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These lecture notes present various random graphs. These are very useful to generate random instances
of graphs and thus assess the efficiency of graph algorithms. We focus on undirected graphs but most results
easily extend to directed graphs. We refer the reader to [1, 2] for further information on random graphs.

1 Erdös-Rényi graphs

An Erdös-Rényi graph is characterized by two parameters: the number of nodes n and the probability p
that any two nodes are connected. The degree of each node has a Binomial distribution with parameters
n − 1, p. When n → +∞ and p → 0 with np → λ, this tends to a Poisson distribution with parameter λ.
In this limiting regime, cycles are extremely rare so that the local structure around each node is that of a
tree. Specifically, it is a Galton-Watson tree whose offspring distribution is Poisson with parameter λ (see
the appendix). We denote by qλ the probability that such a tree is finite. There are three regimes:

• Subcritical regime (λ < 1): The Galton-Watson tree is a.s. finite (that is, qλ = 1). This means that
the size of each connected component of the graph is in O(1) (that is, is negligible compared to n). In
particular, the number of connected components of the graph is in O(n).

• Supercritical regime (λ > 1): There is a positive probability pλ = 1 − qλ that the tree is infinite.
Since there are only n nodes, this implies the existence of a giant component containing a fraction
pλ of the nodes, with pλ → 1 when λ → +∞. The other nodes belong to the O(n) other connected
components, each of size O(1). The size of these connected components tends to decrease with λ by
the duality principle.

• Critical regime (λ = 1): It can be shown that the largest connected component contains O(n2/3)
nodes (that is, a negligible fraction of the nodes when n is large). The rest of the graph behaves as in
the subcritical case.

Observe that, for large n and fixed λ, an Erdös-Rényi graph is a.s. disconnected. An interesting question
is that of the typical value of λ (as a function of n) beyond which the graph is connected with high probability.
It turns out that the graph is connected with high probability whenever there are no isolated nodes with high
probability. Since each node is isolated with probability e−λ, the number of isolated nodes has a binomial
distribution with parameter n, e−λ, which is close to a Poisson distribution with parameter ne−λ (because
the probability e−λ of a node to be isolated must be low). Thus the probability of having at least one isolated
node is approximately

1− e−ne
−λ
≈ ne−λ,

provided ne−λ is small. Denoting by ε this probability, we get

λ ≈ lnn

ln(1/ε)
.
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Taking ε = 0.05 for instance, we get that the graph is connected with probability at least 1 − ε = 0.95
provided the average degree is at least 3 lnn.

2 Preferential attachment

The empirical degree distribution of nodes in a large Erdös-Rényi graph is close to a Poisson distribution,
while most real graphs have a power-law degree distribution, that is pk ∼ 1/kα for some α > 1. Barabasi and
Albert have proposed a model in 1999 that both explains this suprising property of real graphs and allows
one to generate random instances of graphs with such a distribution [1]. The idea is to start from some initial
small graph and to let this graph grow by adding nodes that are connected to existing nodes in proportion
to their degrees, a phenomenon called preferential attachment. A similar model has been proposed by Yule
in 1925 to analyse the distribution of genes in a population [3].

The Barabasi-Albert has two parameters: the number of nodes n and the degree of new nodes d, with
d < n. The initial graph is typically a clique of d nodes (but the principle applies to any non-empty initial
graph). At time t = 1, . . . , n − d, a new node of degree d is added. Its d neighbors are chosen at random
among the d + t − 1 existing nodes with probabilities proportional to their degrees. Observe that the first
added node is connected to the d initial nodes so that the graph at time t = 1 is a clique of d+ 1 nodes. It
can be shown that, for large n, the degree distribution of the final graph has a power law with parameter
α = 3.

3 Configuration model

The configuration model is useful to generate a graph with a specific sequence of node degrees d1, . . . , dn.
Clearly, not all sequences are allowed since the total degree d1 + . . . + dn must be even (it is equal to
2m where m is the number of edges). If you allow multi-graphs (that is, graphs with possibly loops and
multi-edges), then this condition is sufficient (edges can be added sequentially between two arbitrary nodes
i, j whose current degrees are less than di, dj , respectively). Now if you want a simple graph (that is a
graph without loops nor multi-edges), not all sequences of even sum are allowed. For instance, the sequence
d1 = 3, d2 = 3, d3 = 3, d4 = 1 is not allowed (you need to connect nodes 1,2,3 to all other nodes but the
degree of node 4 must be 1). A sequence of degrees that corresponds to a simple graph is called graphical.

Havel-Hakimi algorithm. There is a simple iterative algorithm to check whether a sequence is graphical.
First order the sequence so that d1 ≥ d2 ≥ . . . ≥ dn and check that d1 ≤ n − 1. Then remove 1 unit from
the degree of the d1 nodes following node 1, so that the sequence becomes:

0, d2 − 1, d3 − 1, . . . , dk+1 − 1, dk+2, . . . , dn,

where k = d1. Iterate this process until the sequence is 0, . . . , 0. If this is not possible (that is, negative
values appear), the sequence is not graphical. It is for instance easy to check that the sequence 3, 3, 2, 2 is
graphical, unlike the sequence 3, 3, 3, 1.

This is known as the Havel-Hakimi algorithm. Observe that this is a constructive proof, in the sense
that it provides a simple graph with the target degree sequence. In the first step of the algorithm, node 1 is
connected to nodes 2, . . . , d1 + 1. There are no loops nor multi-edges. Moreover, node 1 has degree d1 and
will not be revisited in the rest of the algorithm, so that no multi-edges are created.

Random configuration. Now assume that the sequence d1, . . . , dn is graphical (e.g., extracted from a
real graph). The Havel-Hakimi algorithm provides one instance of a simple graph with this degree sequence.
But the resulting graph is very specific, with nodes of highest degrees connected between them. Moreover,
we would like to generate many random instances of graphs with this degree sequence.

The configuration model consists in connecting at random the d1, . . . , dn half-edges of the nodes. Specif-
ically, the first half edge of node 1 is connected to one of the 2m − 1 other half-edges, chosen uniformly at
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random. The next half-edge of node 1 (or node 2 if node 1 has no more free half-edge) is then connected
to one of the 2m − 3 other free half-edges, and so on. The resulting shuffling of the half-edges is called a
configuration, hence the name of the model. The total number of configurations is:

(2m− 1)!! =

m∏
k=1

(2k − 1).

Any random matching of half-edges as described above leads to one of these configurations, chosen uniformly
at random (the order in which nodes are considered does not matter). The problem is that many such
configurations correspond to multi-graphs.

Occurence of multi-graphs. We would like to estimate the probability that a random configuration is a
multi-graph, under the assumption that d1, . . . , dn are much smaller than 2m. Let D be a random variable
having the empirical degree distribution, that is

Pr(D = k) =
1

n

n∑
i=1

1{di=k}.

Observe that

E(D) =
1

n

n∑
i=1

di =
2m

n
.

We shall see that the occurence of loops and multi-edges depends on the parameter:

γ =
E(D(D − 1))

E(D)
.

First observe that there are (2m− 3)!! configurations with a given matching between two half-edges. In
particular, the total number of configurations with a loop at node i is at most(

di
2

)
(2m− 3)!!

since configurations with more than one loop at node i are counted several times in the above expression.
We deduce that the probability of a loop at node i is upper bounded by(

di
2

)
(2m− 3)!!

(2m− 1)!!
=
di(di − 1)

2(2m− 1)
.

Thus the total number of loops L satisfies

E(L) ≤
∑n
i=1 di(di − 1)

2(2m− 1)
=
nE(D(D − 1))

2(2m− 1)
= γ

m

2m− 1
≈ γ

2
.

Moreover, provided d21, . . . , d
2
n are much smaller than m, loops are rare and approximately independent

events and L is upper bounded with high probability by a Poisson random variable with parameter γ/2.
Similarly, there are (2m−5)!! configurations with a given matching between two half-edges of node i and

two half-edges of j. Thus the total number of configurations with a multi-edge between i and j is at most

2

(
di
2

)(
dj
2

)
(2m− 5)!!

since configurations with more than two edges between nodes i and j are counted several times in the above
expression. We deduce that the probability of a multi-edge between nodes i and j is upper bounded by

2

(
di
2

)(
dj
2

)
(2m− 5)!!

(2m− 1)!!
=
di(di − 1)dj(dj − 1)

2(2m− 1)(2m− 3)
.
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Thus the total number of multi-edges M satisfies

E(M) ≤
∑
i<j

di(di − 1)dj(dj − 1)

2(2m− 1)(2m− 3)
.

Using the fact that ∑
i<j

di(di − 1)dj(dj − 1) =
1

2

∑
i 6=j

di(di − 1)dj(dj − 1),

≤ 1

2

∑
i,j

di(di − 1)dj(dj − 1),

=
n2

2
E(D(D − 1))2,

= 2m2γ2,

we obtain

E(M) ≤ m2

(2m− 1)(2m− 3)
γ2 ≈ γ2

4
.

Moreover, provided d21, . . . , d
2
n are much smaller than m, multi-edges are rare and approximately independent

events and M is upper bounded with high probability by a Poisson random variable with parameter γ2/4.

4 Stochastic block model

Finally, we present the stochastic block model, which is useful to represent the underlying structure of real
graphs in so-called communities, where nodes tend to be more densely connected within communitites than
across communities. A stochastic block model consists of a partition of the n nodes in k sets called blocks,
and a k × k symmetric, non-negative matrix B of connection probabilities between blocks, that is

Bij =

{
probability of connection of a node in block i and a node in block j if i 6= j,
probability of connection of two distinct nodes of block i if i = j.

In the simplest case, the block connectivity matrix is defined by two parameters: the probability pin that
two nodes of the same block are connected, and the probability pout that two nodes of distinct blocks are
connected.

Appendix

Galton-Watson trees

A Galton-Watson tree is defined recursively, starting from any given node (the root of the tree), by the
property that the number of children of each node is a random number taken from some fixed distribution.
We here focus on a Poisson distribution with parameter λ. Observe that the tree may be finite or infinite.

Let Zk be the number of nodes at the k-th generation, with Z0 = 1. Then Zk+1 has the same distribution
as

Zk∑
i=1

Xi,

where X1, X2, ... are i.i.d. random variables of Poisson distribution with parameter λ. Observe in particular
that Z1 (the number of children of the root node) has a Poisson distribution with parameter λ.

We denote by qλ the probability that the tree is finite, i.e., Zk = 0 for some k ≥ 1. We refer to qλ as the
extinction probability.
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Proposition 1 The extinction probability is the smallest solution qλ over [0, 1] of the equation:

q = eλ(q−1). (1)

In particular, qλ = 1 if and only if λ ≤ 1.

Proof. The proof relies on the fact that, denoting by Gk the generating function of Zk,

Gk+1(t) = Gk(G(t)),

where G(t) = eλ(t−1) is the generating function of a Poisson random variable with parameter λ. In particular,

Gk+1(t) = G ◦ . . . ◦G︸ ︷︷ ︸
k+1

(t) = G(Gk(t)).

Observing that Gk(0) is the probability that Zk = 0, we get by taking the limit,

qλ = eλ(qλ−1).

�

Using the fact that
E(Zk+1) = E(Zk)E(X1) = λE(Zk),

we get
E(Zk) = λk.

If λ < 1, the total number of nodes has mean∑
k≥0

E(Zk) =
1

1− λ
.

If λ ≥ 1, the total number of nodes has infinite mean (because the tree is infinite with positive probability).
A natural question is that of the mean (and distribution) of the number of nodes conditioned on extinction.
It turns out that it can be completely characterized in terms of another Galton-Watson tree:

Theorem 1 (Duality principle) Let λ ≥ 1. The Galton-Watson tree with parameter λ conditioned on
extinction has the same distribution as a Galton-Watson tree with parameter λqλ.

Proof. To prove the result, we describe the tree as a sequence of random variables X1, X2, . . . corresponding
to the number of children in the breadth-first search exploration of the tree. The total number of children
(excluding the parents) after k steps is then

Sk =

k∑
i=1

Xi − k + 1.

In particular, there is extinction after k steps if S1, . . . , Sk−1 > 0 and Sk = 0.
Let x1, . . . , xk be any sequence of random variables corresponding to extinction after k steps. Denoting

by A the event of extinction, we have

P(X1 = x1, . . . , Xk = xk|A) =
P(X1 = x1, . . . , Xk = xk)

P(A)
,

=
1

qλ
e−kλ

λx1+...+xk

x1! . . . , xk!
,
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Now considering the Galton-Watson tree with parameter λqλ, we have

P(X ′1 = x1, . . . , X
′
k = xk) = e−kλqλ

(λqλ)x1+...+xk

x1! . . . , xk!
,

Using the fact that x1 + . . .+ xk = k − 1, we get the ratio:

P(X1 = x1, . . . , Xk = xk|A)

P(X ′1 = x1, . . . , X ′k = xk)
=

1

qλ
ekλ(qλ−1)

1

qk−1λ

=

(
eλ(qλ−1)

qλ

)k
= 1,

where the last equality follows from (1). �

The following result shows that when λ increases from 1 to +∞, the extinction probability qλ decreases;
more suprisingly, the typical size of the tree conditionned on extinction λqλ also decreases.

Proposition 2 Both qλ and λqλ are decreasing functions of λ over (1,+∞).

Proof. Let f be the function defined over [0, 1] by f(q) = eλ(q−1), with λ > 1. We have f(1/λ) = e1−λ < 1/λ
(because eλ−1 > λ). This shows that qλ < 1/λ, that is λqλ < 1.

Viewing qλ as a function of λ, we have

ln qλ = λ(qλ − 1)

so that
q′λ
qλ

= qλ − 1 + λq′λ,

and

q′λ =
qλ(qλ − 1)

1− λqλ
< 0.

This show that qλ is a decreasing function of λ.
Finally,

(ln(λqλ))′ =
1

λ
+
q′λ
qλ

=
1

λ
+

qλ − 1

1− λqλ
=

1− λ
1− λqλ

< 0.

Thus λqλ is a decreasing function of λ. �
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