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Consider n points x1, . . . , xn ∈ Rd (for instance, the spectral embedding of n objects linked by some
similarity matrix). We seek to cluster these points in a hierarchical way so as to capture the complex,
multi-scale nature of real datasets.

1 Divisive approach

A first approach, the divisive approach, consists in starting from a single cluster and to split this cluster
recursively. For instance, two clusters are formed using k-means with k = 2, then each of these clusters is
divided into two clusters separately, and so on. This approach usually provides less relevant clusterings than
the agglomerative approach, considered in the rest of the document.

2 Agglomerative approach

The agglomerative approach consists in starting from individual clusters (each point is in its own cluster)
and to merge clusters recursively. At each step of the algorithm, the two closest clusters are merged. Thus
the algorithm is based on some distance d between clusters. This distance d is not necessarily a metric. We
only require d to be non-negative and symmetric.

The algorithm is the following:

1. Initialisation: C ← {{1}, . . . , {n}}

2. Agglomeration: For t = 1, . . . , n− 1,

• A,B ← arg mina,b∈C,a 6=b d(a, b)

• C ← A ∪B

• C ← C \ {A,B}
• C ← C ∪ {C}
• Output A,B, d(A,B)

Observe that there are n − t clusters at the end of step t. An example is shown in Figure 1 for n = 30
points of R2.

The successive clusters found by the algorithm together with the distances between the merged clusters
can be represented by a dendrogram, as shown in Figure 2. The height of each merge corresponds to the
distance between the two clusters before the merge, which may be viewed as the level of energy induced
by the merge. In particular, high merges in the dendrogram corresponds to bad merges in the dataset (the
merged clusters are far from each other and thus should stay separate).
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(a) Dataset (n = 30 points of R2)
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(b) Clusters at step t = 10
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(c) Clusters at step t = 20
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(d) Final clustering

Figure 1: Agglomerative algorithm.

3 Distance between clusters

Any agglomerative algorithm relies on some distance d between subsets of {1, . . . , n}. Typical distances are:

• Minimum: d(a, b) = mini∈a,j∈b ‖xi − xj‖,

• Maximum: d(a, b) = maxi∈a,j∈b ‖xi − xj‖,

• Average: d(a, b) = 1
|a||b|

∑
i∈a,j∈b ‖xi − xj‖,

where ‖ · ‖ is an arbitrary norm on Rk (for instance, the Euclidian norm). Recall that d does not define a
metric in general.

A key property of these three distances is that the sequence of distances formed by the successive merges
is non-decreasing, as shown by the dendrogram of Figure 2 (two clusters are necessarity merged at a higher
level than their own levels in the dendrogram).
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Figure 2: Dendrogram corresponding to the clustering of Figure 1.

This is a consequence of the following inequality. The corresponding distances are called reducible.

Proposition 1 For any disjoint clusters a, b, c,

d(a ∪ b, c) ≥ min(d(a, c), d(b, c)). (1)

Proof.

• Minimum:

d(a ∪ b, c) = min
i∈a∪b,j∈c

‖xi − xj‖,

= min

(
min

i∈a,j∈c
‖xi − xj‖, min

i∈b,j∈c
‖xi − xj‖

)
,

= min(d(a, c), d(b, c)).

• Maximum:

d(a ∪ b, c) = max
i∈a∪b,j∈c

‖xi − xj‖,

= max

(
max

i∈a,j∈c
‖xi − xj‖, max

i∈b,j∈c
‖xi − xj‖

)
,

≥ min(d(a, c), d(b, c)).

• Average:

d(a ∪ b, c) =
|a|

|a|+ |b|
d(a, c) +

|b|
|a|+ |b|

d(b, c) ≥ min(d(a, c), d(b, c)).

�
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Assume that clusters a and b are merged at some step of the algorithm. This means that d(a, b) is the
minimum distance between any two clusters. By Proposition 1, we have for any cluster c,

d(a ∪ b, c) ≥ min(d(a, c), d(b, c)) ≥ d(a, b),

showing that the sequence of distances between merged clusters is non-decreasing.

4 Ward’s method

The most popular distance is known as Ward’s distance [Ward, 1963]. It is based on the sum of square
errors, as in k-means. For any cluster c, let g(c) be its centroid,

g(c) =
1

|c|
∑
i∈c

xi.

and S be the total square Euclidian distance of the points in c to their centroid,

S(c) =
∑
i∈c

‖xi − g(c)‖2 =
∑
i∈c

‖xi‖2 − |c|‖g(c)‖2.

The in-cluster variance of any clustering C (partition of {1, . . . , n}) is

V (C) =
1

n

∑
c∈C

S(c).

For any disjoint clusters a, b, define

d(a, b) = S(a ∪ b)− S(a)− S(b).

Using the fact that

g(a ∪ b) =
|a|g(a) + |b|g(b)

|a|+ |b|
,

we get

d(a, b) = |a|‖g(a)‖2 + |b|‖g(b)‖2 − (|a|+ |b|)‖g(a ∪ b)‖2,

= |a|‖g(a)‖2 + |b|‖g(b)‖2 − 1

|a|+ |b|
(|a|2‖g(a)‖2 + |b|2‖g(b)‖2 + 2|a||b|g(a).g(b)),

=
|a||b|
|a|+ |b|

‖g(a)− g(b)‖2.

In particular, d(a, b) ≥ 0. This is the in-cluster variance increase induced by merging a and b. Applying this
distance to the agglomerative algorithm minimizes the in-cluster variance at each step of the algorithm (but
not necessariy globally). This is known as Ward’s method.

Observe that, while Ward’s method minimizes the same metric as k-means, the algorithms are very
different (see Table 1).

Ward’s algorithm k-means
Clustering Hierarchical Simple
Parameter − k
Output Deterministic Random

Table 1: Comparison of Ward’s algorithm and k-means.
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5 Update formula

When two clusters a and b are merged, the distance from a ∪ b to any other cluster c needs to be updated.
For the considered distances, this follows from d(a, c), d(b, c) and d(a, b):

• Minimum (single linkage):
d(a ∪ b, c) = min(d(a, c), d(b, c)).

• Maximum (complete linkage):

d(a ∪ b, c) = max(d(a, c), d(b, c)).

• Average (average linkage):

d(a ∪ b, c) =
|a|

|a|+ |b|
d(a, c) +

|b|
|a|+ |b|

d(b, c).

• Ward (minimum variance):

d(a ∪ b, c) =
(|a|+ |b|)|c|
|a|+ |b|+ |c|

‖g(a ∪ b)− g(c)‖2.

Since

‖g(a ∪ b)− g(c)‖2 =

∥∥∥∥ |a|g(a) + |b|g(b)

|a|+ |b|
− g(c)

∥∥∥∥2 ,
=

|a|2

(|a|+ |b|)2
‖g(a)‖2 +

|b|2

(|a|+ |b|)2
‖g(b)‖2 + ‖g(c)‖2

+ 2
|a||b|

(|a|+ |b|)2
g(a).g(b)− 2

|a|
|a|+ |b|

g(a).g(c)− 2
|b|

|a|+ |b|
g(b).g(c),

=
|a|

|a|+ |b|
‖g(a)− g(c)‖2 +

|b|
|a|+ |b|

‖g(b)− g(c)‖2 − |a||b|
(|a|+ |b|)2

‖g(a)− g(b)‖2,

we obtain

d(a ∪ b, c) =
|a|+ |c|

|a|+ |b|+ |c|
d(a, c) +

|b|+ |c|
|a|+ |b|+ |c|

d(b, c)− |c|
|a|+ |b|+ |c|

d(a, b). (2)

6 Nearest-neighbor chain

Finding the two closest clusters at each step of the agglomerative algorithm requires O(n2) operations for n
clusters, hence an overall complexity in O(n3). When the distance is reducible, it is possible to reduce the
complexity of the algorithm to O(n2) on observing that any clusters a, b that are nearest from each other,
in the sense that

d(a, b) = min
c

d(a, c) = min
c

d(b, c), (3)

can be merged. In particular, it is not necessary to merge those clusters a, b that attain the global minimum
of d(a, b); a local minimum is sufficient. Indeed, any clusters a, b that satisfy (3) can be merged at any step
of the algorithm, because, in view of (1), any other merge will not change the fact that a, b are nearest from
each other.

The Ward distance satisfies a weak form of reducibility in the sense that

d(a, b) ≤ min(d(a, c), d(b, c)) =⇒ d(a ∪ b, c) ≥ min(d(a, c), d(b, c)). (4)

This property is sufficient as two clusters a, b can be merged only if d(a, b) ≤ min(d(a, c), d(b, c)) for any
other cluster c. The proof of (4) follows from the update formula (2).
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Given some clustering C with at least two clusters, an efficient way to find two clusters that are nearest
from each other is to build the nearest-neighbor chain from an arbitrary cluster c ∈ C. The first element of
the chain is the nearest neighbor a1 of c in C \{c}; the second element of the chain is the nearest neighbor a2
of a1 in C \{a1}; if a2 = c, the chain is complete and a1, c are nearest neighbors from each other; otherwise, a
third element is added to the chain, and so on until two clusters are nearest neighbors. The algorithm stops
provided ties are broken with a fixed, pre-defined rule; for instance, if d(a, b) = d(a, c) then decide that b is
nearest from a than c if and only if min b < min c (recall that b and c are subsets of {1, . . . , n}). Then the
chain cannot form any triangle, which guarantees that the algorithm stops in finite time and outputs two
nearest neighbors.

The algorithm consists in merging recursively clusters appearing at the end of the chain. A pseudo-code
of the algorithm is the following:

Algorithm 1: Nearest-neighbor chain

Input: c (initial cluster)
Output: Sequence of cluster merges

1 S ← empty stack
2 S.push(c)
3 while S is not empty do
4 a ← S.pop
5 b ← nearest neighbor of a
6 if b is in S then
7 b ← S.pop
8 merge a,b

9 else
10 S.push(a)
11 S.push(b)

When the chain is exhausted, a new chain is started whenever there are at least two clusters left. After
each merge, the distances are updated by the formulas of Section 5.

Further reading

• Hiearchical clustering [Murtagh and Contreras, 2012]

• Divisive algorithms [Newman and Girvan, 2004]

• Link with random walks [Lambiotte et al., 2014]
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