
Cours	
 RT-­‐POSIX	

E0enne	
 Borde,	

Bertrand	
 Dupouy	

Pourquoi	
 POSIX?	

•  Qu’est-­‐ce	
 que	
 POSIX?	

– Un	
 standard	
 IEEE	

– Une	
 API,	
 et	
 donc	
 une	
 librairie	

–  Fournis	
 par	
 le	
 Système	
 d’Exploita0on	
 (SE)	

– Ges0on	
 des	
 processus	
 et	
 threads	
 (processus	
 légers)	

•  Alors,	
 pourquoi	
 POSIX?	

–  Portabilité:	
 Portable	
 Opera0ng	
 System	
 Interface	

– Une	
 applica0on	
 u0lisant	
 l’API	
 POSIX	
 pourra	
 être	

exécutée	
 sur	
 n’importe	
 quel	
 SE	
 qui	
 implémente	
 POSIX	

(Linux,	
 …	
 mais	
 aussi	
 …	
 INTEGRITY,	
 LynxOS,	
 RTEMS,	

VxWorks,	
 …)	

	

Pourquoi	
 RT-­‐POSIX?	

•  De	
 plus	
 en	
 plus	
 d’applica0ons	
 temps-­‐réels	

•  SE	
 classique	
 non-­‐adaptés	
 à	
 un	
 ges0on	

deterministe	
 du	
 temps	

•  Une	
 des	
 raison	
 de	
 sa	
 popularité	
 est	
 d’être	

u0lisable	
 sur	
 une	
 machine	
 Linux,	
 puis	
 portable	

sur	
 des	
 OS	
 propriétaires	

En	
 bref,	
 POSIX=API	
 système…	
 Va-­‐t-­‐on	
 parler	

1h30	
 d’une	
 API?	
 …	

Plan	
 du	
 cours	

•  Introduc)on	
 aux	
 systèmes	
 temps-­‐réels	
 d’un	

point	
 de	
 vue	
 SE.	

•  Facteurs	
 intervenants	
 dans	
 la	
 ges0on	
 du	

temps,	
 toujours	
 d’un	
 point	
 de	
 vu	
 SE	

•  Proposi0ons	
 RT-­‐POSIX	
 (l’API)	

•  Patron	
 d’implémenta0on	
 pour	
 modèle	

d’ordonancement	
 théorique	

Les	
 composants	
 d’un	
 SE	

•  Ges0onnaire	
 de	
 fichiers	

•  Ges0on	
 de	
 la	
 mémoire	

•  Ges0on	
 de	
 l’accès	
 aux	
 resources	

– de	
 calcul	
 (processeur)	

– entrées/sor0es	
 (périphériques)	

Ges0on	
 du	
 temps	
 dans	
 un	
 SE?	
 …	

Ordonnaceur!	
 ...	
 Mais	
 pas	
 seulement	

Le	
 temps	
 dans	
 un	
 SE	
 classique	

•  Un	
 système	
 d’exploita0on	
 classique	
 doit	

organiser	
 et	
 op0miser	
 l'u0lisa0on	
 des	

ressources	
 de	
 façon	
 à	
 ce	
 que	
 l'accès	
 à	
 ces	

ressources	
 soit	
 équitable.	
 	

•  Un	
 SE	
 n'a	
 donc	
 pour	
 seule	
 contrainte	
 de	

temps	
 que	
 celle	
 d'un	
 temps	
 de	
 réponse	

sa2sfaisant	
 pour	
 les	
 applica0ons	

è	
 Critère	
 de	
 qualité:	
 temps	
 de	
 réponse.	

Le	
 temps	
 dans	
 un	
 SE	
 classique	

•  Le	
 SE	
 ne	
 prend	
 pas	
 en	
 compte	
 les	
 contraintes	

d’échéances	
 dans	
 l’ordonnacement	

•  L’ordonnacement,	
 basé	
 sur	
 des	
 priorités	

dynamiquement	
 agribuées,	
 dépend	
 du	
 type	

d'événement	
 agendu/reçu	
 et	
 de	
 la	

consomma2on	
 de	
 temps	
 cpu	
 des	
 processus	

(vieillissement)	

•  L’ordonnancement	
 ne	
 prend	
 pas	
 en	
 compte	

l’échéance	
 de	
 réalisa0on	
 de	
 la	
 tâche.	
 	

Rappels	
 sur	
 les	
 Systèmes	
 Temps-­‐Réels	

(STR)	

•  Objec0f	
 des	
 STR	
 :	
 	

–  déterminisme	
 temporel	
 (en	
 plus	
 du	
 déterminisme	
 logique	
 où	
 les	

mêmes	
 données	
 en	
 entrées	
 donnent	
 les	
 mêmes	
 résultats):	
 	

•  Respect	
 des	
 échéances,	
 prédic0bilité	
 :	
 répondre	
 à	
 des	
 contraintes	
 temporelles	

(sur	
 le	
 début	
 et/ou	
 la	
 fin	
 des	
 ac0vités),	
 	

•  Résultat	
 correct	
 =	
 résultat	
 exact	
 ...	
 et	
 fourni	
 à	
 la	
 date	
 voulue	

•  Exemples	
 :	
 	

–  Logiciel	
 de	
 lecture	
 vidéo:	
 synchronisa0on	
 des	
 flux	
 audio/vidéo,	

–  Logiciel	
 de	
 déclenchement	
 d’un	
 airbag	
 de	
 voiture	

•  Note1	
 :	
 ces	
 exemples	
 introduisent	
 une	
 no0on	
 de	
 cri2cité	
 et	
 de	

précision	
 des	
 contraintes	
 temporelles	

•  Note2	
 :	
 POSIX=interface	
 de	
 programma0on	
 seulement,	
 donc	
 sa	

capacité	
 à	
 être	
 u0lisé	
 dans	
 un	
 domaine	
 d’applica0on	
 dépend	
 de	

l’implémenta)on	
 de	
 cege	
 API	
 et	
 de	
 la	
 façon	
 dont	
 elle	
 est	
 u)lisée.	

Synthèse	
 des	
 différences	
 SE/STR	

SE	

–  Les	
 performances	
 sont	
 jugées	
 suivant	
 le	
 rendement	
 :	
 exécuter	
 le	
 plus	
 de	

tâches	
 possibles,	
 le	
 plus	
 rapidement	
 possible,	
 	

	

C'est	
 le	
 SE	
 qui	
 décide	
 de	
 la	
 dynamique	
 d'exécu2on	

(CONTRAINTES	
 LOGICIELLES)	
 	

	

STR	
 	

–  Le	
 critère	
 de	
 performance	
 est	
 le	
 suivant	
 :	
 respect	
 de	
 toutes	
 ou	
 d'une	
 par2e	

(en	
 cas	
 de	
 surcharge)	
 des	
 échéances,	
 qu'elles	
 soient	
 périodiques	
 ou	
 non.	
 Si	
 on	

exige	
 le	
 respect	
 de	
 toutes	
 les	
 échéances,	
 on	
 parle	
 de	
 TR	
 dur,	
 sinon	
 TR	
 souple	

(mou,	
 son).	
 	

	

C'est	
 l'environnement	
 extérieur	
 qui	
 impose	
 la	
 dynamique	
 d’exécu2on	

(CONTRAINTES	
 PHYSIQUES)	
 	

Le	
 temps	
 dans	
 les	
 STR	

•  Real-­‐0me	
 compu0ng	
 is	
 not	
 fast	
 compu0ng:	

•  Ex:	
 Airbag…	

FAUX	
 VRAI	

Informa0on	
 soumise	
 à	
 des	
 conraintes	

temps-­‐réel	
 =	
 informa0on	
 à	
 obtenir	

rapidement	

	

Traitement	
 temps	
 réel	
 =	
 traitement	
 à	

effectuer	
 rapidement	

Informa0on	
 soumise	
 à	
 des	
 contraintes	

temps	
 réel	
 =	
 informa0on	
 à	
 obtenir	
 avant	

une	
 certaine	
 date	

	

Traitement	
 temps-­‐réel	
 =	
 traitement	
 à	

effectuer	
 avant	
 une	
 certaine	
 date	

Tâche	
 urgente	
 et	
 tâche	
 cri0que	

•  Chaque	
 tâche	
 a	
 un	
 degré	
 :	

–  d'urgence,	
 lié	
 à	
 la	
 date	
 de	
 son	
 échéance;	

–  de	
 cri0cité,	
 lié	
 à	
 son	
 importance	
 rela0ve.	
 	

	

•  Mais	
 :	
 une	
 tâche	
 très	
 cri0que	
 peu	
 avoir	
 de	
 faibles	
 contraintes	
 de	

temps	
 et	
 une	
 tâche	
 peu	
 cri0que	
 de	
 fortes	
 contraintes	
 de	
 temps	
 …	

è	
 Pb.	
 des	
 ordonnancements	
 du	
 type	
 RMS	
 où	
 le	
 seul	
 critère	
 est	
 la	

période	
 des	
 tâches	
 ou	
 EDF	
 où	
 le	
 seul	
 critère	
 est	
 la	
 deadline	
 des	

tâches.	
 	

•  Comment	
 conjuguer	
 ces	
 deux	
 critères	
 ?	
 c'est	
 à	
 dire	
 comment	

refléter	
 l'urgence	
 ET	
 l'importance	
 des	
 tâches	
 ?	

–  MUF	
 (Maximum	
 Urgency	
 First),	
 	

–  Systèmes	
 pari0onés	
 (ARINC653)	

–  Mixed	
 cri0cality	

Types	
 d’ordonnancement	
 TR	

•  Hors	
 ligne	

–  l’ordonnancement	
 est	
 calculé	
 a	
 priori,	
 c’est	
 à	
 dire	
 avant	

l’exécu0on	
 (0me	
 driven	
 scheduling),	
 l’ordonnanceur	
 se	
 réduit	
 à	

un	
 séquenceur.	

•  En–ligne	
 :	
 	

–  l’ordonnancement	
 est	
 décidé	
 à	
 l’exécu0on,	
 la	
 détec0on	
 des	

surcharges	
 est	
 plus	
 difficile…	
 Quelles	
 surcharges	
 d’ailleurs?	

•  Ne	
 pas	
 confondre	
 :	
 	

–  Hors	
 ligne	
 /	
 en	
 ligne.	

–  Priorité	
 fixe	
 /	
 priorité	
 dynamique.	

–  Préemp0f	
 /	
 non	
 préemp0f.	

–  Priorité	
 /	
 cri0cité.	

Réalisa0ons	
 d’applica0ons	
 TR	

•  Déterminisme	
 temporel,	
 il	
 faut	
 donc	
 :	
 	

–  maitriser	
 les	
 temps	
 d’exécu0on	
 (début/fin),	
 	

–  garan0r	
 l’ordre	
 d’exécu0on	
 des	
 fonc0ons	
 (contraintes	
 de	
 précédence),	
 	

–  prouver	
 l’ordonnnançabilité,	
 donc	
 u0liser	
 des	
 techniques	
 d’ordonnancement	
 et	
 de	

ges0on	
 de	
 la	
 concurrence	
 éprouvées,	
 	

–  ne	
 pas	
 se	
 contenter	
 des	
 tests	
 qui	
 ne	
 sont	
 pas	
 toujours	
 assez	
 près	
 des	
 condi0ons	
 réelles	

(cf.	
 accumula0on	
 des	
 dérives	
 d’horloge	
 dans	
 une	
 applica0on	
 répar0e	
 très	
 longue)	
 	

•  Sûreté	
 de	
 fonc0onnement,	
 il	
 faut	
 pouvoir	
 :	
 	

–  Détecter	
 les	
 erreurs	
 (y	
 compris	
 temporelles,	
 dépassement	
 d’échéances	
 par	
 exemple)	

–  Confiner	
 les	
 erreurs,	
 càd	
 éviter	
 leur	
 propagag0on	
 (par00onnement	
 spa0o-­‐temporelle,	

voir	
 cours	
 sur	
 ARINC)	

–  Corriger	
 les	
 erreurs	

Les	
 Systèmes	
 d’Exploita0on	
 Temps	
 Réel	
 fournissent	
 les	
 	

«	
 briques	
 »	
 de	
 base	
 (API);	
 	

ce	
 n’est	
 que	
 par	
 un	
 usage	
 rigoureux	
 de	
 ces	
 briques	
 de	
 base	
 	

qu’on	
 ob0ent	
 les	
 garan2es	
 désirées	

Plan	
 du	
 cours	

•  Introduc0on	
 aux	
 systèmes	
 temps-­‐réels	
 d’un	

point	
 de	
 vue	
 SE.	

•  Facteurs	
 intervenants	
 dans	
 la	
 ges)on	
 du	

temps,	
 toujours	
 d’un	
 point	
 de	
 vu	
 SE	

•  Proposi0ons	
 RT-­‐POSIX	
 (l’API)	

•  Patron	
 d’implémenta0on	
 pour	
 modèle	

d’ordonancement	
 théorique	

Facteurs	
 intervenants	
 dans	
 la	
 ges0on	

du	
 temps	

•  Facteurs	
 logiciels	
 :	

–  synchronisa0on	
 (partage	
 de	
 ressources),	
 	

–  Algorithmes	
 de	
 ges0on	
 de	
 la	
 mémoire	
 :	
 (GC,	
 pagina0on,	
 caches,	
 mul0-­‐coeurs),	

–  entrées-­‐sor0es	
 (pas	
 de	
 priorité),	

–  ges0on	
 des	
 disques	
 (algorithme	
 de	
 parcours,	
 alloca0on),	

•  Facteurs	
 matériels	
 :	

–  ges0on	
 des	
 interrup0ons,	

–  mémoires	
 caches,	
 	

–  pipe-­‐line	

•  et	
 encore	
 :	
 	

–  format	
 de	
 l’exécutable	
 (édi0on	
 de	
 liens	
 sta0que/dynamique)	

–  protocole	
 réseau	
 pour	
 les	
 SE	
 répar0s	
 	

–  la	
 mesure	
 doit-­‐elle	
 se	
 faire	
 dans	
 la	
 configura0on	
 la	
 plus	
 défavorable	
 (worst	
 case	

execu0on	
 0me,	
 WCET)	
 ?	

Temps-­‐réel,	
 ges0on	
 de	
 la	
 mémoire,	

	
 et	
 codage	

•  Ges0on	
 sta0que	
 :	
 	

–  le	
 nombre,	
 la	
 taille	
 et	
 l’emplacement	
 des	
 objets	
 sont	
 connus,	
 ou	

bornés,	
 lorsque	
 l’applica0on	
 est	
 lancée,	
 	

–  avantage	
 :	
 accès	
 aux	
 objets	
 en	
 temps	
 constant	
 et	
 faible	
 (objets	

implantés	
 sous	
 forme	
 de	
 tableaux)	
 	

–  inconvénient	
 :	
 pas	
 flexible	
 	

•  Ges0on	
 dynamique	
 :	
 	

–  avantage	
 :	
 souplesse	
 	

–  inconvénients	
 :	
 	

•  temps	
 d’accès	
 et	
 d’alloca0on	
 difficile	
 à	
 prédire	
 ou	
 à	
 borner	

•  déterminisme	
 de	
 la	
 désalloca0on	
 	

•  Pra$que	
 des	
 systèmes	
 fortements	
 cri$ques:	
 pas	
 d’alloca$on	

dynamique	
 de	
 mémoire.	

	

Temps-­‐réel,	
 ges0on	
 de	
 la	
 mémoire,	

	
 et	
 pagina0on	

•  Temps	
 d’accès	
 aux	
 informa0ons	
 difficile	
 à	

prédire	

•  Ce	
 temps	
 d’accès	
 peut	
 être	
 très	
 long	
 :	
 accès	

disques	
 possibles	

•  la	
 pagina0on	
 est	
 donc	
 peu	
 u0lisée	
 en	
 TR,	
 ou	

bien	
 avec	
 des	
 mécanismes	
 de	
 verrouillage	
 des	

pages	
 en	
 mémoire	
 pour	
 les	
 applica0ons	

cri0ques	

Temps	
 réels	
 et	
 mémoires	
 caches	

•  Avantage	
 de	
 l’u0lisa0on	
 de	
 caches	
 :	
 	

–  diminue	
 le	
 temps	
 d’exécu0on	
 des	
 tâches	
 de	
 manière	

probabiliste	
 (cf.	
 hit	
 ra0o)	

•  Inconvénients	
 :	
 	

–  augmenta0on	
 du	
 temps	
 de	
 changement	
 de	
 contexte	

(réini0alisa0on	
 des	
 caches)	
 si	
 les	
 espaces	
 d’adressage	
 sont	

séparés,	
 d’où	
 u0lisa0on	
 de	
 threads	
 dans	
 les	
 STR	

–  moins	
 de	
 prédic0bilité,	
 il	
 existe	
 diverses	
 méthodes	
 d’es0ma0on	

du	
 comportement	
 des	
 caches	

•  Techniques	
 mises	
 en	
 œuvre	
 :	
 verrouillage,	
 partage	
 des	

caches	

Autres	
 éléments	
 à	
 prendre	
 en	
 compte	

•  Intérrup0ons	

•  Ges0on	
 des	
 entrée/sor0es	

•  Bus	
 d’interconnec0on	
 (mul0-­‐coeur)	

En	
 résumé,	
 les	
 techniques	
 d’accéléra$on	
 matériel:	

	
 Diminuent	
 le	
 temps	
 moyen	
 d’exécu$on	
 d’un	

	
 programme	

	
 Augmentent	
 la	
 disper$on	
 des	
 temps	

	
 d’exécu$on	
 (soit	
 la	
 différence	
 entre	

	
 BCET	
 et	
 WCET)	

Plan	
 du	
 cours	

•  Introduc0on	
 aux	
 systèmes	
 temps-­‐réels	
 d’un	

point	
 de	
 vue	
 SE.	

•  Facteurs	
 intervenants	
 dans	
 la	
 ges0on	
 du	

temps,	
 toujours	
 d’un	
 point	
 de	
 vu	
 SE	

•  Proposi)ons	
 RT-­‐POSIX	
 (l’API)	

•  Patron	
 d’implémenta0on	
 pour	
 modèle	

d’ordonancement	
 théorique	

RT-­‐POSIX,	
 l’API	

•  L’API	
 POSIX	
 permet	
 de	
 gérer	
 des	
 threads,	
 c’est-­‐à-­‐dire	

des	
 processus	
 léger	

–  Partagent	
 le	
 même	
 espace	
 d’adressage	
 (celui	
 du	

processus	
 qui	
 les	
 crée)	

–  Changement	
 de	
 contextes	
 plus	
 court	

•  Norme	
 POSIX	
 1003.4	
 pour	
 la	
 portabilité	
 des	

applica0ons	
 TR	
 :	
 	

–  définit	
 une	
 interface	
 standard	
 entre	
 l'applica0on	
 et	
 le	

système	

–  ne	
 spécifie	
 PAS	
 l'implanta0on,	
 mais	
 propose	
 des	
 ou0ls	

de	
 mesure	
 des	
 performances	

–  peu	
 de	
 fonc0onnalités	
 obligatoires	

RT-­‐POSIX,	
 l’API	

•  POSIX	
 4	
 définit	
 la	
 panoplie	
 TR	
 minimale,	
 4a	
 les	
 threads	
 et	
 4b	
 les	

extensions.	
 POSIX	
 4b	
 propose	
 des	
 ou0ls	
 tels	
 que	
 :	
 	

–  l'accès	
 direct	
 aux	
 interrup0ons	
 depuis	
 les	
 applica0ons,	

–  l'ordonnancement	
 "serveur	
 sporadique”,	

–  les	
 ordonnancements:	
 SCHED_FIFO,	
 SCHED_RR,	
 SCHED_OTHER	

–  une	
 fonc0on	
 qui	
 permet	
 à	
 un	
 thread	
 de	
 suivre	
 la	
 consomma0on	
 cpu	
 d'un	

autre	
 thread,	

–  les	
 files	
 de	
 message	
 (mq_open,	
 mq_receive,	
 ...)	

–  Les	
 signaux	
 temps	
 réel	
 	

•  Pour	
 vérifier	
 si	
 la	
 par0e	
 de	
 la	
 norme	
 que	
 l'on	
 veut	
 u0liser	
 est	
 bien	

implantée,	
 u0liser	
 ifdef	
 et	
 error	
 pour	
 être	
 aver0	
 par	
 le	
 préprocesseur,	
 ou	

sysconf	
 pour	
 un	
 message	
 à	
 l'exécu0on:	
 	

#include <unistd.h> !
#ifndef _POSIX_PRIORITY_SCHEDULING !
#error POSIX : pas d'ordonnancement TR !
#endif !

POSIX,	
 créa0on	
 de	
 threads	

•  Les	
 threads	
 peuvent	
 être	
 créés	
 à	
 par0r	
 de	
 la	
 librairie	
 pthread:	

–  Header:	
 pthread.h	

–  Link	
 op0on	
 for	
 gcc:	
 gcc	
 –o	
 app	
 app.c	
 –lpthread	

•  La	
 fonc0on	
 pour	
 créer	
 un	
 thread	
 est	
 pthread_create:	
 	

int pthread_create(pthread_t * thread,
pthread_attr_t * attr, void *(*start_routine)(void
*), void * arg); !

–  thread	
 est	
 une	
 structure	
 passé	
 par	
 adresse,	
 et	
 ini0alisée	
 par	
 pthread-­‐create;	

on	
 pourra	
 la	
 réu0liser	
 avec	
 d’autres	
 fonc0ons	
 de	
 l’API	
 POSIX	

–  agr	
 est	
 un	
 pointeur	
 (peut	
 être	
 NULL)	
 vers	
 une	
 structure	
 pthread_agr_t.	
 Cege	

structure	
 peut	
 être	
 ini0alisé	
 en	
 u0lisant	
 les	
 fonc0ons	
 du	
 type	

pthread_agr_*().	
 Elle	
 peut	
 être	
 u0lisé	
 pour	
 megre	
 à	
 jour	
 un	
 ensemble	
 varié	

de	
 propriétés	
 d’un	
 thread	
 (detach	
 policy,	
 scheduling	
 policy,	
 etc.)	
 	

–  start_rou0ne	
 est	
 un	
 pointeur	
 de	
 fonc0on	
 qui	
 désigne	
 la	
 fonc0on	
 qui	
 sera	

exécuté	
 par	
 le	
 thread.	
 Le	
 thread	
 est	
 détruit	
 à	
 la	
 fin	
 de	
 l’exécu0on	
 de	
 cege	

fonc0on. 	
 	

–  arg	
 est	
 un	
 argument	
 passé	
 à	
 la	
 fonc0on	
 start_rou0ne.	

	

Partage	
 de	
 l’espace	
 d’adressage	

Espace	
 d’adressage	
 du	
 processus	

Thread	

principale	

	

Execute	
 la	

fonc0on	
 main	

Espace	
 d’adressage	
 du	
 processus	

Thread	

principale	

	

Execute	
 la	

fonc0on	
 main	

Thread	

	

	

Execute	
 la	

fonc0on	
 fonc	

Lancement	
 fu	
 programme,	

ou	
 fork	

Créa0on	
 d’un	
 nouveau	
 thread	

Seule	
 la	
 pile	
 (stack)	
 est	
 spécifique	
 à	
 chaque	
 thread	

Exemple	
 de	
 code	

#include <pthread.h> !
void *thread(void *data) { !
 int i; !
 for (i = 0; i < 100; i++) { !
 printf(« Hello world from thread »); !
 } !
} !
int main(void) { !
 pthread_t th; !
 pthread_create(& th, NULL, thread, NULL); !
} !
!
Affichage:	
 rien	
 le	
 plus	
 souvent…	

Agendre	
 la	
 fin	
 d’un	
 thread	

•  Quand	
 la	
 fonc0on	
 main	
 se	
 termine,	
 tous	
 les	
 threads	
 créés	
 par	
 le	
 processus	

sont	
 détruits	

!
•  pthread_join(pthread_t thread, void **value_ptr)	
 est	
 la	
 fonc0on	
 à	

u0liser	
 pour	
 suspendre	
 un	
 thread	
 (passe	
 dans	
 l’état	
 bloqué)	
 jusqu’à	
 ce	

qu’un	
 autre	
 thread	
 termine	
 son	
 exécu0on	

•  int pthread_t thread, void **value_ptr!
–  thread:	
 l’iden$fiant	
 du	
 thread	
 don’t	
 on	
 aIend	
 la	
 terminaison	

–  value_ptr,	
 recoit	
 la	
 valeur	
 passé	
 en	
 argument	
 de	
 l’appel	
 à	
 void	

pthread_exit(void	
 *value_ptr);	
 dans	
 le	
 thread	
 agendu.	

•  Les	
 threads	
 peuvent	
 aussi	
 être	
 détachés	
 (et	
 ne	
 plus	
 être	
 “joinable”):	

–  int pthread_detach(pthread_t thread); !
–  Les	
 threads	
 détachés	
 con0nuent	
 leur	
 exécu0on	
 après	
 la	
 fin	
 du	
 main	
 si	

le	
 main	
 termine	
 en	
 appelant	
 pthread_exit()	
 plutôt	
 que	
 exit	
 ou	
 return.	

Exemple	
 de	
 code	

#include <pthread.h> !
void *thread(void *data) { !
 int i; !
 for (i = 0; i < 100; i++) { !
 printf(« Hello world from thread »); !
 } !
} !
int main(void) { !
 pthread_t th; !
 pthread_create(& th, NULL, thread, NULL); !
 pthread_join(th, NULL); !
} !
	

Affichage:	
 Hello	
 world	
 from	
 thread	
 Hello	
 world	
 from	
 thread	
 Hello	

world	
 from	
 thread	
 Hello	
 world	
 from	
 thread	
 Hello	
 world	
 from	

thread	
 Hello	
 world	
 from	
 thread	
 Hello	
 world	
 from	
 thread	
 etc….	

Annula0on	
 d’un	
 thread	
 (par	
 l’exemple)	

#include <pthread.h> !
void *thread(void *data) { !
 while(1) { !
 printf(« Hello world from thread »); !
 } !
} !
int main(void) { !
 pthread_t th; !
 pthread_create(& th, NULL, thread, NULL); !
 sleep(1); !
 pthread_cancel(th); !
 pthread_join(th, NULL); !
 return 0; !
} !
	

Peu	
 u0lisé	
 dans	
 un	
 système	
 temps-­‐réel,	
 sauf	
 en	
 cas	
 de	
 “reconfigura0on”	

(e.g.	
 Traitement	
 d’erreurs,	
 changement	
 de	
 mode).	

L’ordonnancement	
 en	
 POSIX	

•  Ordonnancement	
 préemp0f	
 à	
 priorités	
 fixes	

–  32	
 niveaux	
 de	
 priorité	
 doivent	
 être	
 proposés	

•  les	
 poli0ques	
 de	
 ges0on	
 des	
 files	
 d'agentes	
 associées	
 à	
 ces	

priorités	
 sont	
 :	
 FIFO,	
 RR,	
 OTHERS…	
 “Within	
 priori0es”	

•  seul	
 l'u0lisateur	
 privilégié	
 (root)	
 peut	
 accéder	
 à	
 ce	
 service	

d'ordonnancement	
 pour	
 choisir	
 FIFO	
 ou	
 OTHERS	

•  On	
 peut	
 aussi	
 megre	
 à	
 jour	
 la	
 priorité	
 d’un	
 thread	
 via	
 ses	

agributs	
 (voir	
 exemple	
 ci-­‐après)	

Note:	
 toutes	
 ces	
 fonc0ons	
 sont	
 applicables	
 qu’aux	
 threads;	

quand	
 on	
 peut	
 appliquer	
 des	
 fonc0ons	
 POSIX	
 aux	
 processus,	

le	
 nom	
 de	
 ces	
 fonc0on	
 ne	
 con0ent	
 pas	
 le	
 mnémonique	

pthread	

Exemple:	
 mise	
 à	
 jour	
 de	
 la	
 priorité	

d’un	
 thread	

#include <sched.h> !
pthread_t tid; !
pthread_attr_t attr; !
struct sched_param param; !
... !
pthread_attr_init (&attr) !
!
/******** politique d'ordonnancement ********/ !
pthread_attr_setschedpolicy(&attr, SCHED_FIFO); !
!
/******** priorité du thread ********/!
param.sched_priority = 5; !
pthread_attr_setschedparam (&attr, ¶m); !
/******** création du thread ********/!
pthread_create (&tid, &attr, fonc, NULL); !
	

Faire	
 agen0on	
 aux	
 détails	
 de	
 la	

norme…	

int pthread_attr_setinheritsched(pthread_attr_t *attr,!
 ! ! ! ! !int inheritsched);!
!

•  When	
 the	
 agribute	
 objects	
 are	
 used	
 by	
 pthread_create(),	
 the	
 inheritsched	

agribute	
 determines	
 how	
 the	
 other	
 scheduling	
 agributes	
 of	
 the	
 created	

thread	
 are	
 to	
 be	
 set:	

–  PTHREAD_INHERIT_SCHED,	
 by	
 default	

•  Specifies	
 that	
 the	
 scheduling	
 policy	
 and	
 associated	
 agributes	
 are	
 to	
 be	
 inherited	

from	
 the	
 crea0ng	
 thread,	
 and	
 the	
 scheduling	
 agributes	
 in	
 this	
 aIr	
 argument	
 are	
 to	

be	
 ignored.	

–  PTHREAD_EXPLICIT_SCHED	

•  Specifies	
 that	
 the	
 scheduling	
 policy	
 and	
 associated	
 agributes	
 are	
 to	
 be	
 set	
 to	
 the	

corresponding	
 values	
 from	
 this	
 agribute	
 object.!

POSIX	
 et	
 ordonnancement	

(Divers)	

•  	
 Connaitre	
 les	
 niveaux	
 de	
 priorité	
 authorisés	
 (dépend	

de	
 l’implémenta0on;	
 32	
 niveaux	
 min.)	

–  prio_max	
 =	
 sched_get_priority_max(policy);	
 	

–  prio_min	
 =	
 sched_get_priority_min(policy);	
 	

•  Parameter	
 policy:	
 SCHED_FIFO,	
 SCHED_RR,	

SCHED_SPORADIC,	
 SCHED_OTHER	

•  Connaitre	
 la	
 valeur	
 du	
 quantum	
 pour	
 la	
 poli0que	
 RR	

(pour	
 le	
 processus	
 courant)	

–  struct timespec qtm; !
–  sched_rr_get_interval(0,&qtm); !

Mutexes	

•  Les	
 mutex	
 sont	
 des0nés	
 à	
 la	
 ges0on	
 des	
 accès	

aux	
 sec0ons	
 cri0ques	
 (exclusion	
 mutuelle)	

–  la	
 file	
 d'agente	
 qui	
 leur	
 est	
 associée	
 est	
 gérée	
 par	

ordre	
 de	
 priorités	
 décroissantes;	
 ils	
 peuvent	
 être	

u0lisés	
 entre	
 threads	
 ou	
 processus,	
 suivant	
 les	

op0ons	
 :	
 	

–  pthread_mutex_init(),	

pthread_mutex_lock(),	
 pthread_mutex_trylock(),	

pthread_mutex_unlock(),	

pthread_mutexattr_*,	
 …	

Exemple	
 de	
 code	

//variable globale!
pthread_mutex_t lock; !
... !
// initialisation du lot de tâches (i.e. avant la création
des threads)!
pthread_mutex_init(& lock, NULL); !
... // création des threads!
!
!
!
!
!
!
// à la fin du processus!
pthread_mutex_destroy(& lock); !

// dans les threads concurrents!
ret = pthread_mutex_lock(& lock); !
… // section critique!
ret = pthread_mutex_unlock(& lock); 	

// dans les threads concurrents!
ret = pthread_mutex_lock(& lock); !
… // section critique!
ret = pthread_mutex_unlock(& lock); 	

Agributs	
 des	
 mutex	

•  Le	
 second	
 argument	
 de	
 pthread_mutex_init()	
 est	
 un	

ensemble	
 d’agributs	
 spécifiques	
 aux	
 mutexes,	
 et	
 regroupés	
 dans	

une	
 structure	
 pthread_mutexattr_t.	
 	

•  Une	
 telle	
 structure	
 peut-­‐être	
 ini0alisée	
 et	
 manipulé	
 avec	
 des	

fonc0ons	
 du	
 type	
 pthread_mutexattr_*() !

•  Exemple:	
 	

	

int pthread_mutexattr_settype
(pthread_mutexattr_t *attr, int type); !
	

où	
 type	
 peut	
 prendre	
 comme	
 valeur:	
 PTHREAD_MUTEX_NORMAL,	

PTHREAD_MUTEX_ERRORCHECK,	
 PTHREAD_MUTEX_RECURSIVE,	

PTHREAD_MUTEX_DEFAULT	

	

Mutexes	
 pour	
 le	
 TR	

•  Un	
 mutex	
 peut-­‐être	
 configuré	
 avec	
 une	
 poli0que	

–  Poli0que	
 «	
 PCP-­‐like	
 »:	
 si	
 un	
 thread	
 t1	
 a	
 pris	
 le	
 verrou	
 et	
 bloque	
 un	
 thread	
 t2	

plus	
 prioritaire,	
 alors	
 t1	
 hérite	
 de	
 la	
 priorité	
 max	
 associée	
 au	
 verrou.	

pthread_mutex_t lock1; !
pthread_mutexattr_t mutex_attr; !
pthread_mutexattr_setprotocol(&mutex_attr, PTHREAD_PRIO_PROTECT); !
pthread_mutexattr_setprioceiling(&mutex_attr, max_prio-1); !
pthread_mutex_init(&lock1, &mutex_attr); !
	

–  Poli0que	
 «	
 PIP-­‐like	
 »:	
 si	
 un	
 thread	
 t1	
 a	
 pris	
 le	
 verrou	
 et	
 bloque	
 un	
 thread	
 t2	

plus	
 prioritaire,	
 alors	
 t1	
 hérite	
 de	
 la	
 priorité	
 de	
 t1.	

pthread_mutex_t lock1; !
pthread_mutexattr_t mutex_attr; !
pthread_mutexattr_setprotocol(&mutex_attr, PTHREAD_PRIO_INHERIT); !
pthread_mutex_init(&lock1, &mutex_attr); !

Variables	
 condi0onnelles	

•  Les	
 variables	
 condi0onnelles	
 permegent	
 de	
 suspendre	
 l’exécu0on	
 d’un	
 thread	

jusqu’à	
 ce	
 qu’une	
 condi0on	
 devienne	
 vrai;	
 cege	
 condi0on	
 est	
 signalée	
 par	
 un	

autre	
 thread.	

•  Ini0alisa0on	

–  pthread_cond_t	
 cond;	

–  pthread_cond_init(&	
 cond,	
 NULL);	
 	

•  Agente:	

–  pthread_cond_wait(&	
 cond,	
 &	
 mutex)	
 	

–  Toujours	
 bloquant	

–  Le	
 mutex	
 passé	
 en	
 paramètre	
 est	
 sera	
 libéré	
 avant	
 la	
 mise	
 en	
 agente	
 (de	
 façon	
 atomique),	

puis	
 repris	
 immédiatement	
 au	
 réveil	
 (trylock)	

•  Signalisa0on:	

–  A	
 un	
 thread	
 en	
 agente	
 (pas	
 forcément	
 FIFO):	

pthread_cond_signal(&	
 cond);	
 	

–  A	
 tous	
 les	
 threads	
 en	
 agente:	
 	

pthread_cond_broadcast(&	
 cond);	

–  Non	
 mémorisé	
 (perdu	
 si	
 aucun	
 thread	
 en	
 agente)	

Example	
 de	
 code	

/****** variables partagees ******/ !
pthread_mutex_init(&Verrou, NULL); !
pthread_cond_init(&VarCond, NULL); !
// création de threads	

... !
while (...){ !
 ... !
 pthread_mutex_lock(&Verrou); !
 Compteur ++; !
 if (Compteur > N) !
 pthread_cond_broadcast(&VarCond); !
 pthread_mutex_unlock (&Verrou); !
 ... !
} !
	

Vérfifie	
 qu’un	
 seuil	
 est	
 ageint	
 Vérfifient	
 que	
 le	
 seuil	
 soit	
 ageint	

... !
pthread_mutex_lock (&Verrou); !
while (N < Compteur) { !
 pthread_cond_wait(&VarCond, !
 &Verrou); !
} !
printf ("Seuil atteint! "\n); !
... !
pthread_mutex_unlock (&Verrou); !
!

Signaux	

•  Dans	
 l’implémenta0on	
 TR	
 les	
 différentes	
 occurrences	
 d’un	
 même	

signal	
 sont	
 conservées,	
 le	
 nombre	
 de	
 signaux	
 reçus	
 correspond	

toujours	
 au	
 nombre	
 de	
 signaux	
 émis.	
 	

–  Pas	
 de	
 perte	
 :	
 ges0on	
 d'une	
 liste	
 de	
 signaux	
 en	
 agente	
 	

–  La	
 priorité	
 liée	
 au	
 signal	
 est	
 respectée	
 dans	
 la	
 ges0on	
 de	
 la	
 file	

d'agente	
 	

•	
 Emission	
 par	
 sigqueue,	
 par	
 un	
 0mer,	
 ou	
 par	
 une	
 fin	
 d'e/s	

•	
 Nouveaux	
 signaux	
 dans	
 RT-­‐POSIX:	
 RTSIG_MAX	
 signaux,	
 numérotés	

de	
 SIGRTMIN	
 à	
 SIGRTMAX	
 (les	
 signaux	
 avec	
 un	
 plus	
 pe0t	
 numéro	
 sont	

considérés	
 comme	
 plus	
 prioritaires).	
 La	
 priorité	
 rela0ves	
 des	
 signaux	
 RT	
 et	

standards	
 est	
 non-­‐spécifiée	
 dans	
 le	
 standard.	

	

² Sigaction: modifier	
 le	
 traitement	
 associé	
 à	
 un	
 signal	

² sigwaitinfo:	
 Agendre	
 un	
 signal	
 et	
 une	
 info	
 	

²  sigtimedwait:	
 Agendre	
 d’un	
 signal	
 avec	
 temporisa0on	

Signaux	
 (émission)	

	

²  kill !
²  int pthread_kill(pthread_t thread, int sig); !

²  sigqueue:	
 Megre	
 un	
 signal	
 dans	
 la	
 file	
 d’agente	
 associée	
 au	
 processus	

des0nataire	
 	

²  int sigqueue(pid_t pid, int sig, const union sigval

value); !
²  Paramètre	
 value:	
 spécifier	
 une	
 donnée	
 associée	
 au	
 signal	

²  Défini2on	
 de	
 sigval:	

	
 union sigval { !
 int sival_int; !
 " " void *sival_ptr; !
 }; !
²  int	
 pthread_sigqueue(pthread_t	
 thread,	
 int	
 sig,	
 const	
 union	
 sigval	
 value);!

Signaux	
 (traitement)	

²  sigaction: !

"int sigaction(int sig, const struct sigaction * act, " "
" "struct sigaction * oldact); !

²  Paramètre	
 act:	
 spécifie	
 la	
 nouvelle	
 ac0on	
 associé	
 au	
 signal	
 sig;	
 paramètre	
 oldact:	
 si	

non	
 null,	
 sert	
 à	
 sauvegarder	
 l’ancienne	
 ac0on	
 associé	
 au	
 signal	
 sig.	

!

"struct sigaction { !
" void (*sa_handler)(int); !
" void (*sa_sigaction)(int, siginfo_t *, void *); !
" sigset_t sa_mask; !
" int sa_flags; !
" void (*sa_restorer)(void); !
"};!

²  sa_handler	
 :	
 ac0on	
 associée	
 au	
 signal	
 (éventuellement	
 SIG_IGN,	
 SIG_DFL)	

²  sa_mask:	
 ensemble	
 de	
 signaux	
 ignorés	
 pendant	
 le	
 traitement	
 du	
 signal	
 sig	

²  Autres	
 champs:	
 voir	
 la	
 documenta0on	

Différence	
 signal/sigac0on	

[source:	
 stackoverflow]	

•  Signal	
 has	
 a	
 number	
 of	
 undesirable	
 characteris0cs	
 that	
 sigac0on()	
 avoids	

–  The	
 signal()	
 func0on	
 does	
 not	
 (necessarily)	
 block	
 other	
 signals	
 from	
 arriving	

while	
 the	
 current	
 handler	
 is	
 execu0ng;	
 sigac0on()	
 can	
 block	
 other	
 signals	
 un0l	

the	
 current	
 handler	
 returns.	

–  The	
 signal()	
 func0on	
 (usually)	
 resets	
 the	
 signal	
 ac0on	
 back	
 to	
 SIG_DFL	

(default)	
 for	
 almost	
 all	
 signals.	
 This	
 means	
 that	
 the	
 signal()	
 handler	
 must	

reinstall	
 itself	
 as	
 its	
 first	
 ac0on.	
 It	
 also	
 opens	
 up	
 a	
 window	
 of	
 vulnerability	

between	
 the	
 0me	
 when	
 the	
 signal	
 is	
 detected	
 and	
 the	
 handler	
 is	
 reinstalled	

during	
 which	
 if	
 a	
 second	
 instance	
 of	
 the	
 signal	
 arrives,	
 the	
 default	
 behaviour	

(usually	
 terminate,	
 some0mes	
 with	
 prejudice	
 -­‐	
 aka	
 core	
 dump)	
 occurs.	

–  The	
 exact	
 behaviour	
 of	
 signal()	
 varies	
 between	
 systems	
 —	
 and	
 the	
 standards	

permit	
 those	
 varia0ons.	

•  The	
 Linux	
 man	
 page	
 for	
 signal()	
 says:	

–  The	
 effects	
 of	
 signal()	
 in	
 a	
 mul$-­‐threaded	
 process	
 are	
 unspecified.	

	

CCL:	
 prefer	
 sigac$on	
 to	
 signal…	

Signaux	
 (agente)	

² int	
 sigwait(const	
 sigset_t	
 *set,	
 int	
 *sig);	

Agendre	
 un	
 signal	
 parmi	
 set	
 et	
 renseigner	
 le	

signal	
 reçu	
 en	
 ini0alisant	
 sig.	

² sigwaitinfo:	
 Agendre	
 un	
 signal	
 parmi	
 un	

ensemble	
 set	
 et	
 récupèrer	
 certaines	
 info	

associées	
 au	
 signal	
 (ex:	
 pid	
 du	
 processus	

émegeur,	
 numéro	
 de	
 signam)	

² sigtimedwait:	
 Agendre	
 d’un	
 signal	
 avec	

temporisa0on	

Clocks	

² clock_settime:	
 Ini0aliser	
 l’horloge	

(CLOCK_MONOTONIC)	

² int	
 clock_se^me(clockid_t	
 clk_id,	
 const	
 struct	
 2mespec	

*tp);	

² clock_gettime:	
 Lire	
 la	
 valeur	
 de	
 l’horloge	
 	

² int	
 clock_ge^me(clockid_t	
 clk_id,	
 struct	
 2mespec	
 *tp);	

² clock_getres:	
 Lire	
 la	
 résolu0on	
 de	
 l’horloge	
 	

² int	
 clock_getres(clockid_t	
 clk_id,	
 struct	
 2mespec	
 *res);	

² nanosleep:	
 Sleep	
 haute	
 résolu0on	
 	

clk_id	
 =	
 CLOCK_REALTIME/CLOCK_MONOTONIC	
 	

	

Timers	

	

²  timer_create:	
 Créa0on	
 d’un	
 0mer	
 	

²  int	
 0mer_create(clockid_t	
 clockid,	
 struct	
 sigevent	
 *sevp,	
 0mer_t	
 *	

0merid);	

² Structure	
 qui	
 spécifie	
 comment	
 l’appelant	
 sera	
 no0fié	
 de	
 l’échéance	

du	
 0mer:	
 le	
 champ	
 sigev_no$fy	
 de	
 sevp	
 sert	
 à	
 préciser	
 cela:	

² SIGEV_NONE	
 à	
 pas	
 de	
 no2f	

² SIGEV_SIGNAL	
 à	
 génère	
 un	
 signal	
 vers	
 le	
 processus	
 appelant;	
 le	
 	
 champs	

sigev_signo	
 de	
 sevp	
 précise	
 le	
 numéro	
 de	
 signal;	

²  timer_delete:	
 Destruc0on	
 d’un	
 0mer	
 	

²  timer_settime:	
 Armement/désarmement	
 d’un	
 0mer	
 	

²  timer_gettime:	
 Lire	
 le	
 délai	
 restant	
 sur	
 un	
 0mer	
 	

²  timer_getoverrun:	
 Lire	
 le	
 délai	
 dépassé	
 sur	
 un	
 0mer	
 	

Sémaphores	
 (vues	
 en	
 cours	
 de	
 UNIX)	

Les	
 sémaphores	
 sont	
 l'implanta0on	
 classique	
 de	
 l'ou0l	

défini	
 par	
 Dijkstra.	
 La	
 file	
 d'agente	
 est	
 gérée	
 par	
 ordre	
 de	

priorités	
 décroissantes,	
 les	
 sémaphores	
 peuvent	
 être	

u0lisés	
 entre	
 threads	
 ou	
 processus,	
 suivant	
 les	
 op0ons.	

²  sem_open:	
 open	
 and	
 /	
 or	

create	
 a	
 named	
 semaphore.	
 	

²  sem_close:	
 close	
 a	
 named	

semaphore	
 	

²  sem_unlink:	
 destroy	
 a	
 named	

semaphore	
 	

²  sem_init:	
 ini0alize	
 an	

unnamed	
 semaphore	
 	

²  sem_destroy:	
 destroy	
 an	

unnamed	
 semaphore	
 	

²  sem_getvalue:	
 get	
 current	

semaphore	
 count	
 	

²  sem_wait:	
 Try	
 to	
 lock	
 the	

semaphore.	
 Wait	
 otherwise.	
 	

²  sem_trywait:	
 Just	
 tries	
 to	

lock	
 the	
 semaphore,	
 but	
 gives	
 up	

if	
 the	
 semaphore	
 is	
 already	

locked.	
 	

²  sem_post:	
 Release	
 the	

semaphore.	
 	

Files	
 de	
 messages	

Elles	
 sont	
 similaires	
 à	
 ceux	
 proposés	
 par	
 les	
 IPC	
 System	
 V,	

mais	
 à	
 chaque	
 message	
 est	
 associée	
 une	
 priorité.	
 Le	
 problème	

de	
 l'inversion	
 de	
 priorité	
 n'est	
 pas	
 géré	
 :	
 	

² mq_close:	
 fermer	
 une	
 file	
 de	
 messages	
 	

² mq_getattr:	
 récupérér	
 les	
 caractéris0ques	
 d’une	
 file	
 de	

messages	
 	

² mq_open:	
 ouvrir	
 une	
 file	
 de	
 message	
 	

² mq_receive:	
 extraire	
 un	
 message	
 d’une	
 file	
 	

² mq_send:	
 déposer	
 un	
 message	
 dans	
 une	
 file	
 	

² mq_setattr:	
 changer	
 les	
 agributs	
 d’une	
 file	
 	

² mq_unlink:	
 détruire	
 une	
 file	
 de	
 messages	
 	

Plan	
 du	
 cours	

•  Introduc0on	
 aux	
 systèmes	
 temps-­‐réels	
 d’un	

point	
 de	
 vue	
 SE.	

•  Facteurs	
 intervenants	
 dans	
 la	
 ges0on	
 du	

temps,	
 toujours	
 d’un	
 point	
 de	
 vu	
 SE	

•  Proposi0ons	
 RT-­‐POSIX	
 (l’API)	

•  Patron	
 d’implémenta)on	
 pour	
 modèle	

d’ordonancement	
 théorique	

Ordonnancement	
 RMS	

/* !
 * scenario: !
 * "- 2 periodic threads T1 (period=1000 ms) and T2 (period=2000 ms); !
 * "- 1 sporadic thread T3 (period=3000 ms); !
 * "- 1 global variable gv (integer); protected with PCP; !
 * "- T1 increments gv; T2 and T3 displays gv; !
 * "- Scheduling policy is RMS. !
 */ !
!
	

Ordonnancement	
 RMS	

int main() !
{ !
... !
 pthread_create(&tid1, &attr1, (void* (*)(void*))body_of_T1, NULL); !
 pthread_create(&tid2, &attr2, (void* (*)(void*))body_of_T2, NULL); !
 pthread_create(&tid3, &attr3, (void* (*)(void*))body_of_T3, NULL); !
} !
!
void body_of_T1() !
{…} !
void body_of_T2() !
{…} !
void body_of_T3() !
{…} !
!

Que	
 manque-­‐t-­‐il?	

Ordonnancement	
 RMS	

int main() !
{ !
... !
 pthread_create(&tid1, &attr1, (void* (*)(void*))body_of_T1, NULL); !
 pthread_create(&tid2, &attr2, (void* (*)(void*))body_of_T2, NULL); !
 pthread_create(&tid3, &attr3, (void* (*)(void*))body_of_T3, NULL); !
!
 // wait for threads to finish (otherwise the process terminates !
 // immediately)!
 pthread_join(tid1, NULL); !
 pthread_join(tid2, NULL); !
 pthread_join(tid3, NULL); !
} !
!
void body_of_T1() !
{…} !
void body_of_T2() !
{…} !
void body_of_T3() !
{…} !
!

Ordonnancement	
 RMS	

void body_of_T1() !
{ !
 unsigned int iter=0; !
 while(1) !
 { !
 iter++; !
 printf("Executing T1 iter %d\n", iter); !
 // Compute next dispatch time!
 clock_gettime(CLOCK_REALTIME, &T1_timer); !
 T1_timer.tv_sec = T1_timer.tv_sec+PERIODT1_s; !
 T1_timer.tv_nsec = T1_timer.tv_nsec; !
 !
 // T1‘s code executed here!
!
 // Wait for next dispatch time!
 pthread_mutex_lock (&T1_mutex); !
 pthread_cond_timedwait (&T1_cond, &T1_mutex, &T1_timer); !
 pthread_mutex_unlock (&T1_mutex); !
 !
 !
 } !
} !

Problème?	
 …	

Départ	
 synchronisé	
 des	
 threads	

•  Agendre	
 dans	
 le	
 main	
 que	
 tous	
 les	
 threads	

soient	
 ini0alisés	

•  Agendre	
 dans	
 les	
 threads	
 que	
 le	
 main	
 donne	

le	
 signal	
 (pas	
 forcément	
 signal	
 au	
 sens	
 SE)	
 de	

départ	

•  U0liser	
 des	
 dates	
 de	
 réveil	
 absolues	

Agendre	
 dans	
 le	
 main	
 que	
 tous	
 les	

threads	
 soient	
 synchro	

int main() !
{ !
 ... !
 pthread_create(&tid3, &attr3, (void* (*)(void*))body_of_T3, NULL); !
 // wait a bit for the end of the threads creation before to release them;!
 sleep(2); "!
 clock_gettime(CLOCK_REALTIME, &init_time); !
 pthread_cond_broadcast(&threads_init_cond); !
 …!
} !
!
void body_of_T1() !
{ !
 // wait all threads have been created and initialized!
 pthread_mutex_init(&T1_mutex, NULL); !
 pthread_cond_init (&T1_cond, NULL); !
 pthread_mutex_lock(&threads_init_mutex); !
 pthread_cond_wait(&threads_init_cond, &threads_init_mutex); !
 pthread_mutex_unlock(&threads_init_mutex);	

	
 	
 	
 	
 	
 	
 …	

}	

U0liser	
 des	
 dates	
 de	
 réveil	
 absolues	

!
void body_of_T1() !
{ !
 ... !
 unsigned int iter=0; !
 while(1) !
 { !
 iter++; !
 T1_timer.tv_sec = init_time.tv_sec+iter*PERIODT1_s; !
 T1_timer.tv_nsec = init_time.tv_nsec; !
 !
 ... !
!
 pthread_mutex_lock (&T1_mutex); !
 pthread_cond_timedwait (&T1_cond, &T1_mutex, &T1_timer); !
 pthread_mutex_unlock (&T1_mutex); !
 }	

}	

Notes	
 à	
 propos	
 de	
 la	
 solu0ons	

•  Devrait	
 être	
 généralisée	
 pour	
 un	
 ensemble	
 de	

N	
 threads,	
 en	
 fournissant	
 une	
 API	
 de	
 plus	
 haut	

niveau:	
 Middleware.	

•  Ce	
 n’est	
 qu’une	
 solu0on	
 possible,	
 il	
 en	
 existe	

d’autres,	
 peut-­‐être	
 mieux…	

– Notamment	
 basées	
 sur	
 les	
 signaux/0mers!	

Synchro	
 PCP	

•  Directement	
 fourni	
 par	
 POSIX	

!
#define PRIOT1 5; !
!
pthread_mutex_t mutex; !
pthread_mutexattr_t mutex_attr; !
!
int main() !
{ !
 pthread_mutexattr_setprotocol(&mutex_attr, PTHREAD_PRIO_PROTECT); !
 pthread_mutexattr_setprioceiling(&mutex_attr, PRIOT1); !
 pthread_mutex_init(&mutex, &mutex_attr); !
 ... !
} !

Sporadic	
 server	

•  Directement	
 fourni	
 par	
 POSIX	
 (SCHED_SPORADIC):	

–  Init	

!
int main() !
{ !
 /****** Initialisation des priorites ******/!
 /****** Initialisations de la periode et du budget ******/!
 /****** a 1/2 seconde et 1/4 seconde ******/!
 #define HIGH_PRIORITY 150!
 #define LOW_PRIORITY 100!
 schedparam.ss_replenish_period.tv_nsec = 500000000; !
 schedparam.ss_initial_budget.tv_nsec = 250000000; !
 schedparam.sched_priority = HIGH_PRIORITY; !
 schedparam.ss_low_priority = LOW_PRIORITY; !
 … !
} !
!
	

Sporadic	
 server	

Dans	
 le	
 thread	
 serveur	
 sporadic,	
 on	
 simule	
 le	
 comportement	
 (1/3):	
 	

 "!

"/******** !
"Boucle pour voir diminuer la priorite !
"**********/!
"for (; ;) { !
" "if (schedparam.sched_priority != LOW_PRIORITY) !
" " "continue; !
" "priority = schedparam.sched_priority; !
" "sprintf(buffer, "-nouvelle priorite = %d", priority); !
" "print_current_time(buffer); !
" "/********** !
" "L'appel a lock va augmenter la priorite!
" "**********/!
" "puts("Verrou va etre pris"); !
" "pthread_mutex_lock(&mutex); !
" "priority = schedparam.sched_priority; !
" "sprintf(buffer, "-nouvelle priorite = %d", priority); !
" "print_current_time(buffer); !
" "break; !
"}	

Sporadic	
 server	

Dans	
 le	
 thread	
 serveur	
 sporadic,	
 on	
 simule	
 le	
 comportement	
 (2/3):	
 	

 "!

"/***** !
"Attendre pour voir le budget etre re-alimente!
"**********/!
"for (; ;) { !
" "if (schedparam.sched_priority == HIGH_PRIORITY) !
" " "break!
"} !

!
"priority = schedparam.sched_priority; !
"sprintf(buffer, "-nouvelle priorite = %d", priority); !
"print_current_time(buffer);	

Sporadic	
 server	

Dans	
 le	
 thread	
 serveur	
 sporadic,	
 on	
 simule	
 le	
 comportement	
 (3/3):	
 	

 "!

"/***** !
"Le unlock doit faire descendre la priorite !
"**********/!

!
"puts(" On va rendre le verrou"); !
"pthread_mutex_unlock(&mutex); !
"priority = schedparam.sched_priority; !
"sprintf(buffer, "-nouvelle priorite = %d", priority); !
"print_current_time(buffer); !
"for (; ;) { !
" "if (schedparam.sched_priority == LOW_PRIORITY) !
" " "break; !
"} !
"priority = schedparam.sched_priority; !
"sprintf(buffer, "-nouvelle priorite = %d", priority); !
"print_current_time(buffer);	

Résultat	

Fri May 24 11:05:01 - nouvelle priorite = 150!
Fri May 24 11:05:01 - nouvelle priorite = 100 Verrou va etre pris!

Fri May 24 11:05:01 - nouvelle priorite = 131!
Fri May 24 11:05:01 - nouvelle priorite = 150 On va rendre le verrou!
Fri May 24 11:05:01 - nouvelle priorite = 150 !
Fri May 24 11:05:01 - nouvelle priorite = 100!
!

Systèmes temps réel / RT-POSIX

©Telecom-ParisTech 26/10/11 45

POSIX :

Serveur sporadique
Et PCP

• Initialisation du serveur sporadique et du verrou PCP:

/****** Serveur sporadique *********/
/****** Initialisation des priorites ******/
/****** Initialisations de la periode et du budget ******/
/****** a 1/2 seconde et 1/4 seconde ******/
#define HIGH_PRIORITY 150
#define LOW_PRIORITY 100
schedparam.ss_replenish_period.tv_nsec = 500000000;
schedparam.ss_initial_budget.tv_nsec = 250000000;
schedparam.sched_priority = HIGH_PRIORITY;
schedparam.ss_low_priority = LOW_PRIORITY;

/******** Creation d'un verrou avec option PCP **********/

#define MEDIUM_PRIORITY 131
pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_PROTECT);
pthread_mutexattr_setprioceiling(&attr, MEDIUM_PRIORITY);
pthread_mutex_init(&Mutex_id, &attr);

priority = schedparam.sched_priority;
sprintf(buffer, " - nouvelle priorite = %d", priority);
print_current_time(buffer);

Systèmes temps réel / RT-POSIX

©Telecom-ParisTech 26/10/11 46

POSIX :
Serveur sporadique

Et PCP

• Lancement du serveur, il va commencer à consommer son budget de
temps, puis prendre le verrou:

/******** Boucle pour voir diminuer la priorite **********/
for (; ;) {
 if (schedparam.sched_priority != LOW_PRIORITY)
 continue;
 priority = schedparam.sched_priority;
 sprintf(buffer, " - nouvelle priorite = %d", priority);
 print_current_time(buffer);

 /********** L'appel a lock va augmenter la priorite
**********/
 puts("Verrou va etre pris");
 pthread_mutex_lock(&Mutex_id);
 priority = schedparam.sched_priority;
 sprintf(buffer, " - nouvelle priorite = %d", priority);
 print_current_time(buffer);
 break;
}

Systèmes temps réel / RT-POSIX

©Telecom-ParisTech 26/10/11 47

POSIX :
Serveur sporadique

Et PCP

• Attendre. Le budget va être remis à son niveau initial. Puis on ve
libérer le verrou, la priorité devarit baisser.

/***** Attendre pour voir le budget etre re-alimente
**********/
for (; ;) {
 if (schedparam.sched_priority == HIGH_PRIORITY)
 break
}

priority = schedparam.sched_priority;
sprintf(buffer, " - nouvelle priorite = %d", priority);
print_current_time(buffer);

/***** Le unlock doit faire descendre la priorite **********/
puts(" On va rendre le verrou");
pthread_mutex_unlock(&Mutex_id);

priority = schedparam.sched_priority;
sprintf(buffer, " - nouvelle priorite = %d", priority);
print_current_time(buffer);

for (; ;) {
 if (schedparam.sched_priority == LOW_PRIORITY)
 break;
}

priority = schedparam.sched_priority;
sprintf(buffer, " - nouvelle priorite = %d", priority);
print_current_time(buffer);

Systèmes temps réel / RT-POSIX

©Telecom-ParisTech 26/10/11 48

POSIX :
Serveur sporadique

Et PCP

• Résultats et schéma correspondant :

/******************** RESULTATS **************************/

 Fri May 24 11:05:01 - nouvelle priorite = 150
 Fri May 24 11:05:01 - nouvelle priorite = 100
Verrou va etre pris
 Fri May 24 11:05:01 - nouvelle priorite = 131
 Fri May 24 11:05:01 - nouvelle priorite = 150
On va rendre le verrou
 Fri May 24 11:05:01 - nouvelle priorite = 150
 Fri May 24 11:05:01 - nouvelle priorite = 100

Conclusion	

•  API	
 RT-­‐POSIX	
 riche,	
 très	
 u0lisée	
 en	
 pra0que	
 dans	

les	
 STR,	
 pour	
 sa	
 portabilité	

•  API	
 bas	
 niveau,	
 don’t	
 l’usage	
 mérite	
 être	
 factorisé	

via	
 un	
 middleware	

–  Pas	
 de	
 modèle	
 de	
 tâche	
 temps	
 réel	
 en	
 RT-­‐POSIX	
 (à	
 la	

charge	
 du	
 middleware)	

•  Agen0on	
 à	
 la	
 correspondance	
 entre	
 modèle	

d’ordo	
 théorique	
 et	
 implémenta0ons	

•  Autres	
 standard	
 d’OS	
 temps-­‐réel	
 existent:	
 OSEK,	

ARINC653…	

