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These lecture notes introduce graph embedding, a technique consisting in transforming graph data into
vector data. Specifically, the objective is to represent each node of the graph by a vector of low dimension, so
that “close” nodes in the graph remain close in the vector space (for the Euclidean distance). This embedding
can in turn be used to apply classical learning techniques, like classification or clustering. We here present
a classical approach based on the spectral decomposition of the Laplacian matrix. We also describe an
approach based on the (generalized) singular value decomposition (SVD) of the adjacency matrix, and show
the link with the spectral approach. We refer the reader to [1, 2, 3] for advanced material on this topic.

1 Notion of embedding

Consider an undirected graph G = (V,E) of n nodes, with adjacency matrix A. We denote by D = diag(d)
with d = A1 the diagonal matrix of node degrees. The graph is assumed to be connected. We aim at
representing the graph in some vector space of low dimension, say RK with K much lower than n. Specifically,
each node i ∈ V is represented by some vector Xi ∈ RK . We denote by X the matrix of dimension n ×K
whose i-th row Xi corresponds to the embedding of node i. The structure of the graph must be encoded in
its representation X in the sense that two “close” nodes i, j in the graph should correspond to two “close”
vectors Xi, Xj in the embedding space (see Figure 1).

(a) Graph. (b) Embedding in R3.

Figure 1: Graph embedding.
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2 Spectral embedding

A natural approach to graph embedding is to minimize the expected square distance between nodes that are
connected. Forcing the embedding to be centered, we get the optimization problem:

min
X:XT 1=0

∑
i,j∈V

Aij ||Xi −Xj ||2.

Of course, this optimization problem alone is not interesting as the solution is trivial, with all nodes located
at the origin (i.e., X = 0). We need a constraint to force the embedding to occupy the vector space, e.g.,

min
X:XT 1=0,XTX=IK

∑
i,j∈V

Aij ||Xi −Xj ||2. (1)

Observe that XTX is, up to a normalization constant, the covariance matrix of the random vector Xi ∈
RK with node i sampled uniformly at random. The constraint XTX = IK forces the coordinates of the
embedding to have the same (positive) variance and to be uncorrelated.

Denoting by L = D −A the Laplacian matrix of the graph, we have the following key result:

Lemma 1 We have:

tr(XTLX) =
1

2

∑
i,j∈V

Aij ||Xi −Xj ||2.

Proof. First note that it is enough to prove the result for K = 1, as both sides of the equality are sums over
the components k = 1, . . . ,K. Then X is a vector of dimension n and we get:

XTLX = XT (D −A)X,

=

n∑
i=1

diX
2
i −

n∑
i,j=1

XiAijXj ,

=

n∑
i,j=1

AijXi(Xi −Xj) =
1

2

n∑
i,j=1

Aij(Xi −Xj)
2. (2)

�

In view of (2), the Laplacian matrix is positive semi-definite. Since it is symmetric, there is an orthogonal
matrix V = (v1, . . . , vn) of eigenvectors:

LV = V Λ, V TV = I, (3)

with Λ = diag(λ1, . . . , λn) and λ1 = 0 ≤ λ2 ≤ . . . ≤ λn. The multiplicity of the eigenvalue λ1 = 0 is equal
to the number of connected components of the graph. Since we assume the graph connected, the eigenvalue
λ1 = 0 is simple (i.e., λ2 > 0) and v1 ∝ 1.

Theorem 1 We have:

min
X:XT 1=0,XTX=IK

tr(XTLX) =

K+1∑
k=2

λk. (4)

The minimum is reached for X equal to the matrix of eigenvectors of the Laplacian matrix associated with
the eigenvalues λ2, . . . , λK+1.

Proof. First consider the problem without the centering and orthogonality constraints, i.e.,

min
X:diag(XTX)=IK

tr(XTLX),
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where diag(M) refers to the diagonal matrix with the same diagonal as M . The Lagrangian of this opti-
mization problem is:

L = tr(XTLX − (XTX − IK)Γ),

where Γ is the diagonal matrix of theK Lagrange multipliers associated with the constraint diag(XTX) = IK .
Taking the gradient with respect to X gives:

LX = XΓ,

so that X is a matrix of eigenvectors with eigenvalues equal to the Lagrange multipliers. Taking the or-
thogonality constraint into account yields tr(XTLX) = tr(Γ), which is a sum of eigenvalues of L. In
view of the centering constraint, the first eigenvalue must be skipped and tr(XTLX) is minimized for
Γ = diag(λ2, . . . , λK+1). �

We refer to the spectral embedding of the graph as the matrix X of eigenvectors of the Laplacian matrix
associated with the eigenvalues λ2, . . . , λK+1. In view of Lemma 1 and Theorem 1, it solves (1), i.e., it
is optimal with respect to the expected square distance between nodes sampled from the edges, under the
constraint that the coordinates are centered, with a unit covariance matrix.

3 A mechanical system

The spectrum of the Laplacian can be interpreted through the following mechanical system1. Consider n
points of unit mass where points i and j are linked by a spring of unit stiffness following Hooke’s law (i.e.,
attractive force proportional to the distance). Now if the points are located according to some vector x ∈ Rn

along a line, the potential energy accumulated in the springs is:

1

2

∑
i<j

Aij(xi − xj)2,

that is 1
2x

TLx in view of Lemma 1.

Energy. Assume that the moment of inertia of the system (for a rotation around the origin) is equal to
1, that is xTx = 1. Clearly, the vector x that minimizes the potential energy is x ∝ 1 (the corresponding
potential energy is null). Now if we impose xT 1 = 0, meaning that the centre of mass is at the origin, we
obtain x = v2 (the eigenvector known as the Fiedler vector) and xTLx = λ2, so that the eigenvalue λ2
corresponds to twice the minimum value of potential energy. More generally, the spectrum of the Laplacian
can be interpreted as levels of energy of the mechanical system, as shown by the following result.

Theorem 2 For all k = 1, . . . , n,

λk = min
x:xT x=1

xT v1=0,...,xT vk−1=0

xTLx, (5)

the minimum being attained for x = vk.

Proof. Let x ∈ Rn such that xTx = 1. The vector y = V Tx, corresponding to the coordinates of x in the
basis of eigenvectors, satisfies:

yT Λy = xTV ΛV Tx = xTLx and yT y = xTV V Tx = 1,

so that the optimization problem (5) is equivalent to:

min
y:yT y=1

y1=0,...,yk−1=0

yT Λy.

1Another physical interpretation exists using an electrical system, see [4]
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The result then follows from the equality:

yT Λy =

n∑
k=1

λky
2
k,

which is minimized for yk = 1. �

Harmonic oscillator. Now consider the dynamical system, with nodes of unit mass. Let x(t) ∈ Rn be
the state of the system at time t (location of each node on the line). The force exerted on node i is:∑

j∈V
Aij(xj − xi) = −(Lx)i.

By Newton’s law, we get:
−Lx = ẍ.

Letting x(t) = xejωt, we get:
Lx = ω2x.

We deduce that the eigenvectors of L correspond to the eigenmodes of the dynamical system; the square
roots of the eigenvalues give the corresponding eigenfrequencies.

Figure 2: A graph and some eigenmodes of the corresponding mechanical system.

4 Laplacian eigenmap

The constraint of the optimization problem (1) involves the covariance matrix of the random vector Xi ∈ RK

with node i sampled uniformly at random. Another natural constraint follows from edge sampling. We get:

min
X:XT d=0,XTDX=IK

∑
i,j∈V

Aij ||Xi −Xj ||2. (6)

Now both the centering constraint XT d and the covariance constraint XTDX = IK correspond to nodes
sampled in proportion to their degrees.

Generalized eigenvalue problem. The solution involves the following generalized eigenvalue problem2:

LV = DV Λ, V TDV = I, (7)

with Λ = diag(λ1, . . . , λn) and λ1 = 0 ≤ λ2 ≤ . . . ≤ λn. These generalized eigenvectors are the eigenmodes
of the mechanical system with vector of masses d. In particular, all eigenmodes (except the first) have their

2We use the same notation as for the regular spectral decomposition of the Laplacian matrix but both the eigenvectors and
the eigenvalue are different.
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center of inertia at the origin. We have V = D−
1
2U where U is the orthogonal matrix of eigenvectors of the

normalized Laplacian matrix:
L̄ = D−

1
2LD−

1
2 = I −D− 1

2AD−
1
2 .

Observe that, like the Laplacian matrix, the normalized Laplacian matrix is symmetric and positive semi-
definite and thus has a spectral decompostion of the form:

L̄U = UΛ, UTU = I,

with Λ = diag(λ1, . . . , λn) and λ1 = 0 < λ2 ≤ . . . ≤ λn.
We have the analogue of Theorem 1 (the proof is similar):

Theorem 3 We have

min
X:XT d=0,XTDX=IK

tr(XTLX) =

K+1∑
k=2

λk. (8)

The minimum is reached for X equal to the matrix of generalized eigenvectors of the Laplacian matrix
associated with the eigenvalues λ2, . . . , λK+1.

Transition matrix. Let P = D−1A be the transition matrix of the random walk in the graph. In view of
(7), we have:

PV = V (I − Λ), V TDV = I, (9)

so that V is also a matrix of eigenvectors of P , with respective eigenvalues µ1 = 1 > µ2 ≥ . . . ≥ µn ≥ −1
(the modulus of each eigenvalue cannot exceed 1 as the matrix P is stochastic), with µn > −1 unless the
graph is bipartite.

Laplacian eigenmap. Following Belkin and Niyogi [1], we refer to the Laplacian eigenmap of the graph as
the matrixX of generalized eigenvectors of the Laplacian matrix associated with the eigenvalues λ2, . . . , λK+1.
In view of Lemma 1 and Theorem 3, it solves (6), i.e., it is optimal with respect to the expected square
distance between nodes, under centering and covariance constraints, with nodes sampled from the edges for
both the objective function and the constraints.

Barycenter. In view of (9), we have:

PX = XM, M = diag(µ2, . . . , µK+1), (10)

that is,

∀i ∈ V, XiM =
∑
j∈V

PijXj .

Thus the location of each node in the embedding space is, up to the scaling by the eigenvalues of the transition
matrix P , that of the barycenter of its neighbors.

Scaling. Consider the following embedding:

Y = XM, M = diag(µ2, . . . , µK+1), (11)

where X is the Laplacian eigenmap of the graph in dimension K. The embedding is still centered but the
covariance matrix is now:

Y TDY = M2.

Assuming that K is such that µ2, . . . , µK+1 ≥ 0, this scaling gives more weight to the first eigenvectors,
corresponding to eigenmodes of lower energy in the mechanical system. Since Y are also eigenvectors of the
transition matrix, i.e., PY = YM , the barycenter property is preserved. In view of (10), Y = PX so that
the embedding Y may be viewed as the projection of the transition matrix P , a representation of the graph
in dimension n, over X, a basis of K generalized eigenvectors of the Laplacian matrix.
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5 Extensions

Weighted graphs. The Laplacian eigenmaps can be extended to weighted graphs, with A the weighted
adjacency matrix and D the diagonal matrix of node weights. In the mechanical system, the stiffness of
the spring between two nodes is equal to the weight of the corresponding edge, if any. Observe that the
Laplacian eigenmaps still minimize the expected square distance between nodes sampled from the edges (in
proportion to their weights).

Bipartite graphs. The Laplacian eigenmaps also apply to bipartite graphs, seen as undirected graphs.
Specifically, a bipartite graph G = (V1, V2, E) with biadjacency matrix B is an undirected graph with
adjacency matrix:

A =

[
0 B
BT 0

]
.

The corresponding diagonal matrix of node degrees is:

D =

[
D1 0
0 D2

]
,

with D1 = diag(B1) and D2 = diag(BT 1) are the diagonal matrices of the degrees of each part of the graph.
We get an embedding of the form:

X =

[
X1

X2

]
,

where X1 and X2 are the embeddings of each part of the graph, V1 and V2. The barycenter property can be
written:

P1X2 = X1M
P2X1 = X2M

(12)

with P1 = D−11 B the transition matrix from V1 to V2, P2 = D−12 BT the transition matrix from V2 to V1, and
M = diag(µ2, . . . , µK+1) the diagonal matrix of the first K eigenvalues (skipping the first) of the transition
matrix:

P =

[
0 P1

P2 0

]
.

In view of (12), the embedding of each part is, up to some scaling by the eigenvalues, given by the barycenter
of the embedding of the other part.

Observe that the spectrum of P is symmetric in the sense that if µ is an eigenvalue for P , then −µ is
also an eigenvalue for P :

P

[
X1

X2

]
= µ

[
X1

X2

]
=⇒ P

[
X1

−X2

]
= −µ

[
X1

−X2

]
In practice, this means that it is useless to account for negative eigenvalues. The Laplacian eigenmaps
should be restricted to eigenvectors associated with positive eigenvalues of the transition matrix, possibly
after scaling as in (11).

Directed graphs. A simple way to get the embedding of a directed graph G = (V,E) with adjacency
matrix A is to view it as a bipartite graph with biadjacency matrix B = A. Each node of G is represented
twice in the bipartite graph, once as a source of edges and the other as a destination of edges. We refer to
this graph as the mirror graph. The embedding of the graph G is then taken as the Laplacian eigenmap of
the first part of the mirror graph, say X1. Again, the embedding may be scaled by the (positive) eigenvalues
of the transition matrix, as in (11).
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6 Singular value decomposition

Another standard way to reduce dimension is through the singular value decomposition (SVD), that provides
the best low-rank approximation of any matrix. We here consider the generalized SVD of the biadjacency
matrix B of some bipartite graph G = (V1, V2, E), given by:

BV = D1UΣ
BTU = D1V Σ

with UTD1U = V TD2V = I, (13)

with D1 = diag(B1), D2 = diag(BT 1), and Σ = diag(σ1, . . . , σr) the diagonal matrix of generalized singular
values σ1 ≥ σ2 ≥ . . . ≥ σr > 0 and r the rank of B. Observe that B may be replaced by the adjacency
matrix of any graph, which is equivalent to consider the associate mirror graph as above.

It is easy to check that the generalized SVD of the biadjacency matrix B is equivalent to the spectral
decomposition of the transition matrix P of the graph G, with adjacency matrix:

A =

[
0 B
BT 0

]
.

Specifically, we have:

P

[
U
V

]
=

[
U
V

]
Σ.

Thus the generalized singular vectors of B give the eigenvectors of P associated with positive eigenvalues;
the embeddings X1 and X2 provided by first K generalized singular vectors of B (skipping the first) are the
Laplacian eigenmaps of the bipartite graph G.

Another interpretation of the embedding X1 (resp. X2) is through the coneighbor graph G1 (resp. G2), a
graph with nodes V1 (resp. V2) and weighted adjacency matrix A1 = BD−12 BT (resp. A2 = BTD−11 B). The
weight between nodes i, j ∈ V1 is given by: ∑

k∈V2

BikBjk

dk
.

Observe that this is positive if and only if i and j have common neighbors. Since d1 = A11 (i.e., the node
weights are preserved), it follows from (13) that:

P1X1 = X1Σ2, XT
1 D1X1 = IK ,

where P1 is the transition matrix of the random walk in the co-neighbor graph G1. We deduce that X1 is
exactly the Laplacian eigenmap of the co-neighbor graph G1. The corresponding eigenvalues are positive.
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