Reinforcement Learning
Markov Decision Process

Thomas Bonald
Institut Polytechnique de Paris
March 2024

Reinforcement learning refers to a set of problems where an agent takes sequential decisions and receives feedback through rewards. The actions might modify the state of the environment. This can be represented by a Markov Decision Process.

1 Markov Decision Process

Consider an agent taking sequential decisions at time \(t = 0, 1, 2, \ldots \). There are a finite set of states and a finite set of actions. At time \(t \), the agent is in state \(s_t \) and takes action \(a_t \). The agent then receives reward \(r_t \) and the environment moves to state \(s_{t+1} \). The system, known as a Markov Decision Process, is thus defined by two conditional distributions, for the reward and for the new state.

A Markov Decision Process (MDP) is defined by:

- the reward distribution, \(p(r|s,a) \),
- the state transition distribution, \(p(s'|s,a) \),

for each state \(s \) and action \(a \).

Some states might be terminal, meaning that the process stops. This is the case of most games (e.g., chess). We denote by \(S \) the set of non-terminal states. Let \(A \) be the set of actions. Some actions might be forbidden in some states. We denote by \(A(s) \subset A \) the set of all available actions in state \(s \in S \).

Assuming discrete rewards, we have:

\[
\forall s \in S, \forall a \in A(s), \, \sum_r p(r|s,a) = 1.
\]

Similarly, we have the the state transitions:

\[
\forall s \in S, \forall a \in A(s), \, \sum_{s'} p(s'|s,a) = 1.
\]

In some environments, the reward depends only on new state \(s' \), i.e., the reward is \(r = f(s') \) for some deterministic function \(f \). This is the case of most games for instance, where the reward (+1 for a win, −1 for a defeat and 0 otherwise) is a simple (known) function of the state \(s' \). Observe that this is a particular case of the above framework, with:

\[
p(r|s,a) = \sum_{s',r=f(s')} p(s'|s,a).
\]
2 Policy

The policy defines the behavior of the agent in each non-terminal state. Specifically, it is a probability distribution over the actions, conditionally to the state.

We say that the agent applies policy π if the probability to take action a in state s is $\pi(a|s)$.

So a policy is stochastic in general, and we have:

$$\forall s \in S, \sum_{a \in A(s)} \pi(a|s) = 1.$$

Given a policy, the sequence of states s_0, s_1, s_2, \ldots defines a Markov chain with state transition distribution:

$$\forall s \in S, \quad p(s'|s) = \sum_{a \in A(s)} \pi(a|s)p(s'|s, a).$$

When the policy is deterministic, we use the simple notation $\pi(s)$ for the action selected in state s.

For a deterministic policy π, we denote by $a = \pi(s)$ the action taken in state s.

The objective of reinforcement learning is to find an optimal policy, in a sense to be defined later. In particular, we might consider a sequence of policies $\pi_0, \pi_1, \pi_2, \ldots$, corresponding to different versions of the learning agent, converging to the optimal policy. Each such policy will define a Markov chain for the sequence of states. We will also consider a single policy that evolves over time, while the agent interacts with the environment. In this case, the probability distribution π is not stationary and the resulting sequence of states s_0, s_1, s_2, \ldots is no longer a Markov chain.

3 Value function

The agent will collect a sequence of rewards r_0, r_1, r_2, \ldots, possibly finite. The objective is to maximize the gain, defined as the discounted total reward.

The agent aims at maximizing the gain:

$$G = r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots,$$

where $\gamma \in [0, 1]$ is the discount factor.

In the absence of terminal states, we take $\gamma < 1$.

The value function of a policy characterizes its expected gain in each state.

The value of state s under policy π is the expected gain when starting from s, that is:

$$V_{\pi}(s) = E(G|s_0 = s)$$

with the convention that $V_{\pi}(s) = 0$ for all $s \notin S$ (terminal states).
4 Bellman’s equation

The gain G is a random variable whose probability distribution is not explicit. To compute the value function of a policy π, we can use Bellman’s equation, exploiting the Markov property of the system. The proof is provided in the Appendix.

The value function V_π of policy π is a solution to **Bellman’s equation**:

$$\forall s \in S, \quad V(s) = E(r_0 + \gamma V(s_1)|s_0 = s)$$

This defines a linear system with $n = |S|$ variables, written in developed form as:

$$\forall s \in S, \quad V(s) = \sum_{a \in A(s)} \pi(a|s) \sum_r r p(r|s,a) + \gamma \sum_{a \in A(s)} \pi(a|s) \sum_{s' \in S} V(s') p(s'|s,a).$$

Solving this system exactly involves the inversion of a square matrix of size n, for a computational cost in $O(n^3)$. In practice, we can find a very good approximation by fixed-point iteration, for a computational cost in $O(kn^2)$ where k is the number of iterations. The convergence is geometric at rate γ, as shown in the Appendix.

If $\gamma < 1$, the value function V_π of policy π is the unique solution to Bellman’s equation and follows from the fixed-point iteration:

$$\forall s \in S, \quad V(s) \leftarrow E(r_0 + \gamma V(s_1)|s_0 = s)$$

Appendix

A Proof of Bellman’s equation

By definition,

$$G = r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots,$$

$$= r_0 + \gamma (r_1 + \gamma r_2 + \ldots),$$

$$= r_0 + \gamma G_1,$$

where G_1 is the gain starting from state s_1. We deduce:

$$V_\pi(s) = E(G|s_0 = s) = E(r_0|s_0 = s) + \gamma E(G_1|s_0 = s).$$

By conditional expectation,

$$E(G_1|s_0 = s) = E[E(G_1|s_0 = s, s_1)|s_0 = s].$$

Now it follows from the Markov property that:

$$E(G_1|s_0 = s, s_1) = E(G_1|s_1) = V_\pi(s_1).$$

We conclude that:

$$V_\pi(s) = E(r_0 + \gamma V_\pi(s_1)|s_0 = s).$$
B Proof of the fixed-point iteration

Let F be the operator defined by:

$$F(V) = E(r_0 + \gamma V(s_1)|s_0 = s),$$

for any function $V : S \rightarrow \mathbb{R}$.

Considering the sup norm, we get:

$$||F(V) - F(U)||_{\infty} = \gamma \sup_{s \in S} |E(V(s_1) - U(s_1)|s_0 = s)|,$$

$$= \gamma \sup_{s \in S} \sum_{s'} p(s_1 = s'|s_0 = s)(V(s') - U(s'))|,$$

$$\leq \gamma \sup_{s' \in S} |V(s') - U(s')|,$$

$$= \gamma ||V - U||_{\infty}.$$

Thus the operator is contracting for the sup norm, and the convergence is a consequence of Banach fixed-point theorem.