
Reinforcement learning:

Multi-armed bandits

Thomas Bonald
Telecom ParisTech

thomas.bonald@telecom-paristech.fr

2017 – 2018

Reinforcement learning is a branch of machine learning inspired by the way animals (including humans)
learn to live and improve themselves by interacting with their environment. Typically, young animals are
curious, try a lot of different actions before concentrating on the best ones, following a trial-and-error
strategy. It is tempting (but far from easy) to let machines learn this way to improve their intelligence and
accomplish some specific tasks. The applications are numerous: robotics, medecine, content recommendation,
advertising, marketing, chatbots, games, to quote a few.

In this note, we focus on so-called multi-armed bandits1, a class of reinforcement learning problems where
an agent must take a sequence of actions while observing the corresponding sequence of rewards. A key
feature of multi-armed bandits is that the agent does not modify its environment through its actions. Its
assigned objective is to discover the best actions, that is, those offering the highest rewards, and to exploit
them. In particular, the agent faces the so-called exploration-exploitation dilemna: she must typically try all
actions to learn what is the best (exploration) but needs to quickly converge to the (believed) best one to
accumulate rewards (exploitation).

1 Multi-armed bandits

The model consists of some finite set of actions A (the arms of the multi-armed bandit). We denote by
K = |A| the number of actions. Each time an action is chosen, some reward r ∈ R is received. No
information is known about the rewards the other actions would have provided. The successive rewards
produced by the same action a ∈ A are i.i.d. with some unknown distribution p(·|a), that is, the probability
that action a gives reward r is p(r|a). We denote by q(a) the corresponding expectation,

q(a) = E(r|a).

Learning is done online, that is in a sequential way. At time t = 1, 2, . . . , T , the agent selects action
at ∈ A and receives reward rt, drawn independently from the distribution p(·|at). Observe that the decision
at time t depend on the rewards received up to time t − 1. The objective is to maximize the cumulative
reward,

T∑
t=1

rt.

The parameter T , called the time horizon, is generally unknown. It may range from 102 to 106, depending
on the application.

1The name comes from slot machines, known as bandits as they typically take your money! A multi-armed bandit has several
arms, each having its own reward distribution. The objective is to find the best one.

1

If some action a is always selected, the expected reward is q(a) per action, corresponding to an expected
cumulative reward of Tq(a). By the law of large numbers, this expected cumulative reward is is close to the
actual cumulative rewards when T is large. We denote by a? the best action in terms of expected rewards,

a? = arg max
a∈A

q(a),

yielding the expected reward per action
q? = max

a∈A
q(a).

Observe that there may be several best actions in general. The objective of bandit algorithms is to learn as
quickly as possible the best action(s), so that the cumulative reward is close to q?T .

2 Performance metrics

The standard way to assess the performance of a bandit algorithm is to compare its cumulative reward to the
highest expected cumulative reward, q?T . Specifically, we define the regret of any algorithm as the quantity

R = q?T −
T∑

t=1

rt.

Since the regret is stochastic, due to the rewards and possibly the algorithm itself, it proves more convenient
to consider the expected regret,

E(R) = q?T −
T∑

t=1

E(q(at)).

Let Nt(a) be the number of times action a is selected up to time t. We have:

E(R) = q?T −
T∑

t=1

∑
a∈A

E(q(a)1{at=a}),

= q?T −
∑
a∈A

q(a)

T∑
t=1

E(1{at=a}),

= q?T −
∑
a∈A

q(a)E(NT (a)),

=
∑
a∈A

(q? − q(a))E(NT (a)). (1)

Another interesting metric is the precision of the algorithm, corresponding to the fraction of time the
best action(s) is selected,

P =
1

T

T∑
t=1

1{at=a?},

where, with some slight abuse of notation, we write at = a? to mean at ∈ a? in case there are several best
actions. Again, it is generally more convenient to consider the expected precision,

E(P) =
E(NT (a?))

T
=

1

T

T∑
t=1

P (at = a?),

Efficient algorithms have sublinear regret, meaning that E(R)/T → 0. In view of (1), this implies that
E(NT (a))/T → 0 for any suboptimal action. In particular, we get E(P) → 1 and P → 1: the algorithm
converges to the best action(s).

2

3 Greedy algorithms

The most natural policy consists in always selecting the best known action. This is a pure exploitation
strategy. The algorithm is the following, where N(a) is the number of tries of action a and Q(a) the estimate
of the expected reward q(a) of action a:

Initialize, for all actions a:

• N(a)← 0

• Q(a)← 0

Repeat:

• a← arg maxaQ(a) (random tie breaking)

• r ← reward(a)

• N(a)← N(a) + 1

• Q(a)← Q(a) + 1
N(a) (r −Q(a))

Greedy algorithm

The initial values of the estimates Q(a) of the expected rewards play a key role. Assume binary rewards
for instance. For initial values set to 0 (as above), the first action a yielding a reward 1 is selected for ever
(there is no exploration). For initial values set to 1, the algorithm will explore all actions before concentrating
on the best ones, which looks like a better strategy. More generally, assuming some prior knowledge on the
reward distributions (like their support), it is preferable to choose optimistic initial values so as to favor
exploration.

One of the most popular bandit algorithms is a slight modification of the greedy policy, where exploration
is forced with some fixed (low) probability ε:

Parameter: ε
Initialize, for all actions a:

• N(a)← 0

• Q(a)← 0

Repeat:

• a←
{

random action with probability ε
arg maxaQ(a) with probability 1− ε

• r ← reward(a)

• N(a)← N(a) + 1

• Q(a)← Q(a) + 1
N(a) (r −Q(a))

ε-greedy algorithm

3

Clearly, the positive probability of exploration prevents this algorithm from achieving a sublinear regret.
Indeed, its expected precision cannot exceed

1− εK −K
?

K
,

where K? is the number of best actions. An option is to let the parameter ε decrease with time:

Parameter: c
Initialize, for all actions a:

• N(a)← 0

• Q(a)← 0

Repeat for t = 1, 2, . . .

• ε← c
c+t

• a←
{

random action with probability ε
arg maxaQ(a) with probability 1− ε

• r ← reward(a)

• N(a)← N(a) + 1

• Q(a)← Q(a) + 1
N(a) (r −Q(a))

Adaptive-greedy algorithm

The degree of exploration is controlled by the parameter c (the higher c, the more explorative the
algorithm). This algorithm is provably efficient for a sufficiently high value of the parameter c (but with a
high exploration cost).

4 Upper confidence bound

The most popular bandit algorithm is based on the principle of optimism in face of uncertainty. Specifically,
a bonus that quantifies the uncertainty about the reward distribution is given to each action. The best
action, in terms of average reward plus bonus, is selected.

4

Parameter: c
Initialize, for all actions a:

• N(a)← 0

• Q(a)← 0

Repeat for t = 1, 2, . . .

• a← arg maxa(Q(a) + c
√

log t
N(a))

• r ← reward(a)

• N(a)← N(a) + 1

• Q(a)← Q(a) + 1
N(a) (r −Q(a))

UCB algorithm

Observe that all actions are selected once at the beginning (since N(a) = 0 implies infinite bonus).
The particular form of the bonus comes from Hoeffding’s inequality, which provides an upper bound on
the probability of incorrect estimation of the expectation of a bounded random variable with respect to the
number of samples [Hoeffding, 1963]. Again, the parameter c controls the exploration-exploitation trade-off
(the higher c, the more explorative the algorithm).

It turns out that the UCB algorithm has a sublinear regret. For binary rewards, we have [Auer et al., 2002a]

E(R) ≤ 8
∑
a 6=a?

log T

q? − q(a)
+K

π2

3
.

This upper bound suggests that quasi-optimal actions (q(a) ≈ q?) incur the highest regret.

5 Thompson sampling

The second most popular algorithm is also one of the oldest. This is a Bayesian algorithm proposed by
Thompson in 1933 in a medical context (online selection of the best treatment) [Thompson, 1933]. The
uncertainty in the expected rewards is now captured by probability distributions, one per action. These
probability distributions tend to concentrate when more information is obtained from each action. Again,
the initial probability distribution of each action, known as the prior, plays a key role. In brief, exploration
is guaranteed by the prior, while exploitation is enforced by the concentration of the posterior.

We denote by P (a) the probability distribution associated with the estimation of q(a), the expected
reward of action a. It is initialized with some prior (see examples below) and updated by the successive
rewards received from action a.

5

Initialize, for all actions a:

• P (a)← prior

Repeat:

• for all actions a, Q(a)← sample(P (a))

• a← arg maxaQ(a)

• r ← reward(a)

• P (a)← update(r)

Thompson sampling

The main drawback of Thompson sampling is the computational cost of samples and updates. Typically,
the prior is chosen so as to facilitate these computations.

For binary rewards, the usual prior is the uniform distribution over (0, 1). Observing that

p(r|q) = qr(1− q)1−r, r = 0, 1,

it follows from Bayes’ rule that for N i.i.d. reward samples r1, . . . , rN of the same action,

p(q|r1, . . . , rN) =
p(r1, . . . , rN |q)p(q)
p(r1, . . . , rN)

∝ qr1+...+rN (1− q)N−(r1+...+rN).

This is a Beta distribution with parameters α = r1 + . . .+ rN + 1, β = N − (r1 + . . .+ rN) + 1. We obtain
the following simple update rule, given the received reward r:

α← α+ r,

β ← β + 1− r.

For continuous rewards, the usual prior is the standard normal distribution,

p(q) =
1√
2π
e−

1
2 q

2

.

Assuming that the rewards themselves are drawn from a normal distribution with unit variance,

p(r|q) =
1√
2π
e−

1
2 (r−q)

2

,

we obtain for N samples r1, . . . , rN of the same action,

p(q|r1, . . . , rN) =
p(r1, . . . , rN |q)p(q)
p(r1, . . . , rN)

∝ e−
N+1

2 (q− 1
N+1 (r1+...+rN))

2

.

This is a normal distribution with mean µ = 1
N+1 (r1 + . . . + rN) and variance σ2 = 1

N+1 . We obtain the
following update rule, given the received reward r at the N -th trial:

µ← µ+
1

N + 1
(r − µ),

σ2 ← 1

N + 1
.

6

Although Thompson sampling yields remarkable performance results in practice and has long been con-
sidered as optimal, in a sense that is explained in Section 6 below, this has only been proved recently
[Kaufmann et al., 2012]. For binary rewards, we have for any ε > 0,

E(R) ≤ (1 + ε)
∑
a6=a?

q? − q(a)

D(q(a)||q?)
(log T + log log T) + C(ε),

where D(p||q) is the Kullback-Leibler divergence between two Bernoulli distributions with respective param-
eters p and q:

D(p||q) = p log
p

q
+ (1− p) log

1− p
1− q

,

and C(ε) is a constant depending on ε and the parameters q(a), a ∈ A. Since D(p||q)) = O((p− q)2) when
q → p, this suggests again that quasi-optimal actions incur the highest regret.

6 Lower bound

While both UCB and Thompson sampling have sublinear regrets, one may wonder whether these algorithms
are optimal in some sense (for instance, there may well exist algorithms with finite regret). Lai and Robbins
have provided a lower bound that is valid for any algorithm with sublinear regret [Lai and Robbins, 1985].
For binary rewards, we have for any suboptimal action a 6= a?,

lim inf
T→+∞

NT (a)

log T
≥ 1

D(q(a)||q?)
.

In particular,

lim inf
T→+∞

E(R)

log T
≥
∑
a 6=a?

q? − q(a)

D(q(a)||q?)
.

We can check that Thompson sampling is optimal in this sense. This is not the case of UCB but of a slight
adpatation of it known as KL-UCB [Cappé et al., 2013]. Note that this bound quantifies the asymptotic be-
havior of the algorithm. It says nothing about the performance of the algorithm in the practically interesting
case of finite time horizons, although provably optimal algorithms like KL-UCB and Thompson sampling
also tend to perform well over finite time horizons in practice.

7 Extensions

A number of extensions of the classical model considered so far have been introduced to cope with the
diversity of applications of bandit algorithms.

Combinatorial bandits. In many applications (e.g., content recommendation), an action consists in
choosing k elements in a set of size n, corresponding to

(
n
k

)
possible actions. For large values of n (say

n > 100), it is simply not feasible to try all actions. Moreover, the rewards are clearly not independent
across actions (for instance, two actions with k − 1 common elements are expected to give similar rewards).
Finding good practical algorithms in this setting is a topic of intense research. Most existing algorithms are
adaptations of UCB and differ with respect to the assumed feedback received by the agent.

Contextual bandits. Another interesting class of problems associates some context to each decision (e.g.,
information on a user to improve the recommendation). Formally, the action at now depends on some known
state st (the context) and provides a reward rt that depends on both at and st. In linear bandits, a type of
contextual bandits, the state space may be Rd and the set of actions some finite subset of Rd, so that the
reward of action a in state s is aT s, plus some random noise. The objective is then to choose an action a
that is the most aligned with the current state s. The most popular algorithm, called LinUCB, combines
linear regression (to estimate each parameter a) and the UCB policy [Li et al., 2010]

7

Adversarial bandits. When the statistics of the rewards are unknown or vary with time, we need more
robust algorithms. In the adversarial setting, the rewards of each action consist of arbitrary (still unknown)
sequences. Surprisingly, learning is still feasible and may still lead to a sublinear expected regret, for some
suitable definition of regret. More specifically, the regret is measured with respect to the best action, which
depends on the particular sequence of rewards and the time horizon T . To assess the performance of any
given policy, we consider the worst-case regret, corresponding to the sequence of rewards yielding the largest
regret. This forces the algorithm to be stochastic so as to cope with all possible sequences of rewards. The
most popular policy is the Exponential-weight algorithm for Exploration and Exploitation (Exp3). The idea
is to associate some positive weight to each action and to randomly select an action in proportion to these
weights; the weight of the selected action is then updated depending on the received reward. The Exp3
algorithm has a regret in O(

√
T), which is provably order-optimal [Auer et al., 2002b].

8 Further reading

• Reinforcement learning. See [Sutton and Barto, 1998] and the course of Silver (UCL).

• Multi-armed bandits. See https://sites.google.com/site/banditstutorial/

• Thompson sampling. See [Russo et al., 2017].

References

[Auer et al., 2002a] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002a). Finite-time analysis of the multi-
armed bandit problem. Mach. Learn., 47(2-3):235–256.

[Auer et al., 2002b] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (2002b). The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32(1):48–77.

[Cappé et al., 2013] Cappé, O., Garivier, A., Maillard, O.-A., Munos, R., and Stoltz, G. (2013). Kullback-
Leibler upper confidence bounds for optimal sequential allocation. To appear in Annals of Statistics.

[Hoeffding, 1963] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.
Journal of the American statistical association, 58(301):13–30.

[Kaufmann et al., 2012] Kaufmann, E., Korda, N., and Munos, R. (2012). Thompson sampling: An asymp-
totically optimal finite-time analysis. In Algorithmic Learning Theory, pages 199–213. Springer.

[Lai and Robbins, 1985] Lai, T. L. and Robbins, H. (1985). Asymptotically efficient adaptive allocation
rules. Advances in Applied Mathematics, 6(1):4–22.

[Li et al., 2010] Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference on World
wide web, pages 661–670. ACM.

[Russo et al., 2017] Russo, D., Van Roy, B., Kazerouni, A., and Osband, I. (2017). A tutorial on Thompson
sampling. arXiv preprint arXiv:1707.02038.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction.
MIT press Cambridge. Available online, see http://incompleteideas.net.

[Thompson, 1933] Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25:285–294.

8

