)

Objectif des STR :

— déterminisme temporel (en plus du déterminisme logique ou les
mémes données en entrées donnent les mémes résultats):

* Respect des échéances, prédictibilité : répondre a des contraintes temporelles
(sur le début et/ou la fin des activités),

* Résultat correct = résultat exact ... et fourni a la date voulue
Exemples :
— Logiciel de lecture vidéo: synchronisation des flux audio/vidéo,
— Logiciel de déclenchement d’un airbag de voiture

Notel : ces exemples introduisent une notion de criticité et de
précision des contraintes temporelles

Note2 : POSIX=interface de programmation seulement, donc sa
capacité a étre utilisé dans un domaine d’application dépend de
I'implémentation de cette API et de la fagon dont elle est utilisée.

Synthése des différences SE/STR

SE
— Les performances sont jugées suivant le rendement : exécuter le plus de
taches possibles, le plus rapidement possible,
C'est le SE qui décide de la dynamique d'exécution
(CONTRAINTES LOGICIELLES)
STR

— Le critere de performance est le suivant : respect de toutes ou d'une partie

(en cas de surcharge) des échéances, qu'elles soient périodiques ou non. Si on
exige le respect de toutes les échéances, on parle de TR dur, sinon TR souple

(mou, soft).

C'est I'environnement extérieur qui impose la dynamique d’exécution
(CONTRAINTES PHYSIQUES)

Le temps dans les STR

* Real-time computing is not fast computing:

Information soumise a des conraintes Information soumise a des contraintes
temps-réel = information a obtenir temps réel = information a obtenir avant
rapidement une certaine date
Traitement temps réel = traitement a Traitement temps-réel = traitement a

effectuer rapidement effectuer avant une certaine date

* Ex: Airbag...

Tache urgente et tache critique

Chaque tache a un degré :
— d'urgence, lié a la date de son échéance;
— de criticité, lié a son importance relative.

Mais : une tache tres critigue peu avoir de faibles contraintes de
temps et une tache peu critique de fortes contraintes de temps ...
=» Pb. des ordonnancements du type RMS ot le seul critére est la
période des taches ou EDF ou le seul critere est la deadline des
taches.

Comment conjuguer ces deux criteres ? c'est a dire comment
refléter l'urgence ET l'importance des taches ?

— MUF (Maximum Urgency First),
— Systémes paritionés (ARINC653)
— Mixed criticality

Types d’ordonnancement TR

 Hors ligne

— l"ordonnancement est calculé a priori, c’est a dire avant
I’exécution (time driven scheduling), 'ordonnanceur se réduit a
un séquenceur.

* En-ligne:
— ["ordonnancement est décidé a I’exécution, la détection des
surcharges est plus difficile... Quelles surcharges d’ailleurs?

* Ne pas confondre :
— Hors ligne / en ligne.
— Priorité fixe / priorité dynamique.
— Préemptif / non préemptif.
— Priorité / criticité.

Réalisations d’applications TR

Déterminisme temporel, il faut donc:
— maitriser les temps d’exécution (début/fin),
— garantir 'ordre d’exécution des fonctions (contraintes de précédence),

— prouver I'ordonnnancabilité, donc utiliser des techniques d’ordonnancement et de
gestion de la concurrence éprouvées,

— ne pas se contenter des tests qui ne sont pas toujours assez pres des conditions réelles
(cf. accumulation des dérives d’horloge dans une application répartie tres longue)

Sareté de fonctionnement, il faut pouvoir :
— Détecter les erreurs (y compris temporelles, dépassement d’échéances par exemple)

— Confiner les erreurs, cad éviter leur propagagtion (partitionnement spatio-temporelle,
voir cours sur ARINC)

— Corriger les erreurs

Les Systemes d’Exploitation Temps Réel fournissent les

« briques » de base (API);

ce n’est que par un usage rigoureux de ces briques de base
gu’on obtient les garanties désirées

Plan du cours

Introduction aux systemes temps-réels d’un
point de vue SE.

Facteurs intervenants dans la gestion du
temps, toujours d’un point de vu SE

Propositions RT-POSIX (I’API)

Patron d’'implémentation pour modele
d’ordonancement théorique

Facteurs intervenants dans la gestion
du temps

Facteurs logiciels :
— synchronisation (partage de ressources),
— Algorithmes de gestion de la mémoire : (GC, pagination, caches, multi-coeurs),
— entrées-sorties (pas de priorité),
— gestion des disques (algorithme de parcours, allocation),

Facteurs matériels :
— gestion des interruptions,
— mémoires caches,

— pipe-line

et encore :
— format de I'exécutable (édition de liens statique/dynamique)
— protocole réseau pour les SE répartis

— la mesure doit-elle se faire dans la configuration la plus défavorable (worst case
execution time, WCET) ?

Temps-réel, gestion de la mémoire,
et codage

Gestion statique :

— le nombre, la taille et I'emplacement des objets sont connus, ou
bornés, lorsque I"application est lancée,

— avantage : acces aux objets en temps constant et faible (objets
implantés sous forme de tableaux)

— inconvénient : pas flexible
Gestion dynamique :
— avantage : souplesse

— inconvénients :
* temps d’acces et d’allocation difficile a prédire ou a borner
* déterminisme de la désallocation

Pratique des systemes fortements critiques: pas d’allocation
dynamigue de mémoire.

Temps-réel, gestion de la mémoire,
et pagination
* Temps d’acces aux informations difficile a
prédire
* Ce temps d’acces peut étre tres long : acces
disques possibles

* |a pagination est donc peu utilisée en TR, ou
bien avec des méecanismes de verrouillage des

pages en mémoire pour les applications
critiques

Temps réels et mémoires caches

Avantage de |'utilisation de caches:

— diminue le temps d’exécution des taches de maniere
probabiliste (cf. hit ratio)

Inconvénients :

— augmentation du temps de changement de contexte
(réinitialisation des caches) si les espaces d’adressage sont
separés, d’ou utilisation de threads dans les STR

— moins de prédictibilité, il existe diverses méthodes d’estimation
du comportement des caches

Techniques mises en ceuvre : verrouillage, partage des
caches

Autres éléments a prendre en compte

* Intérruptions
* Gestion des entrée/sorties
e Bus d’interconnection (multi-coeur)

En resumé, les techniques d’accéléeration materiel.:

Diminuent le temps moyen d’exécution d’un
programme

Augmentent la dispertion des temps
d’exécution (soit la différence entre
BCET et WCET)

Plan du cours

Introduction aux systemes temps-réels d’un
point de vue SE.

Facteurs intervenants dans la gestion du
temps, toujours d’un point de vu SE

Propositions RT-POSIX (I’API)

Patron d’'implémentation pour modele
d’ordonancement théorique

RT-POSIX, I'API

 L’API POSIX permet de gérer des threads, c’est-a-dire
des processus léger

— Partagent le méme espace d’adressage (celui du
processus qui les crée)

— Changement de contextes plus court
* Norme POSIX 1003.4 pour la portabilité des
applications TR :
— définit une interface standard entre |'application et le
systeme
— ne spécifie PAS l'implantation, mais propose des outils
de mesure des performances

— peu de fonctionnalités obligatoires

RT-POSIX, I'API

* POSIX 4 définit la panoplie TR minimale, 4a les threads et 4b les
extensions. POSIX 4b propose des outils tels que :

I'acces direct aux interruptions depuis les applications,
I'ordonnancement "serveur sporadique”,
les ordonnancements: SCHED _FIFO, SCHED_RR, SCHED_ OTHER

une fonction qui permet a un thread de suivre la consommation cpu d'un
autre thread,

les files de message (mq_open, mq_receive, ...)
Les signaux temps réel

* Pour vérifier si la partie de la norme que I'on veut utiliser est bien
implantée, utiliser ifdef et error pour étre averti par le préprocesseur, ou
sysconf pour un message a l'exécution:

#include <unistd.h>

#ifndef _POSIX_PRIORITY_SCHEDULING
#error POSIX : pas d'ordonnancement TR
#endif

POSIX, création de threads

* Les threads peuvent étre créés a partir de la librairie pthread:
— Header: pthread.h
— Link option for gcc: gcc —o app app.c —Ipthread
La fonction pour créer un thread est pthread_create:
int pthread_create(pthread_t * thread,

pthread_attr_t * attr, void *(xstart_ routlne)(v01d
x), void x arg);

— thread est une structure passé par adresse, et initialisée par pthread-create;
on pourra la réutiliser avec d’autres fonctions de I’API POSIX

— attr est un pointeur (peut étre NULL) vers une structure pthread_attr_t. Cette
structure peut étre initialisé en utilisant les fonctions du type
pthread_attr_*(). Elle peut étre utilisé pour mettre a jour un ensemble varié
de propriétés d’un thread (detach policy, scheduling policy, etc.)

— start_routine est un pointeur de fonction qui désigne la fonction qui sera
exécuté par le thread. Le thread est détruit a la fin de I'exécution de cette
fonction.

— arg est un argument passé a la fonction start_routine.

Partage de I'espace d’adressage

Espace d’adressage du processus Espace d’adressage du processus

Thread Thread Thread
principale principale

Execute la Execute la Execute la
fonction main fonction main fonction fonc

Création d’un nouveau thread

—

Lancement fu programme,
ou fork Seule la pile (stack) est spécifique a chaque thread

Exemple de code

#include <pthread.h>
void xthread(void xdata) A
int 1,
for (1 = 0; i < 100; i++) {
printf(« Hello world from thread »);
s

}

int main(void) {

pthread_t th;

pthread create(& th, NULL, thread, NULL);
¥

Affichage: rien le plus souvent...

Attendre la fin d’un thread

Quand la fonction main se termine, tous les threads créés par le processus
sont détruits

pthread_join(pthread_t thread, void sxvalue_ptr) est la fonction a
utiliser pour suspendre un thread (passe dans I’état bloqué) jusqu’a ce
gu’un autre thread termine son exécution
int pthread_t thread, void *xvalue_ptr

— thread: I'identifiant du thread don’t on attend la terminaison

— value_ptr, recoit la valeur passé en argument de I'appel a void
pthread_exit(void *value ptr); dans le thread attendu.

Les threads peuvent aussi étre détachés (et ne plus étre “joinable”):
— 1int pthread_detach(pthread_t thread);

— Les threads détachés continuent leur exécution apres la fin du main si
le main termine en appelant pthread_exit() plutot que exit ou return.

Exemple de code

#include <pthread.h>
void xthread(void *data) {
int 1i;
for (1 = 0; 1 < 100; i++) {
printf(« Hello world from thread »);
I3

}

int main(void) {
pthread_t th;
pthread create(& th, NULL, thread, NULL);
pthread_join(th, NULL);

}

Affichage: Hello world from thread Hello world from thread Hello
world from thread Hello world from thread Hello world from
thread Hello world from thread Hello world from thread etc....

Annulation d’un thread (par I'exemple)

#include <pthread.h>
void xthread(void xdata) {
while(1) A{
printf(« Hello world from thread »);
s

¥
int main(void) {
pthread_t th;
pthread_create(& th, NULL, thread, NULL);
sleep(1);
pthread_cancel(th);
pthread_join(th, NULL);
return 0,

Peu utilisé dans un systeme temps-réel, sauf en cas de “reconfiguration”
(e.g. Traitement d’erreurs, changement de mode).

L’'ordonnancement en POSIX

 Ordonnancement préemptif a priorités fixes
— 32 niveaux de priorité doivent étre proposés

* les politiques de gestion des files d'attentes associées a ces
priorités sont : FIFO, RR, OTHERS... “Within priorities”

» seul l'utilisateur privilégié (root) peut accéder a ce service
d'ordonnancement pour choisir FIFO ou OTHERS

* On peut aussi mettre a jour la priorité d’un thread via ses
attributs (voir exemple ci-apres)

Note: toutes ces fonctions sont applicables qu’aux threads;
qguand on peut appliquer des fonctions POSIX aux processus,
le nom de ces fonction ne contient pas le mnémonique
pthread

Exemple: mise a jour de la priorité
d’un thread

#include <sched.h>
pthread_t tid;
pthread_attr_t attr;
struct sched_param param;

pthread_attr_init (&attr)

/xkxkkxkk politique d'ordonnancement sekkokxkkskk/
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);

/*kxkkxckkk priorité du thread sekskskskskskk/
param.sched_priority = 5;
pthread_attr_setschedparam (&attr, ¶m);
/*kxkxckkkk création du thread skksksksksksksk/
pthread_create (&tid, &attr, fonc, NULL);

Faire attention aux détails de la
norme...

int pthread attr setinheritsched(pthread attr t *attr,
int inheritsched);

* When the attribute objects are used by pthread create(), the inheritsched
attribute determines how the other scheduling attributes of the created
thread are to be set:

— PTHREAD_INHERIT_SCHED, by default

* Specifies that the scheduling policy and associated attributes are to be inherited
from the creating thread, and the scheduling attributes in this attr argument are to
be ignored.

— PTHREAD_EXPLICIT_SCHED

* Specifies that the scheduling policy and associated attributes are to be set to the
corresponding values from this attribute object.

POSIX et ordonnancement
(Divers)

* Connaitre les niveaux de priorité authorisés (dépend
de I'implémentation; 32 niveaux min.)
— prio_max = sched_get_priority_max(policy);
— prio_min = sched_get_priority_min(policy);

* Parameter policy: SCHED FIFO, SCHED RR,
SCHED_SPORADIC, SCHED_OTHER

* Connaitre la valeur du quantum pour la politique RR

(pour le processus courant)
— struct timespec qgtm;
— sched_rr_get_interval(0,&qtm);

Mutexes

* Les mutex sont destinés a la gestion des acces
aux sections critiques (exclusion mutuelle)

— |la file d'attente qui leur est associée est gérée par
ordre de priorités décroissantes; ils peuvent étre
utilisés entre threads ou processus, suivant les
options :

— pthread_mutex_init(),
pthread_mutex_lock(), pthread_mutex_trylock(),
pthread_mutex_unlock(),
pthread_mutexattr_x, ...

Exemple de code

//variable globale
pthread_mutex_t lock;

// initialisation du lot de taches (i.e. avant 1la création

des threads)

pthread_mutex_init(& lock, NULL);

... // création des threads

// dans les threads concurrents

ret = pthread_mutex_lock(& lock);

. // section critique

ret = pthread_mutex_unlock(& lock);

// dans les threads concurrents

ret = pthread_mutex_lock(& lock);

. // section critique

ret = pthread_mutex_unlock(& lock);

// a la fin du processus

pthread_mutex_destroy(& lock);

Attributs des mutex

e Lesecond argumentde pthread_mutex_init() estun
ensemble d’attributs spécifiques aux mutexes, et regroupés dans
une structure pthread_mutexattr_t.

* Une telle structure peut-étre initialisée et manipulé avec des
fonctions du type pthread_mutexattr_x()

 Exemple:

int pthread_mutexattr_settype
(pthread_mutexattr_t *xattr, int type);

ou type peut prendre comme valeur: PTHREAD _MUTEX_NORMAL,
PTHREAD MUTEX_ERRORCHECK, PTHREAD MUTEX_RECURSIVE,
PTHREAD MUTEX_ DEFAULT

Mutexes pour le TR

* Un mutex peut-étre configuré avec une politique

— Politigue « PCP-like »: si un thread t1 a pris le verrou et bloque un thread t2
plus prioritaire, alors t1 hérite de la priorité max associée au verrou.
pthread_mutex_t lockl;
pthread_mutexattr_t mutex_attr;
pthread_mutexattr_setprotocol(&mutex_attr, PTHREAD_PRIO_PROTECT);
pthread_mutexattr_setprioceiling(&mutex_attr, max_prio-1);
pthread_mutex_init(&lockl, &mutex_attr);

— Politique « PIP-like »: si un thread t1 a pris le verrou et bloque un thread t2
plus prioritaire, alors t1 hérite de la priorité de t1.
pthread_mutex_t lockl;
pthread_mutexattr_t mutex_attr;
pthread_mutexattr_setprotocol(&mutex_attr, PTHREAD_PRIO_INHERIT);
pthread_mutex_init(&lockl, &mutex_attr);

Variables conditionnelles

Les variables conditionnelles permettent de suspendre I'exécution d’un thread
jusgu’a ce qu’une condition devienne vrai; cette condition est signalée par un
autre thread.

Initialisation
— pthread_cond_t cond;
— pthread_cond_init(& cond, NULL);

Attente:
— pthread_cond_wait(& cond, & mutex)
— Toujours bloquant
— Le mutex passé en parameétre est sera libéré avant la mise en attente (de fagcon atomique),
puis repris immédiatement au réveil (trylock)
Signalisation:
— Aun thread en attente (pas forcément FIFO):
pthread _cond_signal(& cond);

— Atous les threads en attente:
pthread cond_broadcast(& cond);

— Non mémorisé (perdu si aucun thread en attente)

Example de code

/**kkxkk variables partagees skkxokkx/
pthread_mutex_init(&Verrou, NULL);
pthread_cond_init(&VarCond, NULL);
// création de threads

while (...){ pthread_mutex_lock (&errou);

while (N < Compteur) A{
pthread_cond_wait(&VarCond,
&errou);

pthread_mutex_lock(&Verrou);

Compteur ++;

if (Compteur > N)
pthread_cond_broadcast(&VarCond);

pthread_mutex_unlock (&Verrou);

I3
printf ("Seuil atteint! "\n);

, e pthread_mutex_unlock (&Verrou);

Vérfifie qu’un seuil est atteint Vérfifient que le seuil soit atteint

Sighaux

 Dans l'implémentation TR les différentes occurrences d’'un méme
signal sont conservées, le nombre de signaux recus correspond
toujours au nombre de signaux émis.

— Pas de perte : gestion d'une liste de signaux en attente

— La priorité liée au signal est respectée dans la gestion de la file
d'attente

e Emission par sigqueue, par un timer, ou par une fin d'e/s
e Nouveaux signaux dans RT-POSIX: RTSIG_MAX signaux, numeérotés

de SIGRTMIN a SIGRTMAX (les sighaux avec un plus petit numéro sont
considérés comme plus prioritaires). La priorité relatives des signaux RT et
standards est non-spécifiée dans le standard.

<- Sigaction: modifier le traitement associé a un signal
< sigwaltinfo: Attendre un signal et une info
< sigtimedwait: Attendre d’un signal avec temporisation

Signaux (émission)

< kill
< int pthread_kill(pthread_t thread, int sig);

< sigqueue: Mettre un signal dans la file d’attente associée au processus
destinataire

< int sigqueue(pid_t pid, int sig, const union sigval
value);

< Paramétre value: spécifier une donnée associée au signal
<> Définition de sigval:
union sigval {
int sival_int;
void xsival_ptr;
Fi

< int pthread_sigqueue(pthread_t thread, int sig, const union sigval value);

Signaux (traitement)

<- sigaction:

int sigaction(int sig, const struct sigaction * act,
struct sigaction * oldact);

<> Parametre act: spécifie la nouvelle action associé au signal sig; parameétre oldact: si
non null, sert a sauvegarder I'ancienne action associé au signal sig.

struct sigaction {

void (xsa_handler) (int);
void (xsa_sigaction) (int, siginfo_t *, void x);
sigset_t sa_mask;
int sa_flags;
void (xsa_restorer) (void);
};

<> sa_handler : action associée au signal (éventuellement SIG_IGN, SIG_DFL)
<> sa_mask: ensemble de signaux ignorés pendant le traitement du signal sig
<> Autres champs: voir la documentation

Différence signal/sigaction
[source: stackoverflow]

* Signal has a number of undesirable characteristics that sigaction() avoids

— The signal() function does not (necessarily) block other signals from arriving
while the current handler is executing; sigaction() can block other signals until
the current handler returns.

— The signal() function (usually) resets the signal action back to SIG_DFL
(default) for almost all signals. This means that the signal() handler must
reinstall itself as its first action. It also opens up a window of vulnerability
between the time when the signal is detected and the handler is reinstalled
during which if a second instance of the signal arrives, the default behaviour
(usually terminate, sometimes with prejudice - aka core dump) occurs.

— The exact behaviour of signal() varies between systems — and the standards
permit those variations.

* The Linux man page for signal() says:
— The effects of signal() in a multi-threaded process are unspecified.

CCL: prefer sigaction to signal...

Signaux (attente)

<-int sigwait(const sigset_t *set, int *sig);
Attendre un signal parmi set et renseigner le
signal recu en initialisant sig.
<rsigwaltinfo: Attendre un signal parmiun
ensemble set et récuperer certaines info

associées au signal (ex: pid du processus
émetteur, numeéro de signam)

<-sigtimedwait: Attendre d’un signal avec
temporisation

Clocks

<-clock_settime: Initialiser I’horloge
(CLOCK_MONOTONIC)

<-int clock_settime(clockid_t c/k id, const struct timespec
*tp);
< clock_gettime: Lire la valeur de I'horloge
<-int clock_gettime(clockid_t c/k id, struct timespec *tp);
<-clock_getres: Lire la résolution de I'horloge
<-int clock_getres(clockid_t c/k _id, struct timespec *res);

<>nanos lLeep: Sleep haute résolution

clk_id = CLOCK_REALTIME/CLOCK_MONOTONIC

Timers

< timer_create: Création d’un timer
<> int timer_create(clockid_t clockid, struct sigevent *sevp, timer_t *
timerid);
<> Structure qui spécifie comment I'appelant sera notifié de I'’échéance
du timer: le champ sigev_notify de sevp sert a préciser cela:

<> SIGEV_NONE - pas de notif

<> SIGEV_SIGNAL - géneére un signal vers le processus appelant; le champs
sigev_signo de sevp précise le numéro de signal;

< timer_delete: Destruction d’un timer

< timer_settime: Armement/désarmement d’un timer
< timer_gettime: Lire le délai restant sur un timer

< timer_getoverrun: Lire le délai dépassé sur un timer

Sémaphores (vues en cours de UNIX)

Les sémaphores sont I'implantation classique de l'outil
défini par Dijkstra. La file d'attente est gérée par ordre de
priorités décroissantes, les sémaphores peuvent étre
utilisés entre threads ou processus, suivant les options.

<> sem_open: open and / or < sem_getvalue: get current
create a named semaphore. semaphore count

< sem_close: close a named <> sem_wait: Try to lock the
semaphore semaphore. Wait otherwise.

<- sem_unlink: destroy a named < sem_trywait:Just tries to
semaphore lock the semaphore, but gives up

< sem_init:initialize an if the semaphore is already
unna_med semaphore locked.

< sem_destroy: destroy an < sem_post: Release the

unnamed semaphore semaphore.

Files de messages

Elles sont similaires a ceux proposeés par les IPC System V,
mais a chague message est associée une priorité. Le probleme
de l'inversion de priorité n'est pas géreé :

< mqg_c lose: fermer une file de messages

< mqg_getattr: récupérér les caractéristiques d’une file de
messages

< MO
< MO
< MO
< MO
< MO

_open: ouvrir une file de message
__receilve: extraire un message d’une file
_send: déposer un message dans une file
_setattr: changer les attributs d’une file
_unlink: détruire une file de messages

Plan du cours

Introduction aux systemes temps-réels d’un
point de vue SE.

Facteurs intervenants dans la gestion du
temps, toujours d’un point de vu SE

Propositions RT-POSIX (I’API)

Patron d’implémentation pour modele
d’ordonancement théorique

/*

X X X X X X

Ordonnancement RMS

scenario:

2 periodic threads T1 (period=1000 ms) and T2 (period=2000 ms);
1 sporadic thread T3 (period=3000 ms);

1 global variable gv (integer); protected with PCP;

Tl increments gv; T2 and T3 displays gv;

Scheduling policy is RMS.

Ordonnancement RMS

int main()

{

pthread_create(&tidl, &attrl, (voidx (x)(voidx))body_of_T1, NULL);

pthread_create(&tid2, &attr2, (voidx (x)(voidx))body_of_T2, NULL);

pthread_create(&tid3, &attr3, (voidx (x)(voidx))body_of_T3, NULL);
}

void body_of_T1()
{..}
void body_of_T2()

{..}
void body_of_T3()

{.}

Que manque-t-il?

Ordonnancement RMS

int main()

{

pthread_create(&tidl, &attril,
pthread_create(&tid2, &attr2,
pthread_create(&tid3, &attr3,

// wait for threads to finish
// immediately)

pthread_join(tidl, NULL);
pthread_join(tid2, NULL);
pthread_join(tid3, NULL);

void body_of_T1()

{..}
void body_of_T2()
{..}
void body_of_T3()
{..}

(voidx (x)(voidx))body_of_T1, NULL);
(voidx (%) (voidx))body_of_T2, NULL);
(voidx (x)(voidx))body_of_T3, NULL);

(otherwise the process terminates

Ordonnancement RMS

void body_of_T1()

{

unsigned int iter=0;
while(1)

{

iter++;

printf("Executing T1 iter %d\n", iter);

// Compute next dispatch time
clock_gettime(CLOCK_REALTIME, &T1_timer);

Tl _timer.tv_sec = Tl _timer.tv_sec+PERIODT1_s;
Tl _timer.tv_nsec = T1l_timer.tv_nsec;

// Tl's code executed here

// Wait for next dispatch time

pthread_mutex_lock (&T1_mutex);

pthread_cond_timedwait (&T1_cond, &T1_mutex, &T1_timer);
pthread_mutex_unlock (&T1_mutex);

Probleme? ...

Départ synchronisé des threads

e Attendre dans le main que tous les threads
soient initialisés
e Attendre dans les threads que le main donne

le signal (pas forcément signal au sens SE) de
départ

e Utiliser des dates de réveil absolues

Attendre dans le main que tous les
threads soient synchro

int main()

{

pthread_create(&tid3, &attr3, (voidx (%) (voidx))body_of_T3, NULL);

// walt a bit for the end of the threads creation before to release them;
sleep(2);

clock_gettime(CLOCK_REALTIME, &init_time);
pthread_cond_broadcast(&threads_init_cond);

, -

void body_of_T1()

{
// wait all threads have been created and initialized
pthread_mutex_init(&T1_mutex, NULL);
pthread_cond_init (&T1_cond, NULL);
pthread_mutex_lock(&threads_init_mutex);
pthread_cond_wait(&threads_init_cond, &threads_init_mutex);
pthread_mutex_unlock(&threads_init_mutex);

Utiliser des dates de réveil absolues

void body_of_T1()
{

unsigned int iter=0;
while(1)
{
iter++;
Tl timer.tv_sec = init_time.tv_sec+iterxPERIODT1_s;
Tl timer.tv_nsec = init_time.tv_nsec;

pthread_mutex_lock (&T1_mutex);
pthread_cond_timedwait (&T1_cond, &T1_mutex, &T1_timer);
pthread_mutex_unlock (&T1_mutex);

Notes a propos de la solutions

* Devrait étre généralisée pour un ensemble de
N threads, en fournissant une API de plus haut
niveau: Middleware.

 Ce n'est gu’une solution possible, il en existe
d’autres, peut-étre mieux...

— Notamment basées sur les signaux/timers!

Synchro PCP

* Directement fourni par POSIX

#define PRIOT1 5;

pthread_mutex_t mutex;
pthread_mutexattr_t mutex_attr;

int main()

{
pthread_mutexattr_setprotocol(&mutex_attr, PTHREAD_PRIO_PROTECT);
pthread_mutexattr_setprioceiling(&mutex_attr, PRIOT1);
pthread_mutex_init(&mutex, &mutex_attr);

Sporadic server

* Directement fourni par POSIX (SCHED SPORADIC):

— Init

int main()

{

/*kxkxk Initialisation des priorites sekskokxkk/

/*kxkxk Initialisations de la periode et du budget skskkxkk/
/*kxkxk a 1/2 seconde et 1/4 seconde skxkkxkk/

#define HIGH_PRIORITY 150

#define LOW_PRIORITY 100

schedparam.
schedparam.
schedparam.
schedparam.

ss_replenish_period.tv_nsec = 500000000;
ss_initial_budget.tv_nsec = 250000000;
sched_priority = HIGH_PRIORITY;
ss_low_priority = LOW_PRIORITY;

Sporadic server

Dans le thread serveur sporadic, on simule le comportement (1/3):

/ kkkskskokokok
Boucle pour voir diminuer la priorite
okskokkkkkkok /
for (5 5) {
if (schedparam.sched_priority != LOW_PRIORITY)
continue;
priority = schedparam.sched_priority;
sprintf(buffer, "-nouvelle priorite = %d", priority);
print_current_time(buffer);
/ kkskskokskskokokok
L'appel a lock va augmenter la priorite
skokokskskokskskokok /
puts("Verrou va etre pris");
pthread_mutex_lock(&mutex);
priority = schedparam.sched_priority;
sprintf(buffer, "-nouvelle priorite = %d", priority);
print_current_time(buffer);
break;

Sporadic server

Dans le thread serveur sporadic, on simule le comportement (2/3):

/ kkkkk
Attendre pour voir le budget etre re—-alimente
skokskskokskokskokk /
for (5 ;5) A
if (schedparam.sched_priority == HIGH_PRIORITY)
break
Iy

priority = schedparam.sched_priority;
sprintf(buffer, "-nouvelle priorite = %d", priority);
print_current_time(buffer);

Sporadic server

Dans le thread serveur sporadic, on simule le comportement (3/3):

/ ¥kkkk

Le unlock doit faire descendre la priorite
skokskokskskokskoksk /

puts(" On va rendre le verrou");
pthread_mutex_unlock(&mutex);
priority = schedparam.sched_priority;
sprintf(buffer, "-nouvelle priorite = %d", priority);
print_current_time(buffer);
for (3 5) A
if (schedparam.sched_priority == LOW_PRIORITY)
break:
}
priority = schedparam.sched_priority;
sprintf(buffer, "-nouvelle priorite = %d", priority);
print_current_time(buffer);

Fri
Fri
Fri
Fri
Fri
Fri

May
May
May
May
May
May

24
24
24
24
24
24

Résultat

11:05:01 nouvelle priorite = 150
11:05:01 nouvelle priorite = 100 Verrou va etre pris
11:05:01 nouvelle priorite = 131
11:05:01 nouvelle priorite = 150 On va rendre le verrou
11:05:01 nouvelle priorite = 150
11:05:01 nouvelle priorite = 100
Budget réalirme nté
® i . P .
E{: ' : .
i . .. i .
; ~. Budget épuise % "~
— S b e peeeeececpeceey - < - = - - - - - - High
.*g E : : E NMedium
' R P :?.-----f b oo - - - - Low
S W— S A—
<§ idébut ock tunlock
[-' e ———— .:. A e ———— TN

Conclusion

AP| RT-POSIX riche, tres utilisée en pratique dans
les STR, pour sa portabilité

APl bas niveau, don’t I'usage mérite étre factorisé
via un middleware

— Pas de modele de tache temps réel en RT-POSIX (a la
charge du middleware)

Attention a la correspondance entre modele
d’ordo théorique et implémentations

Autres standard d’OS temps-réel existent: OSEK,
ARINC653...

