Contents

1 General Survey .. 9
 1.1 Background ... 9
 1.2 Administration and Organization 10
 1.2.1 Télécom ParisTech As a Member of Institut Télécom 10
 1.2.2 The Organization of Research Within Télécom ParisTech .. 10
 1.2.3 LTCI (Laboratory for Communication and Processing of Information) as a CNRS Lab 11
 1.2.4 The Organization of LTCI 11
 1.2.5 The Organization by Departments 11
 1.3 Resources in the Service of Research 12
 1.3.1 Personnel ... 12
 1.3.2 Services of Télécom ParisTech Providing Support for Research 14
 1.3.3 Budget .. 16
 1.3.4 Budgetary Allotments and Basic Support 16
 1.4 Scientific Ranking and Figures 17
 1.4.1 Publications and Scientific Communication 17
 1.4.2 Research Contracts and Technology Transfer 18
 1.4.3 Joint Scientific Activities 20
 1.4.4 Partnerships .. 21
 1.4.5 Recent Remarkable Results 22
 1.5 An Overview on Research 23
 1.5.1 In the Departments 23
 1.5.2 Multidisciplinary 24

I Communications and Electronics 27

2 Digital Communications (COMNUM) 31
 2.1 Objectives .. 32
 2.2 Main Results .. 32
 2.2.1 Coding and Decoding for MIMO Systems 33
 2.2.2 Multihop Communications 34
 2.2.3 Multi-User Communications 36
 2.2.4 Statistics for Communications 37
 2.3 References ... 39
 2.3.1 ACL: Articles in ISI-Indexed Journals 39
 2.3.2 INV: Invited Talks 40
 2.3.3 ACTI: Articles in Proceedings of International Conferences 41
 2.3.4 ACTN: Articles in Proceedings of French Conferences ... 44
 2.3.5 COM: Talks in Conferences Which Do Not Publish Proceedings 44
 2.3.6 OS: Books and Book Chapters 44
 2.3.7 AP: Other Productions: Database, Registered Software, Registered Patent, 44
3 Complex Digital Electronic Systems (SEN) 47
 3.1 Objectives ... 48
 3.2 Main Results ... 49
 3.2.1 Design Space Exploration and Assisted Refinement of Integrated Systems 49
 3.2.2 Trusted Computing Hardware 50
 3.2.3 Optimal Architectures for Complex Algorithms Implementations 51
 3.2.4 Software Defined Radio 52
 3.3 References ... 53
 3.3.1 ACL: Articles in ISI-Indexed Journals 53
 3.3.2 ACLN: Articles in Other Refereed Journals 53
 3.3.3 ASCL: Articles in journals without editorial committee 54
 3.3.4 ACTI: Articles in Proceedings of International Conferences ... 54
 3.3.5 ACTN: Articles in Proceedings of French Conferences 57
 3.3.6 COM: Talks in Conferences Which Do Not Publish Proceedings 57
 3.3.7 AFF: Posters in Conferences 57
 3.3.8 OS: Books and Book Chapters 57
 3.3.9 DO: Journal or Proceedings Edition 57
 3.3.10 AP: Other Productions: Database, Registered Software, Registered Patent, ... 57

4 Electronics and RF Systems (ELECRF) 59
 4.1 Objectives ... 60
 4.2 Main Results ... 61
 4.2.1 From Reconfigurable RF Front-End to Software Defined Radio 61
 4.2.2 Nanoelectronics Architectures and Circuits 62
 4.2.3 RF Metrology .. 63
 4.2.4 Wireless Communication Systems Technology 65
 4.3 References ... 66
 4.3.1 ACL: Articles in ISI-Indexed Journals 66
 4.3.2 ACTI–A: Articles in Proceedings of Major International Conferences ... 83
 4.3.3 ACTI–B: Articles in Proceedings of Other International Conferences ... 85
 4.3.4 ACLN: Articles in Other Refereed Journals 86
 4.3.5 ACTN: Articles in Proceedings of French Conferences 86
 4.3.6 ASCL: Articles in Journals without review committee 87
 4.3.7 COM: Talks in Conferences Which Do Not Publish Proceedings 87
 4.3.8 OS: Books and Book Chapters 88
 4.3.9 AP: Other Productions: Database, Registered Software, Registered Patent, ... 88

5 Optical Telecommunications Group (GTO) 73
 5.1 Objectives ... 74
 5.2 Main Results ... 75
 5.2.1 Optical Functionalities and Novel Devices for Communication Systems and Networks 75
 5.2.2 Optical Network Evolutions 77
 5.2.3 Quantum Communications and Cryptography 79
 5.3 References ... 80
 5.3.1 ACL: Articles in ISI-Indexed Journals 80
 5.3.2 ACTI–A: Articles in Proceedings of Major International Conferences ... 83
 5.3.3 ACTI–B: Articles in Proceedings of Other International Conferences ... 85
 5.3.4 ACLN: Articles in Other Refereed Journals 86
 5.3.5 ACTN: Articles in Proceedings of French Conferences 86
 5.3.6 ASCL: Articles in Journals without review committee 87
 5.3.7 COM: Talks in Conferences Which Do Not Publish Proceedings 87
 5.3.8 OS: Books and Book Chapters 88
 5.3.9 AP: Other Productions: Database, Registered Software, Registered Patent, ... 88
II Network and Computer Science

6 Information Systems and Complex Systems (IC2/S3)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Objectives</td>
<td>94</td>
</tr>
<tr>
<td>6.2 Main Results</td>
<td>96</td>
</tr>
<tr>
<td>6.2.1 Business Intelligence (BiLab)</td>
<td>97</td>
</tr>
<tr>
<td>6.2.2 Databases and the World Wide Web (DBWeb)</td>
<td>98</td>
</tr>
<tr>
<td>6.2.3 Adaptable Middleware</td>
<td>100</td>
</tr>
<tr>
<td>6.2.4 Proof Based and Model Driven Developments</td>
<td>101</td>
</tr>
<tr>
<td>6.2.5 Advanced Interaction and Visualization (VIA)</td>
<td>103</td>
</tr>
<tr>
<td>6.3 References</td>
<td>104</td>
</tr>
<tr>
<td>6.3.1 ACL: Articles in ISI-Indexed Journals</td>
<td>104</td>
</tr>
<tr>
<td>6.3.2 ACTI-A: Articles in Proceedings of Major International Conferences</td>
<td>104</td>
</tr>
<tr>
<td>6.3.3 ACLN: Articles in Other Refereed Journals</td>
<td>105</td>
</tr>
<tr>
<td>6.3.4 INV: Invited Talks</td>
<td>106</td>
</tr>
<tr>
<td>6.3.5 ACTI-B: Articles in Proceedings of Other International Conferences</td>
<td>106</td>
</tr>
<tr>
<td>6.3.6 ACTN: Articles in Proceedings of French Conferences</td>
<td>110</td>
</tr>
<tr>
<td>6.3.7 COM: Talks in Conferences Which Do Not Publish Proceedings</td>
<td>112</td>
</tr>
<tr>
<td>6.3.8 OS: Books and Book Chapters</td>
<td>112</td>
</tr>
</tbody>
</table>

7 Mathematics of Information, Communications and Computation (MIC²)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Objectives</td>
<td>116</td>
</tr>
<tr>
<td>7.2 Main Results</td>
<td>116</td>
</tr>
<tr>
<td>7.2.1 Probability, Stochastic Modeling</td>
<td>116</td>
</tr>
<tr>
<td>7.2.2 Discrete Mathematics, Communication, Information</td>
<td>117</td>
</tr>
<tr>
<td>7.2.3 Quantum Information</td>
<td>119</td>
</tr>
<tr>
<td>7.2.4 Combinatorial Optimization for Optical Networks Design and Traffic Engineering</td>
<td>121</td>
</tr>
<tr>
<td>7.3 References</td>
<td>123</td>
</tr>
<tr>
<td>7.3.1 ACL: Articles in ISI-Indexed Journals</td>
<td>123</td>
</tr>
<tr>
<td>7.3.2 ACTI: Selected Articles in Proceedings of International Conferences</td>
<td>126</td>
</tr>
<tr>
<td>7.3.3 OS: Books and Book Chapters</td>
<td>126</td>
</tr>
</tbody>
</table>

8 Networks, Mobility, Security (RMS)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Scientific Environment, Positioning and Objectives</td>
<td>130</td>
</tr>
<tr>
<td>8.2 Main Results</td>
<td>132</td>
</tr>
<tr>
<td>8.2.1 Services Architecture and Applications Services</td>
<td>132</td>
</tr>
<tr>
<td>8.2.2 Wireless Networks and Mobility</td>
<td>133</td>
</tr>
<tr>
<td>8.2.3 Spontaneous Networks and Self-Organisation</td>
<td>135</td>
</tr>
<tr>
<td>8.2.4 Core Networks</td>
<td>136</td>
</tr>
<tr>
<td>8.2.5 Networks Security, Critical Infrastructure, Trust Objects</td>
<td>138</td>
</tr>
<tr>
<td>8.3 References</td>
<td>139</td>
</tr>
<tr>
<td>8.3.1 ACL: Articles in ISI-Indexed Journals</td>
<td>139</td>
</tr>
<tr>
<td>8.3.2 ACTI-A: Articles in Proceedings of Major International Conferences</td>
<td>140</td>
</tr>
<tr>
<td>8.3.3 ACLN: Articles in Other Refereed Journals</td>
<td>141</td>
</tr>
<tr>
<td>8.3.4 ACTI-B: Articles in Proceedings of Other International Conferences</td>
<td>142</td>
</tr>
<tr>
<td>8.3.5 ACN: Articles in Non Refereed Journals</td>
<td>149</td>
</tr>
<tr>
<td>8.3.6 ACTN: Articles in Proceedings of National Conferences</td>
<td>149</td>
</tr>
<tr>
<td>8.3.7 OS: Books and Book Chapters</td>
<td>150</td>
</tr>
<tr>
<td>8.3.8 AP: Other Productions: Reports, Registered Software, Registered Patent</td>
<td>150</td>
</tr>
</tbody>
</table>
III Economics and Social Sciences 153

9 Economics and Social Sciences (SES) 155
 9.1 Goals 156
 9.2 Main Results 157
 9.3 Research Axes
 9.3.1 Regulation and Innovation (RINNO) 158
 9.3.2 Industry Evolution and Cultural Creation in the Digital Era (MICEN) 163
 9.3.3 Interaction, technology, Activity (INTERACT) 166
 9.4 References
 9.4.1 ACL: Articles in Indexed Journals 170
 9.4.2 ACLN: Articles in Other Refereed Journals 174
 9.4.3 ACLN: Articles in Non Refereed Journals 174
 9.4.4 ACTI: Articles in Proceedings of International Conferences 175
 9.4.5 ACTN: Articles in Proceedings of French Conferences 176
 9.4.6 COM: Talks in Conferences Which Do Not Publish Proceedings 177
 9.4.7 OS: Books and Book Chapters 178
 9.4.8 OV: Popularizing works 181
 9.4.9 DO: Journal or Proceedings Edition 182
 9.4.10 AP: Technical Reports 182

IV Signal and Image Processing 183

10 Audio, Acoustical and Optical waves (AAO) 187
 10.1 Audio Signal Processing (AudioSig Project)
 10.1.1 Objectives 188
 10.1.2 Results 188
 10.2 Optical Signal Processing 192
 10.3 References
 10.3.1 ACL: Articles in ISI-Indexed Journals 193
 10.3.2 ACLN: Articles in Other Refereed Journals 195
 10.3.3 ACTI: Articles in Proceedings of International Conferences 195
 10.3.4 ACTN: Articles in Proceedings of French Conferences 199
 10.3.5 COM: Talks in Conferences Which Do Not Publish Proceedings 200
 10.3.6 OS: Books and Book Chapters 200

11 Multimedia (MM) 201
 11.1 Objectives 202
 11.2 Main Results
 11.2.1 Robust Compression and Transmission of Visual Data 202
 11.2.2 Rich Media, Adaptation and Open Source Software 204
 11.2.3 Document Imaging and Interaction 205
 11.2.4 Audio-visual Identity/Imposture and Virtual Worlds 206
 11.3 References
 11.3.1 ACL: Articles in ISI-Indexed Journals 208
 11.3.2 ACLN: Articles in Other Refereed Journals 209
 11.3.3 ASCL: Articles in Journals Without Review Committee 209
 11.3.4 INV: Invited Talks 209
 11.3.5 ACTI: Articles in Proceedings of International Conferences 209
 11.3.6 ACTN: Articles in Proceedings of French Conferences 215
 11.3.7 COM: Talks in Conferences Which Do Not Publish Proceedings 216
 11.3.8 OS: Books and Book Chapters 216
 11.3.9 DO: Journal or Proceedings Edition 217
11.3.10 AP: Patents, Registered Softwares

12 Statistics and Applications (STA)

<table>
<thead>
<tr>
<th>12.1 Objectives</th>
<th>222</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2 Main Results</td>
<td>223</td>
</tr>
<tr>
<td>12.2.1 Statistical Learning</td>
<td>223</td>
</tr>
<tr>
<td>12.2.2 Statistical Methods for Astronomy</td>
<td>224</td>
</tr>
<tr>
<td>12.2.3 Statistical Methods for Signal Processing</td>
<td>224</td>
</tr>
<tr>
<td>12.2.4 Monte Carlo Methods</td>
<td>225</td>
</tr>
<tr>
<td>12.2.5 Time Series</td>
<td>226</td>
</tr>
<tr>
<td>12.3 References</td>
<td>227</td>
</tr>
<tr>
<td>12.3.1 ACL: Articles in ISI-Indexed Journals</td>
<td>227</td>
</tr>
<tr>
<td>12.3.2 ACLN: Articles in Other Refereed Journals</td>
<td>230</td>
</tr>
<tr>
<td>12.3.3 INV: Invited Talks</td>
<td>230</td>
</tr>
<tr>
<td>12.3.4 ACTI: Articles in Proceedings of International Conferences</td>
<td>231</td>
</tr>
<tr>
<td>12.3.5 ACTN: Articles in Proceedings of French Conferences</td>
<td>235</td>
</tr>
<tr>
<td>12.3.6 COM: Talks in Conferences Which Do Not Publish Proceedings</td>
<td>235</td>
</tr>
<tr>
<td>12.3.7 OS: Books and Book Chapters</td>
<td>236</td>
</tr>
<tr>
<td>12.3.8 AP: Patents, Registered Softwares</td>
<td>236</td>
</tr>
</tbody>
</table>

13 Image Processing and Interpretation (TII)

<table>
<thead>
<tr>
<th>13.1 Objectives</th>
<th>238</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2 Main Results</td>
<td>239</td>
</tr>
<tr>
<td>13.2.1 Knowledge Representation and Spatial Reasoning</td>
<td>239</td>
</tr>
<tr>
<td>13.2.2 Machine Learning and Image Retrieval</td>
<td>240</td>
</tr>
<tr>
<td>13.2.3 2D and 3D Mathematical Modeling</td>
<td>241</td>
</tr>
<tr>
<td>13.2.4 Medical Imaging</td>
<td>243</td>
</tr>
<tr>
<td>13.2.5 CoC</td>
<td>245</td>
</tr>
<tr>
<td>13.2.6 Aerial and Satellite Imaging</td>
<td>246</td>
</tr>
<tr>
<td>13.3 References</td>
<td>247</td>
</tr>
<tr>
<td>13.3.1 ACL: Articles in ISI-Indexed Journals</td>
<td>247</td>
</tr>
<tr>
<td>13.3.2 ACLN: Articles in Other Refereed Journals</td>
<td>250</td>
</tr>
<tr>
<td>13.3.3 INV: Invited Talks</td>
<td>250</td>
</tr>
<tr>
<td>13.3.4 ACTI: Articles in Proceedings of International Conferences</td>
<td>250</td>
</tr>
<tr>
<td>13.3.5 ACTN: Articles in Proceedings of French Conferences</td>
<td>260</td>
</tr>
<tr>
<td>13.3.6 COM: Talks in Conferences Which Do Not Publish Proceedings</td>
<td>261</td>
</tr>
<tr>
<td>13.3.7 OS: Books and Book Chapters</td>
<td>261</td>
</tr>
<tr>
<td>13.3.8 AP-P: Patents</td>
<td>262</td>
</tr>
<tr>
<td>13.3.9 AP-R: Selected Technical Reports and Preprints</td>
<td>262</td>
</tr>
</tbody>
</table>
Chapter 1

General Survey of Research Activities

This report presents the activities of Télécom ParisTech in research between 1 January 2005 et 31 July 2009. A general outline of research is given in the first chapter along with consolidated figures giving resources allotted and the results obtained collectively. In the four following chapters are listed and analysed the scientific achievements of each of the research teams of the four departments of Télécom ParisTech. A separate document will develop what is projected in research over the next four years.

1.1 Background

Successor to the Ecole Supérieure de Télégraphie (EST), founded in 1878, Télécom ParisTech's names were, in order, the Ecole professionnelle supérieure des postes & télégraphes (EPSPT) and later on, the Ecole supérieure des postes & télégraphes (ESPT), the Ecole nationale supérieure des postes, télégraphes et téléphones (ENSPTT), Ecole nationale supérieure des télécommunications (ENST), Télécom Paris, and to emphasize its connection with ParisTech, of which it is a founding member since 1991, Télécom ParisTech, when ParisTech became a "PRES" in 2008.

Télécom ParisTech has occupied its current site on rue Barrault in the 13th arrondissement of Paris since 1934. A unit of the school was set up within EURECOM in Sophia Antipolis in 2003. A number of its departments and services later migrated to two annexes on the rue Dareau (in the 14th arrondissement).

Under the authority of the Direction générale des télécommunications (part of the Ministry of PTT), and later of France Télécom in 1991, ENST became part of the Groupe des Ecoles des Télécommunications (GET) in 1996, which had the status of an "établissement public administratif" (EPA), and which was placed under the minister responsible for telecommunications. The GET became Institut Télécom in 2008.

Up to 1968, ENST did not develop its own research labs, taking advantage of the Ministry's facilities. In 1968, C. Gueguen opened the first lab rue Barrault.

In 1982, the signal processing and digital communications teams made the first joint ERA (Equipe de Recherche Associée) with CNRS. It has become an URA (Unité de Recherche Associée) and then an UMR (Unité Mixte de Recherche) by progressively associating research teams in computer science, networking, applied physics for telecoms, image processing and, at last, management and social sciences. Today the UMR 5141 LTCI (see Section 1.2.3) covers all the research activity of Télécom ParisTech.

1PRES= "Pôle de Recherche et d’Enseignement Supérieur" is a regional cluster of institutes and universities for research in higher education
1.2 Administration and Organization

1.2.1 Télécom ParisTech As a Member of Institut Télécom

The Institut Télécom, which in addition to Télécom ParisTech, includes Télécom Bretagne and Télécom & Management SudParis, federates and coordinates its research activities in the separate schools within a "Comité Directeur de la Recherche" (= Research Management Committee). This body is under the authority of the Research Director of the Institut (Francis Jutand) and includes Télécom ParisTech’s own Research Director and Director of Innovation and Development.

A "Conseil Scientifique" (scientific council) has also been set up within the Institut Télécom to examine at regular intervals the research carried out in the Institut's programmes. For example, in October 2008 the "Conseil Scientifique" took up research carried out within the programme "Contents and Multimedia Services". In November 2009 it will be the turn of research done within the area "Réseaux du Futur" (Future Networks). All the research activities of the Institut are thereby brought up for review every four years.

The "Comité Directeur de la Recherche" (Research Management Committee) has also set up for the researchers within the Institut Télécom various "alliance projects" to bring the schools together on a limited number of keynote subjects: these are called the "Future Communication Labs". Three such institutes are currently functioning: Network of the Future Lab, Digital Health Lab, Digital Life Lab and a fourth in in preparation on Multimedia. These will be taken up below when treating individual themes.

Within the Institut Télécom research has been structured by thematic projects in such a way as to bring together every two years all of the researchers working in a particular area so as to redefine future work. The size and the scope of these projects varies greatly, sometimes including an entire group (e.g., TII, see Chapter [13] and AAO, see Chapter [10], sometimes only one or two teachers. This report takes up such projects whenever this is pertinent.

The Fondation Télécom supports research at the Institut Télécom by providing financing, most notably in calls made for projects (for example, the various projects under the name of "Futur and Ruptures" (the future and breaks with tradition). The Institut Télécom has also concluded framework agreements with some major partners: Orange, Alcatel-Lucent, Thalès, all of these agreements directly serving the interests of Télécom ParisTech. Lastly, the Institut Télécom (with EURECOM) was certified as an Institut Carnot from the very first year of Carnot campaigns and as such makes regular returns to the member schools (Télécom ParisTech included). These points will be taken up in Section [1.4.4].

The Institut Télécom has set up its research strategy for the five years from 2008 to 2012, where it claims its intent to become one of the major actors of research in IT in the field of communications (and more specifically on the topics of Telecommunications, Contents and Usages), as well as its engagement to serve for the economic and innovation development in these domains.

1.2.2 The Organization of Research Within Télécom ParisTech

Within Télécom ParisTech, research is basically within the purview of the Director of Research (Henri Maître) and the Director of Innovation and Development (Armand Lévy), but also of the Director of Research Courses (Bernard Robinet) who is responsible for the Ecole doctorale (ED 130 Edite), thanks to which Télécom ParisTech is entitled to deliver its own doctoral diploma.

Research activities are discussed by a "commission interne de la recherché" (a local research commission) and examined by a "Comité de la recherche" (research committee), an official body containing an equal number of representatives of the school’s administration and of researchers themselves, plus outside personalities. The "Comité de la recherche" meets three times a year.²

²The present external experts of the Comité de la Recherche are: Olivier Audouin (Alcatel-Lucent), Michel Beaudouin-Lafon (LRI, Orsay), Jean-Marc Chassery (Gipsa-Lab, Grenoble), Dominique Cotte (IDIST, Lille), Cédric Demeure (Thalès), Claude Girault (LIP6, Paris), Michel Lemonier (OSEO), Alain Rallet (ADIS-Orsay).
Télécom ParisTech contributed to the research strategy of the Institut. It will be presented in the "Project" booklet of this report. Its main objectives are to compensate for some heterogeneity of the different teams, to increase our international action and, therefore our recognition outside French borders, to take the best from our flexible administrative context to increase our ability to react.

Télécom ParisTech takes benefit from its favourable environment: the ParisTech PRES (a founding member of which we are) and the Universities from Paris area (and overall UPMC, our closest neighbour), which are elected partners for teaching and research as well (cf. Paragraph 1.4.4).

1.2.3 LTCI (Laboratory for Communication and Processing of Information) as a CNRS Lab

The UMR 35141 or LTCI is part of the INST2I, "Institut des sciences et technologies de l’information et de l’ingénierie" of CNRS and also of the "INSMI" (Institut des sciences mathématiques et de leurs interactions).

The LTCI is attached administratively to the Paris-A delegation of the CNRS.

The LTCI is a firm actor of CNRS life. Its participation to the GdR4 (and especially to GdR ISIS) to expert committees (M. Riguidel for Security, O. Cappé for Signal and Image, C. Licoppe for Social Sciences), and to governing boards (H. Maître, E. Moulines and I. Bloch served as members of the Section 07 of the National Committee, and C. Pélachaud of the CID 45), and the animation of the department and then of the Institut INST2I (E. Moulines), is constant and resolute.

The evolution of the LTCI with respect to the evolution of the CNRS structure will be developed in the prospective part of this report.

1.2.4 The Organization of LTCI

As said, the LTCI at the same time covers all the research of Télécom ParisTech, and only it. It is a rather singular situation in the national framework. It favours a strong synergy between teams and allows a good coordination of the allotted means, focusing all the ressources on a single objective: the advancement of the modern techniques of communication. However it constrains that efforts be made to reduce double commands in the management, to share the long term objectives and to coordinate the decisions.

The Director of the UMR (Henri Maître) is aided by a Deputy Director (Olivier Cappé). The "Conseil de Laboratoire" (laboratory council) is an official body in which all members are represented equally. It takes up all aspects concerning everyday activities of the UMR. Attention is paid to keep the Conseil de Laboratoire and the Commission de la Recherche well informed of their respective conclusions and many opportunities are found for them to work together.

Although at the starting times of the LTCI, different scientific structures were living in LTCI and in Télécom ParisTech, the organization of LTCI is nowadays exactly the same as Télécom ParisTech’s, i.e. the department structure.

1.2.5 The Organization by Departments

Research is carried out within the four departments of Télécom ParisTech, each of which includes all those playing a role in research:

- Department of Communications and Electronics (Comelec), headed by Bruno Thédrez,
1.3. Resources in the Service of Research

1.3.1 Personnel

The official status of those contributing to research at Télécom ParisTech can be very varied; permanent employees of Institut Télécom or of the CNRS, teaching staff, researchers or research assistants. Among non-permanent staff can be found professors on sabbatical or on assignment, post-docs, thesis students, engineers on short-term contracts and trainees (cf. Table 1.1).

Permanent Members of the Staff

In January 2009, contributing to research were the following permanent members of the staff:

- **141 Teachers** ("enseignants-chercheurs" or EC) of the Institut Télécom: these members of the teaching staff contribute significantly to research, as is attested by regular submissions to international journals or conferences that include editorial committees and proceedings: 47 Professors, 73 Associate Professors, 10 Directors of Studies, 5 Assistant Directors of Studies, 6 Lecturers.

- **15 Teachers** ("enseignants-chercheurs") of the Institut Télécom who have expressed the desire to take part in research projects (participation in working groups, managing trainees, developing software) but who do not publish regularly.

- **10 Engineers or technicians of the Institut Télécom**: permanent members of the staff (Directors of Studies, Deputy Directors of Studies, Lecturers) who have chosen to take part in the research activities of the LTCI within a department by contributing to the development or maintenance of scientific or technical units (including equipment and software).

- **26 Permanent researchers from the CNRS** (8 Research Directors, 18 Research Assistants), representing various sections of the CNRS’ National Committee: 07 (7 researchers), 34 (3), 01 (2), 08 (2), 27 (2);

- **2 Engineers of the CNRS** both of them assigned to functions on the computer and networking systems.

- **2 Researchers from INRIA** (1 Director of Research and 1 Research Assistant, assigned to work on research in the social sciences;
1. General Survey 1.3. Resources in the Service of Research

- **5 Outside adjunct researchers:** these researchers belong neither to the Institut Télécom or the CNRS but nonetheless carry out most of their research with teams working within Télécom ParisTech. They often co-author articles with members of the permanent staff of the Institut Télécom and members of the CNRS working within our institution.

<table>
<thead>
<tr>
<th>Télécom ParisTech</th>
<th>CNRS (+INRIA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof + Dir Studies</td>
<td>Ass. Prof + Ass. Dir. S.</td>
</tr>
<tr>
<td>57</td>
<td>78</td>
</tr>
</tbody>
</table>

Table 1.1: Numbers of teachers and researchers in January 2009

Research at Télécom ParisTech draws on the extensive indirect support it receives from the technical and administrative staff of the institution (infrastructures, human resources, missions, library and documentation, printing shop, etc.). This will be taken up in Section 1.3.2.

Thesis Students

The doctoral students constitute an important part of Télécom ParisTech’s research potential. The institution currently has 270 doctoral students working on a thesis under the direction of one of the school’s teachers. 250 of these doctoral students are enrolled in the "EDITE de Paris" doctoral school (and thereby will receive their doctorate from Télécom ParisTech). 50 other students will receive their doctorate from Télécom ParisTech but are carrying out their thesis at EURECOM. Two hundred of our doctoral students are working on their thesis in laboratories of Télécom ParisTech and their results will be presented within this report. The other students, often because of a "Cifre agreement", carrying out their research in the laboratories of our industrial partners, their work will be presented in this report only to the extent that there is a significant connection with the research programmes of Télécom ParisTech.

A relatively small number of our doctoral students receive institution funding (23 holding ministerial bursaries, 31 on contract with research institutes or agencies, 15 receiving scholarships from foreign governments). The other students are often engaged on contracted research projects or are financed by our various partners.

Post-Docs, Engineers on Short-Term Contracts, Sabbatical Professors, Visiting and Associate Professors

These people are mainly assigned to contracted research done by Télécom ParisTech and principally with the status of employees of Télécom ParisTech or, occasionally, of the CNRS. They are taken up in Table 1.2, which gives both the numbers of people employed and the months per man during which they are present at Télécom ParisTech.

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sabbatical professors</td>
<td>1 (12)</td>
<td>2 (22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-docs</td>
<td>12 (106)</td>
<td>20 (227)</td>
<td>18 (197)</td>
<td></td>
</tr>
<tr>
<td>Short term Engineers</td>
<td>35 (380)</td>
<td>23 (254)</td>
<td>28 (296)</td>
<td></td>
</tr>
<tr>
<td>Technicians</td>
<td>2 (5)</td>
<td>5 (21)</td>
<td>1 (3)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.2: Short term personnel: numbers and (numbers of man x month).
Recent Developments

The world of information and communication technologies is changing rapidly. Rather great demands have been made on the school both for teaching and for research and it has been necessary to make considerable additions in staffing during the period running from 2005 through 2009. This increase has also appeared on the side of the CNRS, a very attractive source of recruitment for the young researchers coming in by the CNRS’ competitive recruitment examination and by transfers: 4 “Directeurs de Recherche” from the CNRS, 1 “Directeur de Recherche” from INRIA, 2 “CR” from the CNRS and 1 “CR” from INRIA (see Table 1.3).

Table 1.3: Evolution of the numbers of faculties during the period. From 2006 through 2009, Télécom ParisTech has had 8 promoted Associate Professors to Professors (for each of them the above table shows +1 for leaving Ass. Prof and +1 for entering Prof).

<table>
<thead>
<tr>
<th></th>
<th>Telecom ParisTech</th>
<th>CNRS (+INRIA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ Ass Dir Stud. leav.</td>
<td>+ Dr Studies leav.</td>
</tr>
<tr>
<td>2006</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>2007</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>2008</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2009</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Balance</td>
<td>+ 5</td>
<td>+ 3</td>
</tr>
</tbody>
</table>

Summary About Research Personnel

Table 1.4 indicates the average distribution of the personnel by team and department, depending on its origin over the last five years. For the purpose of measuring the personnel present in the lab, the PhD candidates which are mostly not in the lab (for instance because they are in a company) are counted for 1/2 only. Table 1.4 also proposes a “Full time research equivalent” (FTRE) to measure the personnel available for research in each team. It counts teachers for one half (since they should participate to teaching), and PhD candidates for two thirds, since they spend a part of their time for their education.

1.3.2 Services of Télécom ParisTech Providing Support for Research

Nearly 500 people all told are involved in research at Télécom ParisTech, 200 of these engaged in research on a permanent basis. To carry out its mission, the effort in research draws on an institution (Télécom ParisTech) with a permanent staff of 340. It also draws on the resources made available basically by the “Direction Scientifique” of the Institut Télécom (division of research management plus some support services) and those of the “Paris-A Delegation” of the CNRS (human resources, contracts, financial services). The divisions of Télécom ParisTech most closely associated with research are described in the following lines.

Computers, Network, Audio-Visual and Information Systems

Télécom ParisTech has a centralized computer centre that, outside of its role in management and administration and the resources it provides for students (classrooms set up for courses in computer science, aid to users, audiovisual materials, etc.) offers to all units of the institution involved in research certain shared services (network, internet, e-mail, security, large-scale
Personnel

<table>
<thead>
<tr>
<th>Dept</th>
<th>Team</th>
<th>teacher Institut Télécom</th>
<th>researcher CNRS (and INRIA)</th>
<th>PhD students</th>
<th>Post doc, Eng, Sabb.</th>
<th>total</th>
<th>FTRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI</td>
<td>AAO</td>
<td>7,5</td>
<td>1,5</td>
<td>10</td>
<td>1,5</td>
<td>13,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MM</td>
<td>7</td>
<td>2,3</td>
<td>11</td>
<td>2</td>
<td>15,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TI</td>
<td>12</td>
<td>2,5</td>
<td>27,4</td>
<td>3,5</td>
<td>30,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STA</td>
<td>5,5</td>
<td>5,3</td>
<td>7,2</td>
<td>1,4</td>
<td>14,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TII</td>
<td>12</td>
<td>2,5</td>
<td>27,4</td>
<td>3,5</td>
<td>30,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STA</td>
<td>5,5</td>
<td>5,3</td>
<td>7,2</td>
<td>1,4</td>
<td>14,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TII</td>
<td>12</td>
<td>2,5</td>
<td>27,4</td>
<td>3,5</td>
<td>30,3</td>
<td></td>
</tr>
<tr>
<td>INFRES</td>
<td>MRC2</td>
<td>9,5</td>
<td>2,5</td>
<td>19</td>
<td>2</td>
<td>17,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RMS</td>
<td>14</td>
<td>0,7</td>
<td>30,9</td>
<td>5,3</td>
<td>32,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IC2/S3</td>
<td>14,3</td>
<td>0,7</td>
<td>12,5</td>
<td>7</td>
<td>23,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>37,8</td>
<td>3,2</td>
<td>56,5</td>
<td>14,3</td>
<td>74,1</td>
<td></td>
</tr>
<tr>
<td>COMELEC</td>
<td>TIO</td>
<td>6</td>
<td>0,7</td>
<td>19,8</td>
<td>1,5</td>
<td>13,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMMUN</td>
<td>5,8</td>
<td>0,7</td>
<td>13</td>
<td>1,25</td>
<td>13,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRIP</td>
<td>9,5</td>
<td>0,7</td>
<td>13,8</td>
<td>2,3</td>
<td>16,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEN</td>
<td>8,5</td>
<td>2</td>
<td>8</td>
<td>5,5</td>
<td>17,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>26,5</td>
<td>2,7</td>
<td>45,6</td>
<td>10,7</td>
<td>62,8</td>
<td></td>
</tr>
<tr>
<td>SES</td>
<td>total</td>
<td>19,7</td>
<td>1,9</td>
<td>17</td>
<td>19</td>
<td>40,5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>119,3</td>
<td>19,3</td>
<td>177,7</td>
<td>52,5</td>
<td>249,9</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.4: Distribution of personnel in the different teams and departments. The figures are average man.year. The column FTRE ("Full time research equivalent") is the weighted sum of the 4 previous columns, with the following coefficients: teachers are weighted with .5, researchers, postdocs, engineers and sabbatical are weighted with 1, PhD students are weighted with 2/3. PhD students in a company are weighted with 2/3 × 1/2 = 1/3.

contract agreements, etc.). The departments have their own separate networks, that can work entirely independently but that can, of course, be coordinated when need be.

A centralized information system is being set up to make it possible to more easily follow research projects at different levels of responsibility (top management of the institution, individual departments, groups, project leaders) by offering consolidated views of resources, allotments made, expenditures and timetables, all of this contract by contract. This information system is under the responsibility of the Institut Télécom.

Technology Transfer, Relations with Industry and Intellectual Property

The Director of Innovation and Development relies on a team assigned to relations with industry, technology transfer, and the defense of intellectual property of Télécom ParisTech’s teachers and researchers. This division of Télécom ParisTech provides the administrative and legal follow-up of all the agreements and contracts made by the institution and that guarantees the conformity of financial agreements with the policies and practices of the Institut Télécom. This division maintains close contact with the Paris-A delegation of the CNRS.

General Services of Télécom ParisTech: Finances, Human Resources, Logistics (Norms of Security and Hygiene) and Communication

The general services of Télécom ParisTech are closely intertwined with research programmes, as for example with the management of non-permanent members of the institution (a notable instance would be the assistance provided to foreigners for their various dealings with the national administration), dealings with financial matters, billing, missions, inventories. The logistics unit of Télécom ParisTech is responsible for the maintenance and security of the buildings and meeting the norms of security and hygiene.

The service of communication promotes various research activities of Télécom ParisTech. The service of documentation is entrusted with providing documentation (in paper and electronically) for all those working in research at Télécom ParisTech. It relies for parts on the resources provided by the French consortium Couperin around CNRS (the portals of INST2I and
1.3. Resources in the Service of Research

INSHS). Staff and students alike can consult the online resources of the major scientific journals of our domains or nearly a total of 20000 journals available from their desks. The service of documentation is also responsible for publicizing the theses done at Télécom ParisTech via the portal Pastel of ParisTech. It also publishes online the various annual reports issued from various services of Télécom ParisTech.

1.3.3 Budget

Research at Télécom ParisTech depends on two sources: the Institut Télécom and the CNRS. In both cases, the budgets are coordinated.

Institut Télécom provides the most extensive support and the main sources of resources. The total expenses of Télécom ParisTech for 2008 amount at 44 Meuros to fulfill its four main missions: (i) Undergraduate and Graduate Education, (ii) Life Long Learning Studies, (iii) Research, (iv) Entrepreneurship.

A fine analytical accounting allows to dispatch these expenses to the missions. When only direct expenses are taken into consideration, Research counts for 41.8% of the total expenses. When the costs of indirect services are distributed over the missions, this part rises to 43.3%, because of the impact of research on Human Resources and Financial Services.

When consolidated expenses are taken into account (i.e. with salaries of permanent staff), the distribution of Research costs is the following:

<table>
<thead>
<tr>
<th>Budget Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>wages and personnel budget</td>
<td>77.7 %</td>
</tr>
<tr>
<td>operating budget</td>
<td>15.0 %</td>
</tr>
<tr>
<td>capital budget</td>
<td>7.3 %</td>
</tr>
</tbody>
</table>

1.3.4 Budgetary Allotments and Basic Support

Télécom ParisTech supports its research in part by the salaries given to its teaching and research staff, by the various services described above and by covering expenditures common to the entire infrastructure (electricity, water, telephone, networks, maintenance, etc.) but does not however contribute to the regular annual budgets of research teams for investments or standard expenses. Budgetary allocations for these teams are made by the coordinated effort of the Direction of Research and the Direction of Innovation and Development, these resources coming from the returns due to our participation in the Institut Carnot and programmes of the ANR. Such sums are dependent on the amount of contracted research and can vary greatly, too, according to policy decisions made nationally. Télécom ParisTech also supports research by encouraging the stays of sabbatical professors and the organization of research seminars at school. On occasion, specific appeals are made when extensive investment is necessary (as, for example, in 2006 and 2007 for quantum communications, in 2008 for investment in infrastructures for scientific computation and in 2009 for platforms).

The Institut Télécom plays an active role financially in launching appeals for projects (incentive fund research initiatives or for the programme "Futur et Ruptures" (the future and breaks with tradition) that was supported by the Fondation Télécom. The Institut Télécom finances most notably doctoral dissertations, sabbatical stays, postdocs and also investment in specific campaigns (as in 2009 for platforms).

The CNRS contributes to the activities of the LTCI with a basic allotment of 192 keuros (for 2009 as for 2008) of which 162 comes from the INST2I, 20 keuros from the INSHS and 10 keuros.
from the INMSI. The CNRS pays the salaries of its researchers who are assigned to our laboratories and provides administrative backup (human resources, managing contracts, intellectual property).

Contracted Resources

Table 1.5 presents the net annual product of contracted resources over the period. This table will be discussed in Section 1.4.2.

Télécom ParisTech attributes to its research teams the free use of contracted monies received, apart from a small standard withdrawal (5% in mean) that is redistributed later on to research teams via specific appeals. These contracted resources are most notably used for non-permanent staff hiring (about 75% to cover salaries or scholarships for some PhD students and post-docs, all the engineers and master’s internships), then two equal parts cover the travelling expenses and the technical investment).

<table>
<thead>
<tr>
<th>Contracted resources (in Meuros)</th>
<th>managed by Télécom ParisTech</th>
<th>managed by CNRS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>4.42</td>
<td>0.55</td>
<td>4.97</td>
</tr>
<tr>
<td>2006</td>
<td>5.63</td>
<td>0.62</td>
<td>6.25</td>
</tr>
<tr>
<td>2007</td>
<td>7.30</td>
<td>0.65</td>
<td>7.95</td>
</tr>
<tr>
<td>2008</td>
<td>7.79</td>
<td>0.47</td>
<td>8.26</td>
</tr>
</tbody>
</table>

Table 1.5: Contracted resources: net annual research products.

The employment of contracted resources is the following:

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>wages, studentships, salaries, ...</td>
<td>65.1 %</td>
</tr>
<tr>
<td>travels and conferences</td>
<td>12.3 %</td>
</tr>
<tr>
<td>furnitures (books, software consumables, ...)</td>
<td>11.8 %</td>
</tr>
<tr>
<td>investment</td>
<td>11.8 %</td>
</tr>
</tbody>
</table>

1.4 Scientific Ranking and Figures

1.4.1 Publications and Scientific Communication

The evolution of our scientific output in scientific media is presented in Table 1.6 for a general view of our scientific production and in Table 1.7 for distributed view over the teams. It appeals some remarks here. At first these figures are not the exact sum of the team figures, since, for instance, a joint paper may be claimed simultaneously by 2 teams. On the contrary, the total number of doctoral theses is higher than the cumulated number of theses by teams, because we count here the total number of diplomas which have been awarded by Télécom ParisTech, some being made outside the lab (in particular, those at Eurecom).

In the recent years, the Lab payed attention to the way its scientific production impacts the scientific literature. This attention is expressed from one side by an active incitation to publish in the best journals, and from the other by imposing a fixed referencing of the Lab in every publication. As a result, the average reference to our work is steadily increasing as expressed in Table 1.8.
1.4. Scientific Ranking and Figures

1. General Survey

<table>
<thead>
<tr>
<th>Journals</th>
<th>Peer reviewed conferences with proceedings</th>
<th>Books</th>
<th>Edition of Proceeding or a Collection of Papers</th>
<th>Parts or Chapters of a Book</th>
<th>Theses</th>
<th>Patents</th>
<th>Proposition to normalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td>355</td>
<td>5</td>
<td>21</td>
<td>8</td>
<td>59</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>165</td>
<td>355</td>
<td>10</td>
<td>15</td>
<td>23</td>
<td>55</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>191</td>
<td>457</td>
<td>16</td>
<td>27</td>
<td>20</td>
<td>50</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>190</td>
<td>386</td>
<td>16</td>
<td>16</td>
<td>24</td>
<td>76</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>60</td>
<td>103</td>
<td>5</td>
<td>7</td>
<td>20</td>
<td>38</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>724</td>
<td>1656</td>
<td>60</td>
<td>103</td>
<td>20</td>
<td>38</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 1.6: Scientific production in the last five years (year 2009 ends at 1 July).

<table>
<thead>
<tr>
<th>Dept</th>
<th>Team</th>
<th>defended PhD</th>
<th>defended Habilitation</th>
<th>Journals</th>
<th>conferences</th>
<th>books & chapters</th>
<th>patents & softwares</th>
<th>public</th>
<th>private</th>
<th>Europe</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI</td>
<td>AAO</td>
<td>18</td>
<td>2</td>
<td>58</td>
<td>136</td>
<td>15</td>
<td>7</td>
<td>7766</td>
<td>1205</td>
<td>3627</td>
<td>1671</td>
</tr>
<tr>
<td>MM</td>
<td>16</td>
<td>2</td>
<td>42</td>
<td>135</td>
<td>15</td>
<td>3</td>
<td>7800</td>
<td>2200</td>
<td>930</td>
<td>3933</td>
<td></td>
</tr>
<tr>
<td>TII</td>
<td>INFRES</td>
<td>37</td>
<td>7</td>
<td>86</td>
<td>350</td>
<td>20</td>
<td>1</td>
<td>8587</td>
<td>4748</td>
<td>4645</td>
<td>1028</td>
</tr>
<tr>
<td>STA</td>
<td>5</td>
<td>4</td>
<td>23</td>
<td>204</td>
<td>12</td>
<td>9</td>
<td>7600</td>
<td>1400</td>
<td>5200</td>
<td>3500</td>
<td></td>
</tr>
<tr>
<td>TII/S</td>
<td>MIC2</td>
<td>77</td>
<td>3</td>
<td>277</td>
<td>67</td>
<td>9</td>
<td>7577</td>
<td>1500</td>
<td>5000</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>COMELEC</td>
<td>RMS</td>
<td>83</td>
<td>10</td>
<td>189</td>
<td>209</td>
<td>14</td>
<td>8410</td>
<td>1600</td>
<td>5000</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>COMELEC</td>
<td>IC2/S3</td>
<td>11</td>
<td>2</td>
<td>33</td>
<td>273</td>
<td>4</td>
<td>852</td>
<td>793</td>
<td>449</td>
<td>2094</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>90</td>
<td>8</td>
<td>291</td>
<td>713</td>
<td>52</td>
<td>56</td>
<td>5865</td>
<td>2747</td>
<td>2792</td>
<td>10394</td>
</tr>
</tbody>
</table>

Table 1.7: Distribution of the scientific production in the different teams and departments. The figures are the sums over the 4.5 years of reference.

1.4.2 Research Contracts and Technology Transfer

The school has an important contractual activity. For instance, in 2008, 91 new contracts have been signed 57 of which are bilateral (22 of which are for PhD students) and 34 are contracts with public administrations (ANR, Clusters, FUI, Region) or European. The financial support obtained by the contracts in 2008 amounts at 8.26 Meuros (16 % for European, 37 % for public and 47 % for bilateral). It must be pointed out that in recent years this last ratio is fastly growing. **Table 1.5** presents the consolidated figures of the last five years. After an important growth in 2006 and 2007, our contracted ressources are now more stable.

European Projects

Mid 2009, we are partners of 30 FP6 European projects, for a cumulated amount of 6,2 Meuros, distributed in: 13 Networks of Excellence, (one of which we are prime), 6 Integrated Projects, 4 STREPs, 5 Coordination Actions, 1 Specific Support Action et 1 Marie Curie Fellowship. We are involved in 10 of the Call 1 and 2 FPT7 program (for 3 Meuros). Figure 1.1 displays the distribution of resources in the 5 last years.

ANR (National Research Agency)

We participated with 62 answers to the 2009 ANR Calls, 21 of which have been selected for a total (provisional) amount of 4 Meuros. Among them, 3 supported by program VERSO, 6 by

7 bilateral contract = direct contract with a company
8 FUI = "Fonds Unique Interministériel"
1. General Survey

1.4. Scientific Ranking and Figures

<table>
<thead>
<tr>
<th>date</th>
<th>number of h-index ≥ 10</th>
<th>maximum h-index</th>
<th>average of 10 best h-index</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2007</td>
<td>27</td>
<td>32</td>
<td>19.6</td>
</tr>
<tr>
<td>July 2009</td>
<td>50</td>
<td>35</td>
<td>25.4</td>
</tr>
</tbody>
</table>

Table 1.8: Evolution of the impact of our publications as expressed in Google Scholar. This table presents the number of scientists from our lab, whose h-index is greater or equal to 10, the highest h-index, and the average of the top 10 h-index.

Figure 1.1: Distribution of resources on time.

CONTINT, 2 by ARPEGE, 7 Non-Thematic, 2 for Young Researchers and 1 International Junior Chair.

French Clusters ("Pôles de Compétitivité")

As an engineering school and part of Institut Télécom, Télécom ParisTech plays an important role in the French Clusters. Well armed in software engineering, networks, embedded systems, it was a partner of System@tic in Ile de France and of Solutions Communicantes Sécurisées in the Provence Côte d’Azur. It contributed to the emergence of Cap Digital in the field of Multimedia, games, data management and usages in Ile de France too, where it participates to its management. It also conducts actions in several other clusters (as for instance Transactions Economiques Sécurisées in Normandy) as shown in Table 1.9.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Region</th>
<th>Number of awarded projects</th>
<th>Financial supports (Meuros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>System@tic</td>
<td>Ile de France</td>
<td>11</td>
<td>2.46</td>
</tr>
<tr>
<td>Cap Digital</td>
<td>Ile de France</td>
<td>11</td>
<td>4.72</td>
</tr>
<tr>
<td>SCS</td>
<td>PACA</td>
<td>2</td>
<td>0.45</td>
</tr>
<tr>
<td>TES</td>
<td>Normandy</td>
<td>2</td>
<td>0.42</td>
</tr>
<tr>
<td>Medican-Santé</td>
<td>Ile de France</td>
<td>1</td>
<td>0.19</td>
</tr>
<tr>
<td>Aerospace Valley</td>
<td>Midi-Pyrénées</td>
<td>1</td>
<td>0.12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>28</td>
<td>8.37</td>
</tr>
</tbody>
</table>

Table 1.9: Participations to French Clusters (Pôles de Compétitivité).
1.4.3 Joint Scientific Activities

Joint scientific activities are carried out essentially within the separate departments in the inhouse seminars that they organize, on a regular basis or from time to time depending on those outside visitors who can attend. These seminars are often open to colleagues in other laboratories in Paris working in the same or related fields.

There are currently active seminars in the following fields:

- seminar in analog and mixed integrated systems,
- the “Monday workshop” in sociology and information and communication sciences,
- mathematics seminar for those working in Computer Science and Networks,
- seminar in medical imagery and fuzzy logic,
- seminar in encoding and video compression,
- seminar in synthetic aperture radar image processing,
- seminar on information theory and statistics,
- the “Business Intelligence” seminar of BILab,
- seminar on audio signal processing,
- seminar on perception, indexing and learning
- introductory seminar to a quantum treatment of information,
- interdisciplinary research seminar in management, social sciences and the sciences of information technology,
- seminar in digital communications,
- a seminar in economics and management.

Research teams from Télécom ParisTech participate very actively in the following seminars held in Paris and the Paris area:

- the Paris seminar in statistics
- the Machine Learning reading group of ParisTech (along with ENS)
- the LEOS (Laser and Electro-Optics Society) of the IEEE France chapter
- the MeFoSyLoMa (“Méthodes Formelles pour Les Systèmes Logiciels et Matériels” = Formal Methods for Logical Systems and Materials) with the CNAM, IBISC, LIP6 and Lamsade,
- the Quantum Information in Paris “QuPa” seminar with ENS, Paris 7, LRI, IOGS.

Télécom ParisTech is also one of the favourite meeting places for the GdR “Groupement de recherche” (research group) ISIS (Information, Signal and Images) which holds more than 20 meetings a year here, meetings at which our researchers play a very active part.

Lectures in scientific or general areas are regularly organized at Télécom ParisTech and are open to all our teachers and research staff, to our doctoral students and students in general.

Lastly, Télécom ParisTech as a laboratory of the CNRS has an annual general meeting at which new members of the staff are introduced.

Among the prestigious speakers we have received: Benoît Mandelbrot, Jacques Attali, Pascal Lamy, Claude Berrou, Joseph Stiglitz, Charles Benett, Michael Leyton, etc.
1.4.4 Partnerships

Member Schools of the Institut Télécram

Within the network that makes up the Institut Télécram, Télécom ParisTech is a privileged partner of our sister schools of Evry, Brest and Sophia-Antipolis. This often takes the concrete form of collaborative activities on European projects or within the "ANR". As members of the same Institut Carnot, the sister schools make joint proposals to the business partners that are members of the Fondation Télécom: Orange, SFR, Alcatel-Lucent and BNP-Parisbas most notably.

With the arrival of associate schools within the Institut Télécom, Télécom ParisTech has extended its partnerships, most notably with the ENSPS in Strasbourg (particularly in the field of medical robotics) and with Télécom Saint Etienne.

ParisTech as a "PRES"

Télécom Paris Tech is an active (and founding) member of the PRES ParisTech[10], which is made up of 12 "grandes écoles" in the region of "Ile-de-France". With a potential in teaching and in research very much like that of a technological university, possessing as well resources in economics and management, ParisTech coordinates the actions of its constituent institutions, among other things in the field of doctoral studies and research activities. ParisTech constitutes most notably a means for providing coordinated responses to the KIC (Knowledge Innovation Communities) of Europe. ParisTech has proposed major projects in themes that are transversal within member institutions (energy, the environment, etc.). In this respect, Télécom ParisTech is responsible for activities in the field of information science and technology. It also participates to programs in Economy (PIMREP project: ParisTech Innovation Management Research and Education Programme launched in June 2008), in bio-engineering (with University Paris 5) and in Machine Learning (with ENS Ulm).

The GIS: e-Sys and PariStic

Télécom ParisTech is a founding member of two GIS[11] with an active regional role.

There is, first of all, the GIS PariStic, in partnership with the LIP6 (Pierre et Marie Curie University) and the CNRS. This GIS unites more than 300 permanent researchers and teachers working in Paris in the the fields of computer science, networks, information processing and multimedia, and about 400 thesis students. The GIS PariStic has been the opportunity for a huge number of collaborative activities ranging from teaching to advanced research. The GIS PariStic has made it possible to draw together in shared projects the personnel of member institutions and the financial support that they provided and to present a united approach to information and communication sciences and technologies in the Ile-de-France region[12]. PariStic is deeply involved in the Cap Digital cluster that both laboratories helped to create.

Télécom ParisTech is also a member of the GIS eSys[13] created to favour collaborative efforts between teams working in electronical systems[14]. eSys' scientific domain is devoted to hybrid electronics system conception and microsystems in order to feel the gap from sensors to actuators, with an internal stage of smart digital decision. This GIS is developing in narrow collaboration with the System@tic cluster taking advantage of its exceptional industrial IT context (Thales, NXP, EdF, Schlumberger, TI).

[11]GIS = "Groupements d'intérêt scientifique", scientific interest groups
[13]aside with Supélec, Esiee, Isep and the University Paris Sud
1.4. Scientific Ranking and Figures

Long Term Collaborations

In several fields, Télécom ParisTech, in order to establish stronger collaborations with its most faithful partners, has built joint labs or chairs which are guaranteeing living exchanges on a period from 3 to 5 years. The present agreed collaborations are shown in Table 1.10, two or three more being yet to be signed.

<table>
<thead>
<tr>
<th>Name</th>
<th>Academic Partners</th>
<th>Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ComNum joint lab in digital communications</td>
<td>INRIA</td>
<td>Altran</td>
</tr>
<tr>
<td>BILab, Business Intelligence Lab</td>
<td>Ecole des Mines ParisTech</td>
<td>EDF & Orange</td>
</tr>
<tr>
<td>Chaire Economie des Médias et des Marques</td>
<td>Polytechnique</td>
<td>Vivendi</td>
</tr>
<tr>
<td>Chaire Innovation & Régulation</td>
<td>Télécom & Mangt SudParis</td>
<td>Orange</td>
</tr>
<tr>
<td>Chaire TIC et développement durable</td>
<td>Institut Télécom</td>
<td>Orange & CDC</td>
</tr>
<tr>
<td>CoC Centre of Competence</td>
<td></td>
<td>CNES & DLR</td>
</tr>
<tr>
<td>Wave-Human Interaction & Telecom Interface</td>
<td></td>
<td>Orange & CDC</td>
</tr>
<tr>
<td>UbiMedia Lab</td>
<td></td>
<td>Alcatel-Lucent</td>
</tr>
</tbody>
</table>

Table 1.10: Long term collaborations with industrial partners or agencies: CoC is the Center Of Competence on Information Extraction and Image Understanding for Earth Observation. It is both a chair and a lab. DLR is the “Deutsches Zentrum für Luft- und Raumfahrt” i.e. the German Aerospace Center. Ubi Media Lab is a joint lab dedicated to the development of the next generation medias.

1.4.5 Recent Remarkable Results

In June 2009, Clément Genzmer, prepared by Pierre Senellart, wins the SIGMOD/Pods First Annual Programming Contest.

In January 2009, a joint laboratory is created by Alcatel-Lucent and Institut Télécom, on Multimedia over the Net. Télécom ParisTech plays an important role in this Lab.

In December 2008, Isabelle Bloch, received the Blondel Medal from SEE, for her original work on mathematical morphology, fuzzy sets, data fusion, spatial reasoning and brain imaging.

In October 2008, inauguration of the COM’NUM joint laboratory between Altran and Télécom ParisTech.

In April 2008, the European Bugyo project, dedicated to secure platforms for e-business, received the Excellence Award from the Eureka CELTIC Agency for outstanding performance and excellent results.

In December 2007, Ghaya Rekaya-Ben Othman received the Young Woman Scientist Award from the Ville de Paris for her contribution to the invention of Golden Codes.

In December 2007, Jean-Claude Belfiore, received the Blondel Medal from SEE, for his contribution to digital communications, information theory and error-correcting codes.

In August 2007, was created the EDF - Télécom ParisTech BiLAB (Business Intelligence Laboratory), joint laboratory devoted to the management of large flow of data issued from warehouses.

In October 2007, Lucille Denoeud-Belgacem received the Simon-Régnier Prize from the French Classification Society for her work on distance defined over partitions of a finite set.

In October 2007 was inaugurated the TélécomParisTech - Polytechnique - FranceTelecom Chair on Innovation and Regulation of Digital Services.

In December 2005, Jean-Sébastien Lantz received the Turgot Prize for the Best 2005 book on Financial Economy.

In June 2005, creation of the CNES - DLR - Télécom ParisTech Centre of Competence and Chair on Information Extraction and Image Understanding for Earth Observation.
1.5 An Overview on Research

1.5.1 In the Departments

As said before, research is mostly done within the departments. Departments being in charge of both research and education are designed to cover four broad thematic fields without too much overlap. The thematic research provided by departments will be presented in details in the rest of this report. It is distributed in the following way.

Communication and Electronics: COMELEC

This department is dedicated to a domain going from Applied Physics to Electrical Engineering. A part of its developments is based on laboratory experiments either made in its own laboratories or in partners’ facilities. Physics is concerned with microwaves, antenna, propagation, optoelectronics, guided optical systems, optical devices and quantum cryptography. An important part of its research is devoted to the conception of electronic devices and systems, in analogical, digital or hybrid technologies, systems on chips, software radio and nano-technology. Its favourite constraints are for low energy devices, secure architectures, efficient packaging and of course with high bit rates. It also has a long research tradition in information and coding theories.

The COMELEC department consists of four teams:

• digital communications (COMNUM),
• complex digital electronic systems (SEN),
• electronics and radio frequencies systems (ELECRF),
• optical communication systems (GTO).

Computer Science and Networks: INFRES

The Computer Science and Networks department covers fields from software and system engineering (component modelling, middleware, reconfigurability, adaptability) to network technologies (internet, optical networks, administration, traffic modelling, QoS) and from artificial intelligence (natural languages processing, databases, semantic web) to security (critical infrastructure protection, quantic networks, ad hoc and active network security, privacy, cryptology, PKIs, protection of services).

Its presentation is structured around three teams:

• interaction, cognition and complexity, systems, software and services (IC2&S3),
• mathematics of information, communications and computation (MIC2),
• optical network, mobility and security (RMS).

Economics and Social Sciences: SES

This department is the last one created to cover the various fields of humanities, social sciences and management related to high technologies. The domains of interest are related to industrial economics of information systems, analysis of competition in leading edge industries, critical studies of interpersonal communication models and analysis of situations and strategies in communication.

This department is presented as one team only, with three main directions of research:

• regulation and innovation,
• industry evolution and cultural creation,
• interaction, technology and activity.
1.5. An Overview on Research

Signal And Image Processing: TSI

This department is mostly concerned with processing the new medias: audio signals (with a specific interest to music), biomedical signals, images (mostly for remote sensing, medical and cultural heritage applications), graphics and video. It also pays attention to the statistical aspects of signal processing, to machine learning and to signal and image modelling.

The TSI department consists of four teams:

- audio, acoustical and optical waves (AAO),
- multimedia (MM),
- statistics and applications (STA)
- image processing and interpretation (TII).

1.5.2 Multidisciplinary

Apart from the disciplinary research, Télécom ParisTech also develops an important activity in the transdisciplinary domains, activity which, by nature will not be so much evidenced in the next chapters written team by team. Therefore a brief presentation is made here emphasizing the active exchanges between the departments, and underlining existing links.

Pervasive Digital Life

The role of computer technologies in the society is growing in a seemingly unbounded way thanks to the impressive progress of networking, mobile communications, protocols and middlewares. But the contribution of technological components (antennas, RFID, contactless connexions, sensors and actuators, . . .) should not be underestimated when evaluating the progress of the Internet of things. In this domain, a continuity of research may be found in the INFRES and COMELEC departments, and these two departments share with TSI a similar interest for the field of multi-sensor networking which obviously links together the various smart objects and guarantees their inter-operability.

Moreover, the SES department is interested in analyzing the acceptability of these pervasive technologies in a society which is more and more aware of ethics, health and welfare. As a consequence of interdepartemental discussions, Télécom ParisTech is proposing solutions in the public's best interest, even if those solutions oppose technological progresses.

Security

Here again exists a continuity of actions between the COMELEC department (the research of which is strongly focussed on the security of devices and components) and the INFRES department which is concerned with cryptography, protocols, networks and infrastructure safety. The physical aspects of security are taken into account with thermal and electromagnetic manifestations of computing (the so called hidden-channel effects) for smart cards, processors and devices in the COMELEC/SEN team, while privacy, cryptology, PKIs, authentication and protection of services are the core research of the INFRES/RMS team. TSI department intervenes when biometry as well as when watermarking (with audio signals, images, video or objects) are concerned. Again the SES department is an unreplaceable partner because privacy and security are major components of the business model of any novel technology entering the market.
Quantum Communication

Because they are based on the physical foundations of quantum information, quantum communications are treated at Télécom ParisTech by the two departments who maintain optical facilities: COMELEC and TSI. Because of the specific problem of elaborating a protocol competing with usual cryptographic approaches, they are also developed in INFRES department. Collaborations between teams are intense and diverse going to models of bipartite or multipartite links, to the construction of memories, establishment of protocols, construction of specific quantum codes on networks.

Data Management in the Knowledge Society

Information management systems are developed both in INFRES department where their connexions with data bases and with knowledge representation are exploited, and in TSI department where machine learning mechanisms are applied in narrow relationship with media processing: analysis and description of audio-signal, images or video. Here again comes the SES department, concerned with efficient interactions, ergonomy and user-centered developments.
Part I

Communications and Electronics
Communications and Electronics (COMELEC)

The research led in the Communications and Electronics department is devoted to the physical layer of ICT (Information and Communication technology). A useful concept for depicting the department main research concern is that of “physical information”, where the information content is actually reached through some physical properties and manipulated using physical laws such as Maxwell electromagnetic equations or Quantum Hamiltonians. The department covers both the field of communication and that of information processing (electronics).

The department accounts for 36 permanent research staff and hosts about 90 non permanent researchers, including PhD students. The research activity is covered by four different teams. While fixed communications are dealt with by the Optical communication group, the Electronics and RF systems team concentrate on the transformation from analog to digital information and to its transmission through wireless means. The Digital communications team works on the digital coding of the information, and prepare for the future digital communication breakthrough in MIMO system, multi-hop communications or multi-users wireless communications. Processing information requires extremely sophisticated Silicon chips (processors, FPGAs, SOCs), the architecture of which is central to the Complex Digital Electronics system team. Transverse to all these activities, one may also find security as a main topic.

The department research policy claims for a research effort that spreads from fundamental physics to applied results. One may for example note the use of quantum dots for optical clock recovery (see the optical communication team) or that of photonic crystal (also called metamaterial) for advanced antennas (Electronics and RF Systems team). The balance between exploratory research and market oriented results is well expressed by the 1:4 ratio between our private partners funding and our total research contract income (7 Meuros cumulated over the period). Because of an innovation minded research taking its roots in fundamental theories, the department was granted 29 patents while publishing over 550 papers in journals and conferences in the evaluation period.

The department is also strongly involved in educating students for research. This is reflected by the 70 defended PhD thesis over the period. A budget of about 75 keuros is also spent yearly for master student internships in the department research groups, with a total of about 150 man.month of internship generated every year. Besides its contribution to the “ingenieur courses” of TELECOM ParisTech, the department researcher’s participate to master courses with ParisVI, ParisXI, as well with the University of Nice.

In terms of outreach, the department was strongly involved in a number of initiatives both at local, national and international levels. Among other actions, one may notice the Electronics and RF systems team involvement in the creation of the GIS Esys “Groupement pour l’Electroonique des Systèmes” led by Supelec. The Complex Digital Electronics system team initiated the Sophia-Antipolis Formal Analysis group SAFA and recently animated its first workshop. The Electronics and RF systems team was also a recognized actor in the launching of the joint IEEE Newcas-TAISA conference. Of interest, a world open contest on electronics attacks was launched by the Complex Digital Electronics system team at the CHESS meeting. In order to help for a better European visibility, the department head created and chaired the IDEA League (Imperial College,
Delft University, Eth Zurich, Aachen RWTH) ICT cluster. As an international impact indicator, the department teams are currently involved into two European STREPS, three European NOE's, one Eureka program and lead a Carnot-Fraunhofer project.

<table>
<thead>
<tr>
<th>Faculty [IT, CNRS]</th>
<th>[29.75, 2.75]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD students</td>
<td>48.5</td>
</tr>
<tr>
<td>Post-docs, engineers and sabbaticals</td>
<td>10.75</td>
</tr>
<tr>
<td>Defended PhD theses</td>
<td>70</td>
</tr>
<tr>
<td>Defended HDR</td>
<td>4</td>
</tr>
<tr>
<td>Journal papers [published, in press]</td>
<td>[143, 18]</td>
</tr>
<tr>
<td>Papers in conference proceedings</td>
<td>410</td>
</tr>
<tr>
<td>Chapters and books</td>
<td>10</td>
</tr>
<tr>
<td>Patents and software</td>
<td>[29, 5]</td>
</tr>
<tr>
<td>Grants [public, private, european] (k€)</td>
<td>[4731, 1902, 417]</td>
</tr>
</tbody>
</table>
Chapter 2

Digital Communications (COMNUM)

Team leader Jean-Claude Belfiore (P).

Faculty
Jean-Claude Belfiore (P), Joseph Boutros (MC, 07/07), Philippe Ciblat (MC),
Walid Hachem (CR CNRS), Ghaya Rekaya-Ben Othman (MC), Olivier Rioul (MC),
Georges Rodriguez (MC), Aslan Tchamkerten (MC, 09/08–).

PhD students
H. Dubreil (01/02–06/05), A. Cipriano (01/02–07/05), S. Calvanese (05/02–12/05),
E. Jandot Dit Danjou (10/02–12/06), G. Kraidy (10/02–09/07), A. Ghaith (11/02–06/06),
S. Chourou (11/02–03/07), A. Le Poupon (11/02–11/05), A.L. Deleuze (12/02–02/06),
F. Kharrat (12/02–10/06), A. Zaidi (12/02–12/05), M. Muck (01/03–05/06),
S. Dubouloz (10/03–06/08), C. Abou Rjeily (10/03–10/06), I. Andriyanova (11/03–12/06),
M. Tlich (11/03–06/06), A. Alcaoum (12/03–09/08), S. Yang (10/04–11/07),
M. Sarkiss (12/04–02/09), A. Mahmood (01/05–07/08), R. Ourtany (01/06–12/08),
M. Pischella (03/06–03/09), C. Hucher (01/06–), K.K. Patel (07/06–),
M. Badr (09/06–), E. Bouton (09/06–), R. Ayadi (10/06–),
L. Mroueh (10/06–), A. Salah (10/06–), A. Bouzegi (11/06–),
A. Le Duc (01/07–), M. Nahas (09/07–), C. Abgrall (02/08–),
A. Osmane (10/08–), C. Valencia Cordero (10/08–), C. Aki (11/08–),
M. Plainchaud (11/08–).

Post-docs and engineers
E. Calvanese Strinati (05/05–12/05), I. Krikidis (02/06–12/06), A. Klein (02/06–12/06),
F. Kharrat (09/07–10/08), L. Luzzi (10/07–), M. Sarkiss (02/09–).

Sabbaticals
M. Burnashev (Russian Academy of Sciences; 03/09–04/09),
M. Ghogho (Univ. of Leeds; 09/08–10/08).

External collaborators
E. Viterbo (Univ. of Calabria),
O. Damen (Univ. of Waterloo),
F. Oggier (EPFL).
2.1 Objectives

The Digital Communication team is traditionally working in what is called the physical layer of a network, that is, how to reliably transmit data from one point to another one. In order to achieve that, many techniques are used,

- Information theory to establish the fundamental limits of the system
- Signal processing to address problems related to synchronisation, channel estimation, modulation techniques such as OFDM or Ultra WideBand
- Channel Coding covering two aspects. One of them is the traditional channel coding with redundancy and the other one uses tools from number theory in order to find the right geometrical transforms that will give diversity in wireless systems.

During the last years many evolutions of this area have given rise to the study of a more complex problem than the point-to-point communication. It has started with the use of multiple antennas at both the transmitter and the receiver, the so-called MIMO systems.

Starting from this problem, many other ones appeared among which cooperative communications, multi-user communication systems or more generally, wireless networks. Many nodes in a wireless network want to communicate data to other nodes helped by a third group of nodes (through multihop communication). The digital communications team has followed this evolution by working on MIMO systems, on cooperative systems and on multi-user communications where we consider many data flows instead of a single one.

A last part is devoted to statistics for communication seen as a tool for analysis and for parameter estimation.

Notice that our research activities are always supported by national, European or industrial fundings. In addition to these activities, the team has an intense activity in terms of teaching for the Engineering school as well as for Research Masters. We especially are the leader for the Research Master, called ESCO/STN, in collaboration with Université Pierre et Marie Curie.

2.2 Main Results

The main research results obtained during the period 2005-2009 are presented below.
2.2.1 Coding and Decoding for MIMO Systems

Faculty J.-C. Belfiore, J. Boutros (~07/07), G. Rekaya - Ben Othman

Main events Organisation of NEWCOM Autumn School on “Space-Time Coding” which took place in Turin in 2006 with 25 attendees. Jean-Claude Belfiore was the recipient of “Médaille Blondel” in 2007 for the invention of “Golden Codes”. Ghaya Rekaya Ben Othman was the recipient of “Jeune Chercheuse parisienne” award in 2006.

Projects ANR XCODES, CIFRE MITSUBISHI, CIFRE THOMSON

Space-Time Coding Space-Time coding techniques have been successful and widely used these last years. Some Space-Time codes have been integrated in several standards like the 3GPP (HSDPA), the Wifi (standard IEEE 802.11n) and Wimax (standard IEEE 802.16e). Our team is widely recognized in the world for its works on Space-Time codes. After the celebrated “Golden Code”, proposed for 2 transmit antennas MIMO systems, we have extended this construction to a larger number of transmit antennas, using the fantastic tool of cyclic division algebras [148]. These new codes have been called “Perfect Codes” [36], and include the Golden Code as a special case. In the context of impulse Ultra WideBand (UWB), the complex envelope of the transmitted signals is real. We have developed real Space-Time codes adapted to the UWB context [3, 1, 5, 4]. A new space-Time code called the “Silver Code” has been recently proposed for the 2×2 MIMO channel. This code has a low decoding complexity compared to the Golden code. We have found the algebraic structure of this code (an ideal of an order of a cyclic division algebras) [118].

Variations on the Golden Code Space-Time codes were constructed to exploit all the degrees of freedom of the MIMO channel, in terms of diversity and multiplexing gain. In practical applications, these codes are concatenated with error correcting codes such as turbo-codes or LDPC. To analyze the performance of these codes in a practical context, we have studied the integration of the Golden Code in the MIMO-HSDPA [108] and in the WiFi 802.11n [101]. For the MIMO-HSDPA, it was proven that the Golden code offers the best performance compared to the best scheme having the same rate and the same diversity order. For the Wifi, the Golden code have almost the same performance as the other codes, this is explained by the high frequency diversity provided by the convolutional code compared to the diversity provided by Space-Time Code. We have also considered the case of correlated antennas at the emission side. The performance of the Golden code in this context are deteriorated. We have so proposed a linear precoder taken into account the correlation [122]. We have also studied the use of the Golden code and the 4×4 Perfect code in the case of very slow fading channel (channel constant during more than 50 time slots). We have proposed a partition of the Golden code and the 4×4 Perfect code function of the minimum determinant, and a coding and decoding scheme concatenating the Space-Time Code with Trellis codes [127, 23]. These partitions provide an important gain compared to the simple Golden Code. We was also interested to the use of the Golden code in the case of slow fading channel (channel constant during less than 50 time slot). We have propose in this case a coded modulation scheme combining the Reed-Solomon code and the Golden code that maximize the minimum determinant [33]. Very good performance was obtained compared to the simple Golden code.

MIMO Decoding Algorithms MIMO (even distributed) schemes with or without linear Space-Time codes have a lattice representation which allow their decoding using lattice decoders. The most known and used lattice decoders in the literature are the sphere decoder and the Schnorr-Euchner algorithm. Both decoders offer ML performance but have a complexity which dramatically increases with the lattice dimension and constellation size. We have studied the sequential algorithm called “stack decoder”, which is a tree search algorithm under a cost function constraint, originally proposed in the literature to decode convolutional code. We have proposed a
new decoder, called “SB-stack”, which uses the tree search strategy of the stack decoder (best first search strategy) and the search region of the sphere decoder (a sphere centered on the received signal). This new algorithm have ML performance, but is 30% less complex than the sphere decoder. By introducing a bias parameter (b) in the cost function, the SB-stack offers a range of performance going from ML ($b = 0$) to ZF-DFE ($b \to \infty$), with decreasing complexity. We also modified the SB-stack to get soft outputs, necessary if the Space-Time code is concatenated with channel coding. A patent on the SB-Stack has been registered [159]. In practical application, a variable decoding time could be a big problem, for example for real-time applications. To solve this problem we have proposed an adaptive decoding scheme, giving rise to another patent [158]. The idea of this adaptive decoding is to choose the most appropriate decoder (optimal or sub-optimal) as a function of the channel quality and the desired performance. We observed, through simulation results, that the decoding complexity remains constant for all channel realizations and for all signal to noise ratios.

Up to now, decoding of algebraic space-time codes has been performed using their lattice representation. The algebraic structure of the code has completely been ignored at the receiver side. We have been able to exploit the algebraic structure of the code even at the decoding side. We have proposed a new decoding method for 2×2 space-time codes constructed from quaternion algebras (like the Golden code) which directly exploits the multiplicative structure of the space-time code in addition to the lattice structure [120]. This method, called “algebraic reduction”, consists in making the code absorbing most of the channel. This is done by approximating the channel matrix by a unit of a maximal order of the associated quaternion algebra. In the quaternionic case, the Swan algorithm can be used to find a finite set of generators of the unit group, by considering its action on the hyperbolic 3-space H_3. Supposing that this set is known, we develop a searching algorithm to find the best approximation of the channel matrix as a product of these generators. For the Golden Code case, simulation results show that using MMSE-GDFE left preprocessing, the performance of algebraic reduction with ZF decoding is within 3dB of the ML. However the complexity of the algebraic reduction is negligible compared to the ML decoder. A patent on this algebraic reduction has been registered [157].

2.2.2 Multihop Communications

Faculty J.-C. Belfiore, P. Ciblat, W. Hachem, G. Rekaya - Ben Othman

Main events Jean-Claude Belfiore was Technical Track Chairman for conference IEEE PIMRC in 2008. Jean-Claude Belfiore was Publications Chairman for conference IEEE ISIT in 2007.

Projects ANR RADIC-SF, ANR ORIANA, Pôle SYSTEMATIC/ URC Project, CRE FRANCE TELECOM, CIfRE FRANCE TELECOM

New Protocols for Relaying Schemes In the literature two main kinds of relaying protocols exist: Amplify-and-Forward (AF), and Decode-and-Forward (DF). Some other approaches, such as Dynamic DF (DDF) or Compress-and-Forward (CF), have been introduced in the literature, but we did not consider them in our work because of their high computational load. We remind that the relay only applies a linear operator on the receive signal before to re-transmit it in AF based protocols. In DF based protocols, the relay attempts to decode the data, and re-encodes them if data have been decoded. We have proposed two significant improvements to such protocols.

Amplify-and-forward cooperation is an attractive scheme probably because of its low relaying complexity and its nature of linearity. We have shown that it is indeed efficient and optimal in various scenarios as far as the diversity is concerned. Using the diversity-multiplexing tradeoff (DMT) as our evaluation tool, two scenarios are considered : the large network scenario and the small network scenario. In small networks, the non-orthogonal amplify-and-forward (NAF) scheme has been studied. It has been generalized to the MIMO case, where upper and lower bounds on the DMT the NAF scheme have been derived [43]. The same NAF has been successfully used on UWB systems [6]. All the known half-duplex cooperation schemes, including
both the class of decode-and-forward and amplify-and-forward schemes, are inefficient in the high multiplexing gain regime. With multiple relays, we have shown that the diversity gain can be improved by letting as much the source signal as possible be forwarded by the relays. A simple sequential slotted amplify-and-forward scheme has been proposed \[44\]. It is shown that this scheme tends to the cut-set bound in some particular cases when the number of slots goes to infinity. The proposed AF cooperation schemes have equivalent MIMO or parallel MIMO channels representation. Both construction criterion and implementation of approximately universal codes have been developed \[43, 138\].

Concerning DF, we propose a half-duplex single-relay protocol called Decode or Quantize and Forward (DoQF). The added quantification step occurs when the relay did not succeed to decode its receive signal. Instead of being silent, the relay sends a quantized version of its receive signal to the destination. The new protocol has been analysed over slowly fading wireless channels. In this context, a relevant performance index is the so-called Diversity gain-Multiplexing gain Tradeoff (DMT). We proved that the DMT of the proposed DoQF relaying protocol, which is a static protocol characterized by a practical receiver structure, achieves the 2×1 Multiple Input Single Output (MISO) upperbound for small multiplexing gains. DoQF protocol thus outperforms the classical non orthogonal Decode-and-Forward (NDF) protocol in terms of DMT. To prove the benefit of the proposed method, we also derived the outage gain which is defined as follows: the term $\rho^2 P_o$ converges to a constant ξ when the SNR ρ tends to infinity and N represents the number of relays. This constant ξ will be referred to as the outage gain. We showed that the DoQF protocol is optimal in terms of outage gain in a wide class of half-duplex relaying protocols \[58\]. We also studied the outage probability behavior in the context of multi hop communications where the relays are not synchronized. AF as well as DF protocols were considered \[105\].

Power and Time Optimisation in Relaying Schemes In the context of cooperative wireless networks that convey data on slow fading channels, several protocols that define how the source the relays and the destination have to operate, have been proposed in the literature. One can mention, as already done above, AF, NAF, SAF (proposed by our team), DF, NDF, DoQF (proposed by our team), DDF, etc. When the channels realization are unknown at transmitter sides, these protocols have been extensively analysed in terms of DMT. Nevertheless DMT criterion does not provide insights about the total power distribution between the source and the relays since this criterion is insensitive to that distribution. Moreover each frame defined in any protocol is divided into several time slots. Often these time slots have equal durations for sake of simplicity. Our main contribution was to provide solutions to the optimization problem of power distribution and time slots durations. To do that, as DMT criterion is not efficient, we suggested to only focus on the outage probability P_o when the required data rate is fixed. However, it is often hard to derive a closed-form expression for P_o, valid for any value of the Signal to Noise Ratio (SNR). The problem can be simplified by studying the behavior of P_o in the asymptotic regime where the SNR ρ converges to infinity. In this regime, usually $\rho^{N+1} P_o$ converges to a constant ξ where N is the number of relays. We have proposed a simple and general method for deriving and minimizing ξ with respect to the power distribution between the source and the relays, and with respect to the time slots durations specified by the relaying protocol when transmitters only have a statistical knowledge of propagation channels. While the proposed approach is designed for the high SNR regime, we showed that outage probability is reduced in a similar proportion at moderate SNR. Notice that AF, NAF, DF, NDF, and DoQF have been handled. Moreover the method applies to a general class of radio channels that includes the Rayleigh and the Rice channels as particular cases. Last but not the least, we proved that ξ is convex with respect to the design parameters which leads to a simple optimization algorithm \[22\].

Analysis of Multi-Hop Communication Schemes Without Direct Link Notice that all previous works have done under the assumption that a link (even weak) exists between the source and the destination. When this assumption is not satisfied, a lot of previous works fall down, and a new analysis has to be done. In large networks, requiring the relay terminals to decode the source
message imposes a harsh constraint and limits the achievable multiplexing gain in general, especially when the source and the destination have multiple antennas. A naive amplify-and-forward scheme is space-only processing that achieves the maximum multiplexing gain but suffers from diversity loss. By introducing a simple temporal processing, a flip-and-forward scheme achieves both the maximum diversity and maximum multiplexing gain provided by the channel. It is the best known cooperative scheme in this scenario, in terms of the DMT [46].

2.2.3 Multi-User Communications

Faculty J.-C. Belfiore, P. Ciblat, W. Hachem, G. Rekaya - Ben Othman

Main events Philippe Ciblat served as Associate Editor for IEEE Communications Letters during the period 2004-2007.

Projects ANR RISC, CIFRE THALES, CIFRE MOTOROLA, CRE FRANCE TELECOM, Network of Excellence NEWCOM and NEWCOM++

Analysis of Impulse Radio UWB in Multi-User Environment In multi-user environment, the rake receiver for UWB modulated signals offers poor performance because of the multi-user interference which may be significant. One mean to reduce the level of multi-user interference is to design the multi-user codes properly. Therefore, we have focused intensively on the characterization of the “good” multi-user codes and of the “bad” multi-user codes in impulse radio UWB based on either time-hopping (TH) or direct sequence (DS) multiple access.

First of all, we showed that the multi-user interference assuming fixed multiple access codes can be well approximated by a Generalized-Gaussian Distribution whatever the multipath channel model. Then, thanks to this approximation, we derived an accurate closed-form expression for an approximation of the error probability in both TH and DS multiple access context. Note that the analytical expression for the error probability depends on the real multiple access code.

Secondly, from this error probability approximation, we were able to characterize and to select the set of codes minimizing the error probability for both multiple access techniques. Notice that the set of codes minimizing the power of the multi-user interference is an upperset of the set of codes minimizing the error probability. The merit of each multiple access technique has been then analyzed: we especially proved that the probability to find an optimal pair of codes goes to one when increasing the number of chips per symbol with TH technique whereas this probability goes to zero with DS technique. Therefore we advocated to employ TH technique rather than DS technique [92]. The study of a MIMO multiuser system has been proposed in [4].

Analysis of OFDMA Based Systems in Multi-Cell Environment In the context of Frequency-Hopping OFDMA with a frequency reuse factor equal to one, we have analysed the influence of the multi-cell interference on the performance for the downlink situation. We have assumed that the channel is unknown at the transmitter, but that the channel statistics are available. Furthermore, as frequency-hopping scheme is carried out, we have considered that the ergodic capacity was a accurate approximation of the achievable data rate. Firstly, under the assumption that the base stations combat the multi-cell interference by increasing their own power in order to satisfy the target data rate of their users, we have shown that it exists one power value for which the multi-cell system is stable if the target data rate are lower than a certain value playing the role of a “capacity”. Moreover the subcarrier and power assignment per user has been optimized [16]. Secondly, to be more realistic and to satisfy the recommendation of Wimax forum, we then assumed that a certain part of the available bandwidth may be reused by different base stations (and is thus subject to multicell interference) and that an other part of the bandwidth is used by one base station only (and is thus “protected” from multicell interference). In such a context, we proved that all the subcarriers of one user will be either on the protected bandwidth or on the shared bandwidth. We thus proved that the naive idea of separating bandwidth into two classes
2. Digital Communications (COMNUM) 2.2. Main Results

is optimal! Thanks to an asymptotic analysis for which the number of users was considered to tend to infinity, we were also able to characterize the optimal frequency reuse factor in closed-form [95].

We have studied power and frequency allocation in a distributed OFDMA cellular context [38]. We have established a convergence criterion in the SISO case [37], which has been extended to the MIMO case [114], for rate constrained users. This study has been done for perfect Channel Side Information at transmitters (CSIT), but also for statistical CSIT, for which a new expression of the outage probability has been derived. Then, the case of Best efforts users has been considered, still for OFDMA distributed cellular networks. In the literature, only the case of the high SNR regime has been considered. We gave a new method for.

Resource Allocation in OFDMA Based Systems Multi-user systems based on OFDM are frequently used in powerline or quasi-static wideband wireless channels. Typical scenarios assume that precise channel state information can reasonably be obtained at the transmitter and at the receiver. In downlink, a spectral mask constraint is usually imposed too. In such previous context, we assumed two multiple access schemes, MC-DS-CDMA and a simpler OFDMA, and we have investigated their achievable-rate regions. In particular, we studied the so-called “balanced rate criterion”, in order to select a point of the achievable-rate region which guarantees fairness among all the active users. We proposed simplified algorithms to calculate an approximate balanced rate solution for the OFDMA case. The loss of the OFDMA solution with respect to the MC-DS-CDMA solution is shown to be acceptable [68].

Analysis of Broadcast Channel and Multiple Access Channel for Slowly Varying Channels
We have been the first to design space-time codes for the multiple access channel with non cooperative transmitters and no channel side information at the transmitters. These codes have been found, first for single antennas transmitters [53], and then they have been generalized to the case of multiple antenna transmitters [55]. These codes have been shown to achieve between 6-9 dBs gain compared to time sharing. There are based on number fields and show a non zero minimum determinant when considering all users in error. Finally, the Multiple Access codes have been extended to the case of the Multiple Access Relay Channel (MARC) [54].

2.2.4 Statistics for Communications

Faculty P. Ciblat, W. Hachem, A. Tchamkerten

Main events Organisation of NEWCOM Autumn School on “Estimation Theory for Wireless Communications” which took place in Paris in 2005 with 85 attendees. Walid Hachem and Philippe Ciblat have been Associate Editor for IEEE Transactions on Signal Processing since 2007 and 2008 respectively.

Projects ANR DEMAIN, CNRS/ACI MALCOM, CIFRE THALES, ANR SESAME, Royal Society fellowship

Optimal Training for Channel and Frequency Offset Estimation In the context of digital communications, in order to estimate the channel impulse response and also the Carrier Frequency Offset (CFO), a training sequence is sent periodically by the transmitter to the receiver. Of interest is the statistical description of the best training sequence and this can be done by minimizing the Cramer-Rao Bound (CRB). In this situation, most existing works proposed to average the CRB associated with the CFO over the channel statistics. But these works assumed that the channel components are independent and identical distributed (iid), which is a rather restrictive assumption. With this assumption, they established that the best training sequence is the pseudo-random white sequence. But, in practice, the iid hypothesis is often restrictive. We first
revisited the problem of training design for CFO estimation (considering correlated channel components) in the context of OFDM systems. In this situation, we unveiled the trade-offs that govern the optimum training sequence design, and showed that there exist training power profiles which are better than the uniform profile [17, 39]. We then addressed the more difficult problem of designing training sequence for joint estimation of the channel and the carrier frequency offset joint but in a single-carrier setting. Since in general the training sequence optimizing CFO estimation is not optimum for channel estimation, we have designed the training sequence that minimizes the Mean-Square Error on the soft estimates of the data symbols obtained using a Wiener equalizer after CFO compensation and averaged over channel statistics. We thus found an “optimal” training sequence, relevant for channel estimation and CFO estimation. Correlated and/or Ricean channel taps have been considered. We showed an significant gain on Bit Error Rate when using the proposed training scheme in lieu of white training [10].

System Recognition for Cognitive Radio In the context of cognitive/opportunistic radio, the signal central frequency does not characterize the used system any more since a system may choose its band in an opportunistic manner. In order to reduce latency, only short signal record has to be considered which may be unfortunately preamble-free. Therefore it is a crucial task to distinguish blindly various OFDM based systems (e.g., Wifi, Wimax, 3GPP/LTE, DVB-T) from each others. We have proposed two main approaches to fix the above-mentioned problem.

First of all, recognition algorithms can be based on the subcarrier spacing value, a quantity which is in general specific to a given OFDM system. Standard approaches rely on the detection of the cyclic prefix which directly provides subcarrier spacing value. Nevertheless these approaches fail when either the cyclic prefix duration is small or the channel impulse response is almost as large as the cyclic prefix. We have thus proposed four new subcarrier spacing estimation algorithms robust to short cyclic prefix and multipath channel [63, 61, 60, 62]. Secondly, we have presented two new OFDM system identification methods based on the structure (not the deterministic value) of the pilot tones. The first proposed scheme relies on the cyclostationarity property induced by the existing structure in time/frequency of the pilot tones. The second one is based on the characteristic of various maximum length sequences used to generate the pilot tones [129, 130].

Channel Estimation Performance for UWB Based Systems In the context of impulse radio UWB, we have addressed the CRB calculation for channel parameter estimation. We have considered a time-hopping code scheme with binary pulse position or pulse amplitude modulation formats. We derived in closed-form the (resp. modified) Cramer-Rao bound for the multipath channel parameters in the data-aided (resp. non-data-aided) context. Unlike existing methods, the calculations have been derived by taking into account the overlapping between signal echoes due to multipath. We showed that it is important to consider the overlapping assumption on realistic channel propagation environment since the Cramer-Rao bound using the non-overlapping assumption clearly overestimated the performance [11].

Tracking Stopping Times Through Noisy Observations Here we investigated a decision problem, the tracking stopping time (TST) problem, whose range of applications spans communication, detection, forecasting, quality control, and finance. The problem is stated as follows. Consider a sequence \((X_i, Y_i)\) of pairs of random variables. At time \(i\) Alice observes \(X_i\) and Bob observes \(Y_i\) only. At a certain time that depends on her previously observed symbols, Alice makes a decision. The goal of Bob is to estimate at best Alice’s decision time based only on his observations. In spite of the simplicity of its statement, the TST problem admits no general solutions. In collaboration with Marat Burnashev from the Russian Academy of Sciences in Moscow, we investigate decision time estimates that are provably close to optimal when the \(X\) and the \(Y\) sequences are highly correlated Brownian motions. Recent related results can be found in [35] and [108].
2. Digital Communications (COMMUN) 2.3. References

Large Random Matrix Theory and Wireless Communications The study of the spectral behavior of random matrices when both matrix dimensions converge to infinity leads to a deeper understanding of the performance of MIMO systems, multi user receivers, and wireless radio networks. In this context, we studied the distribution of the eigenvalues of a class of large matrices with non centered and correlated entries, and based on this study we characterized the Shannon mutual information of a general class of Ricean correlated MIMO channels \[19\]. We also proposed an optimization technique for the transmitter covariance matrix in order to attain these channels Shannon's capacity \[75\]. We also studied the convergence behavior of the log det functional (Shannon’s mutual information of MIMO channels) \[20, 21\], as well as the Signal to Noise Ratio at the output of multi user receivers \[26\], mostly under the form of Central Limit Theorems. These theorems lead to pertinent outage probability approximations.

Performance Detection for Wireless Sensor Networks In the context of wireless randomly located sensor networks intended to detect a 1D or 2D signal (temperature, moisture, ...) often the detection error probability decreases exponentially in the number of sensors. The characterization of the error exponent leads to interesting guidelines as regards the optimum sensor distribution given a correlation structure of the field to be detected. Beginning with the 1D case (detecting a signal by performing a random sampling) we characterized these exponents when the continuous parameter signal is described by a class of scalar or vector stochastic differential equations. We are currently seeking to generalize these findings to the 2D case (detection of a random field).

2.3 References

2.3.1 ACL: Articles in ISI-Indexed Journals

2.3. References

2.3.2 INV: Invited Talks

2. Digital Communications (COMNUM) 2.3. References

2.3.3 ACTI: Articles in Proceedings of International Conferences

2.3. References

2. Digital Communications (COMNUM) 2.3. References

2.3. References

2. Digital Communications (COMNUM)

2.3.4 ACTN: Articles in Proceedings of French Conferences

2.3.5 COM: Talks in Conferences Which Do Not Publish Proceedings

2.3.6 OS: Books and Book Chapters

2.3.7 AP: Other Productions: Database, Registered Software, Registered Patent, ...

2. Digital Communications (COMNUM) 2.3. References

Chapter 3

Complex Digital Electronic Systems (SEN)

Team leaders J-L Danger (DE), R. Pacalet (DE).

Faculty

L. Apvrille (MC), R. Ameur-Boulifa (MC), S. Coudert (MC),
G. Duc (MC, 04/09–), T. Graba (MC, 10/07–), S. Guilley (MC, −11/08),
P. Hoogvorst (CR CNRS), P. Matherat (CR CNRS), Y. Mathieu (DE),
L. Alves De Barros Naviner (MC), A. Polti (IE).

PhD students

I. Krikidis (12/03–12/05), D. Cardoso De Sousa (10/03–12/06), S. Guilley (10/03–01/07)
S. Chaudhuri (11/05–12/08), W. Muhammad (10/05–12/08), D. Teixeira Franco (11/05–12/08),
S. Mekki (01/06–06/09), Z. Larabi (10/06–), L. Su (10/06–),
N. Muhammad (10/06–), C. Jaber (11/07–), N. Selmane (11/07–),
E. Amador (03/08–), D. Knorreck (07/08–), S. Bhasin (11/08–),
O. Meynard (11/08–), Y. Souissi (11/08–), P. Bernal (01/09–),
M. Nassar (01/09–), G. Pedroza (01/09–), J. Torras Flaquer (01/09–),
G. Barbu (02/09–), G. Gonzalvez Dos Santos (05/09–), J. Gonzalez (06/09–),
M. Slimani (06/09–).

Post-docs, engineers

M. El Harhar (−05/06), F. Khefelian (−05/06), L. Toli (−03/07),
C. LeDuc (04/06–08/07), M. Chevalier (01/07–09/07), V. Vong (01/07–02/08),
Y. Zhuang (01/07–02/08), Z. Zou (11/06–02/08), R. Rasheed (10/06–),
L. Sauvage (06/07–), D. Comalrena (05/07–), S. Cerdan (10/07–),
G. Letourneux (01/08–), F. Flament (06/08–), H. Gouiaa (06/09–),
S. Somasavady (06/09–).

Associate Researchers

H. Chabanne (IP) Chef du pôle Recherche Sécurité et Cryptographie, Sagem Sécurité, 12/08–,
S. Guilley ((MC) Corps Interministériel Des Mines, 12/08–)

Sabbaticals

N. Homma (Associate Professor, Tohoku University Japan, 06/09–),
3.1 Objectives

The "Complex Digital Electronic System" team research topics are oriented towards efficient design of digital electronic systems. The team's research is based on the development of new algorithms, new architectures and new methods taking into account recent and future integrated technologies evolutions. The objectives are closely linked to the study of cutting edge techniques which allows electronic designers to meet ever growing constraints like complexity management, reliability, consumption, speed, and flexibility. Application focus on wireless digital communications, multimedia processing and security (trusted computing hardware).

The team has regular research collaborations with well known companies of the area such has STMicroelectronics, NXP, Freescale, ST-Ericsson, CEA, Orange or TexasInstruments. Among the academic laboratories the most representative are the CNRS laboratories LIP6 (UMR7606), LIRMM (UMR5506), GIPSA-Lab (UMR5216) or TIMA (UMR51599). We are also highly involved in the CIM (Centre Intégré de Microélectronique) PACA regional framework and the SAME (Sophia Antipolis MicroElectronics) association, two very important academic-industrials French consortiums. In order to balance industrials concerns and advanced academic research, we increased during the two past years our effort for PhD supervision. We focused our research towards four main themes. Design methodologies are covered by the Design Space exploration and assisted refinement of integrated systems theme. Architectures interaction with technologies are covered by the Optimal architectures for complex algorithms implementations theme, with a recent growing activity on reliability. Specific architectures for wireless digital communication are handled by the Software defined radio theme with internal collaboration with other teams of Telecom-ParisTech. The Trusted computed hardware theme, aiming at protection of hardware for security, has started seven years ago. It has now reached a mature status, with national and international recognition, as stated by the sabbatical of Pr Homma (Tohoku University), and the association of industrial researcher H. Chabanne from Sagem.

Team members, located in the sites of Paris and Sophia-Antipolis (LabSoC), have a strong teaching activity in the undergraduate and Master level at Telecom–ParisTech. Lectures are in the fields of digital electronic design, embedded systems design, SoC (Systems–on–Chip) design and embedded systems security. An important part is given to practical aspects which are covered by supervisions of numerous student projects. The latest research results feeds our teaching activity, for example, ANR SoCLib project methods are directly used in the "System-On-Chip Design" track of our Master of engineering. Team members have teaching activities and responsibilities at Master level in several others institutions such as Eurecom, Nice Sophia-Antipolis University or Paris-6 University.
3.2 Main Results

The main research results obtained during the period 2005-2009 are presented below for the research areas of the Complex Digital Electronic System team.

3.2.1 Design Space Exploration and Assisted Refinement of Integrated Systems

Faculty L. Apvrille, R. Pacalet, S. Coudert, R. Boulifa

Main events Release of the TTool Open Source toolkit, creation and animation of the SAFA (Sophia-Antipolis Formal Analysis Group) workshop.

Projects Industrial contracts with Texas Instruments (CASA I to V) and UDcast, Cifre PhD with Freescale, FP7 european project EVITA.

The increasing complexity of Systems-on-Chip requires new design and verification methodologies. The approach developed at LabSoC relies on modeling at a very high level and on early verifications in the design cycle. A strong separation between control and data processing is introduced. At the highest levels data processing is completely abstracted away. Control-oriented tasks exchange abstract and valueless samples, allowing ultra-fast simulations and static formal verification. This approach is supported by a dedicated UML profile (DIPLODOCUS) and a software toolkit (TTool). For the period 2005–2009 the main achievements are:

System-level Design Space Exploration (DSE): definition of a three-step methodology, comprising application modeling, architecture modeling and mapping of the former on the latter [228]. Simulation and formal verification are used in the first and second steps [194]. The current focus is on the post-mapping verification.

Fast simulation techniques: design and SystemC-Based implementation of a speculative, transaction-based simulation framework [232]. The current focus is on concurrent exploration of different simulation traces.

Formal verification: formal definition of the sets of primitives used in application and architecture modelling. Formal description of the mapping phase [194]. To overcome limitations of reachability analysis (e.g. combinatorial explosion, lack of refinement techniques), an formal verification scheme based on Description Logics has been investigated [195].

The TTool toolkit: design and open-source release of a toolkit. This toolkit shares several features with related works of the team, on distributed systems [161] [160] and requirement capture [194]. TTool is supported by Freescale. The whole framework is currently used in the context of the European project EVITA for security modelling and analysis on automotive security.

IP abstraction: proposal of abstraction techniques of fully detailed existing virtual components to allow high level verification. IPs at Register Transfert Level are raised at Bus Cycle Accurate Level [286] for verification. Data values are abstracted and replaced by data “presence” and dependency calculus replaces value computation. We then verify by model checking that outputs are produced at the expected dates with respect to the arrival dates of the corresponding inputs. This data dependency analysis also leads to control and data separation: [248] control or data labels are propagated from the primary inputs to the primary outputs and the module is sliced in two disjoined regions, allowing data abstraction and fast verification of the control slice. This work is theoretically founded. It relies on a rigorous approach of semantic data dependency at propositional logic level (and thus gate level). Approximations and complementary techniques (such as data bundling) are introduced to mitigate the complexity through accuracy-runtime trade-offs. This work also impacts our research activity on security.

1http://labsoc.comelec.enst.fr/turtle/ttool.html
3.2. Main Results

3.2.2 Trusted Computing Hardware

Faculty J-L Danger, T. Graba, S. Guilley, P. Hoogvorst, Y. Mathieu, R. Pacalet

Main events DPA Contest organisation at CHES’09.

Projects ACI MARS, ANR SAFE, ANR SeFPGA, ANR ICTER, System@tic Pôle “Secure Algorithm”, TES Pôle “EPOMI” STMicroelectronics “PACA Lab” projects SecMat, SecBus, SecKer, CALMOS, Cifre PhD with STMicroelectronics.

Cryptoprocessor implementations can be attacked by taking advantage of physical emanations when the ciphering operations are executed or by injecting faults to modify its behaviour. The attack goal is to recover the secret key of the known algorithm, or to modify the code stored in external memories. The research challenge is to provide countermeasures able to thwart all kind of attacks. The passive attacks also called “Side Channel Attacks” are based on the analysis of the physical activity which can be made either by observing the power lines or the electromagnetic field radiation. The active attacks consist in injecting faults. They can be generated by methods like underpowering the power supply, parasitic glitches emissions or laser shots. The attacks and therefore their protections are done at circuit level or board level. At circuit level they aim at recovering the ciphering key or even the algorithm. They can be performed on any circuit from the smartcard to the big VLSI devices.

Board-level probing attacks use external memories and memory buses as natural targets. Adversaries can acquire confidential data and even corrupt the execution of critical programs by much simpler means than what is required for silicon-level attacks.

Protection at logical and physical level: These protections have been carried out on customized prototypes ASIC circuits and FPGAs in order to understand the attack mechanisms and devise efficient countermeasures. Four ASIC chips have been designed in 130nm STM technology. They embed a complete System-on-Chip including cryptoprocessors implementing DES and AES algorithms with different level of protections. Passive attacks [220] and active attacks [253] have been performed successfully on unprotected cryptoprocessors [165]. New attacks have been devised. Some of them take advantage of the Electromagnetic acquisition [177]. Countermeasures based on differential logic [278] have been evaluated and their efficiency has been demonstrated [164] [166]. Protections against attacks have been carried out on both embedded and commercial FPGAs. A custom fully reconfigurable embedded FPGA has been designed [205] to allow dynamic reconfiguration of the cryptoprocessor in case of attacks [206]. Asynchronous logic in a custom FPGA has been investigated as a countermeasure against passive attacks. The architecture has been studied at both the interconnexion level [209] and the programmable cell [263]. A versatile cell with multi-style capability has been studied in order to increase the robustness [199]. Many protections have been devised and evaluated in commercial FPGAs. They are based either on “Hiding” techniques [224] [221] by using differential Logic or “masking” techniques [226] by using a random variable. Their complexity and computation performances have been optimized [225]. Innovative structures to protect cryptoprocessors have been patented [276] [275] [279] [274]. Fault attacks have been studied by simple and efficient methods like underpowering the power supply on an AES cryptoprocessor [231]. The random number generation which is critical to obtain a good entropy has been studied with a high speed constraint. A novel open loop TRNG structure based on a latch chain has been devised and tested [162].

Protection at board level: In close partnership with the Advanced Systems Technology division of STMicroelectronics we are working on a secure architecture [255] dedicated to medium to low end embedded systems and without any modification of the CPU nor the software design tools (which is considered unrealistic in this market). A strong cooperation between a trusted micro-kernel or hypervisor and a cryptographic peripheral (nicknamed SecBus) allows us to apply cryptographic functions only when needed and to select the less expensive among a set of candidate primitives for a given context. Our recent performance evaluations show that the SecBus

2Industrial contract PACA Lab 2004-2009, Cifre PhD of Lifeng SU
architecture is a very promising and cost effective solution to guarantee the nominal utilization of consumer equipments, and prevent the appearance of modchips or software jailbreaks.

3.2.3 Optimal Architectures for Complex Algorithms Implementations

Faculty J.L. Danger, P. Matherat, Y. Mathieu, L. Naviner, R. Pacalet, A. Polti

Main events NXP Semiconductor demonstrates Triscope project results at "Salon Européen de la Recherche & de l’Innovation". Invited conference at the Schloss Dagstuhl für Informatik GmbH.

Projects ANR SocLiB, ANR Asturies, ANR Telma, ANR Triscope, Bilateral Contract with STMicroelectronics for estimation of SER in Complex Systems, Bilateral contract with EDF for reliability improvement of systems implemented on FPGA

Architectures for image and multimedia processing: Video and image processing are more and more useful and required for numerous emerging services and applications but are often too computational expensive to reach real time on consumer devices (PCs, mobiles). On PCs platforms, we explored the usage a GPGPU (General Purpose Graphics Processing Unit) for a hardware accelerated multi-resolution and multi-prediction motion estimation algorithm used in real time video compression. This study led to very good performances [236] which are now confirmed by the success of the Compute Unified Device Architecture proposed by NVIDIA. Another weakness to note in the image processing on general purpose architectures is the inadequacy of cache memories architectures to the structured data organisation of multidimensional images. Furthermore, reconfigurable architectures (FPGA) designs are not well suited for complex cache management and leads to tedious development of ad-hoc memory management units. We proposed (ANR project Telma) a low-cost n-dimensional generic cache architecture for FPGA-Base image processing systems on chip exploiting spatial and temporal locality in a smarter manner than classical associative caches [234, 235]. Recent advances on high resolution LCD displays lead to emerging applications with 3D lenticular screens. In close partnership with NXP Semiconductor (granted through ANR project Triscope) we developed a real time hardware renderer for 3D LCD screens aimed to be the base for a full featured demonstrator for mobile 3D. For this purpose we designed a highly-integrated high-computational power embedded system (SHiX), featuring an embedded SuperH processor and a state of the art FPGA.

Architectures for communications: This activity is based on the global concept of reconfigurability. We defined a formal multilayer approach for reconfigurability in 3G systems. This formal framework was successfully applied to the DS-CDMA downlink detection giving a set of reconfigurable receivers appropriate for terminal implementations [168, 169, 268]. Time Interleaved High-Pass Sigma Delta converter (TIHP-Σ∆) assures the reconfigurability required by multistandard applications, but the digital processing inherent to this approach remains a bottleneck to achieve the ADC expected performances. We proposed a solution for signal reconstruction combining Comb-filter and decimation that reduces considerably computational requirements. Digital post-processing implementation based on our approach needs only a couple of integrators and differentiators [198].

Energy consumption of digital circuits and clockless systems: This research activity aims at modeling interactions between energy consumption of digital circuits, asynchronous circuits (with no global clock) and questions about algorithmic complexity. An initial work on dissipation of computation showed to us the links between language (computation) and matter (physical dissipation). This lead to the definition of “logical dissipation”, and showed that a minimal dissipation is linked to modularity, on one hand modularity in space (composition of complex circuits from primitive gates), on the other hand modularity in time (questions about “synchronization”). A better practical knowledge of the dissipation question for the design of VLSIs could come from a better formalization of asynchronous circuits, seen as a general frame for defining digital electronic components [171].
Reliable architectures: The semiconductor scaling process is reaching some important limits that reflect negatively in the reliability of the integrated circuits. Some of these are manufacturing imprecision, improved susceptibility to environmental factors and physical parameters variability [172]. Our work deals with challenges related to such reliability decrease and has been developed in collaboration with the “Electronics and RF systems” team. During the period concerned by this report, we focused on development of efficient algorithms and tools for reliability assessment, which is crucial to establish cost-quality trade-offs related to different reliability improvement schemes [383].

Using a new 2×2 matrix signal representation, we proposed a method for reliability analysis based on the cumulative effect of errors in the signals of the circuit [163]. The proposed Signal Probability Reliability (SPR) model embeds the contribution of multiple simultaneous faults to the reliability of the circuit. We registered the developed software implementing the SPR algorithm [289]. We also developed a new approach to obtain the reliability information based on the circuit’s capacity of logical masking. This Probabilistic Binomial Reliability (PBR) method associates fault-injection and simulation to determine an analytical equation for the reliability [211]. With the reliability equation available, many types of analysis can be done, like the susceptibility of the circuit to single and multiple faults, the reliability of the circuit for any particular value of individual gates reliability [210, 173].

Both proposed PBR and SPR approaches give accurate reliability values while requiring less computation power than state-of-the-art methods. Furthermore, the proposed methods allow several trade-offs between accuracy and computation complexity for reliability assessment.

3.2.4 Software Defined Radio

Faculty J-L Danger, R. Pacalet

Projects IDROMEL(ANR), Low cost UWB (Orange Labs contract), PFMM (French cluster SCS, DGE)

Flexible architecture for the Software Defined Radio (SDR)

Nowadays mobile communication systems, operate in different radio spectrum, radio access technologies, and protocol stacks depending on the network being utilized. This gives rise to the need of a flexible hardware platform that would be capable of supporting all the different standards in the entire wireless communication frequency range. This platform shall of course be extremely power efficient.

In a large multi-project context we propose a generic baseband prototype architecture for SDR applications [250], subdivided into a high level control module and a digital signal processing engine. This architecture can be used, for instance, in cognitive radio contexts [227]. The DSP engine is a composition of highly configurable processing blocks, like a “Fourier transform/vector processing” block [243, 242] or a generic channel decoder [188, 187, 243, 251], each dedicated to specific algorithms based on the analysis of different standards. Most existing works in the field are based on specialized micro-processors (vector processors, VLIW, ASIP, etc.) and on advanced interconnects (Networks on Chip). Unfortunately these solutions are still usually above the maximum power budget for such applications. Our approach mainly consists in identifying a small set of very complex hardwired processing blocks that will take in charge 90 to 95% of the total baseband processing power in a very power-efficient way. Each block is highly parametrizable and is assisted by a minimal 8 bits micro-controller that allows it to run sequences of operations (e.g. channel estimation) from basic commands (Fourier transforms, component-wise products, etc.) The platform is open and the whole project will be distributed under the French equivalent of the GPL-LGPL open source licenses, both for hardware models and embedded software.

Low cost UWB receiver

In order to meet the low-cost constraints and be Software Defined Radio compliant, the studied Ultra Wide Band communication systems is based on “Impulse-radio” protocols. The analog
part is made up of an antenna a Low noise amplifier and an energy detector which allows to meet the low cost requirement. The research challenge is to study complex algorithms to check the possibility to obtain high bit rate (around 100Mbps) even with a simple radio front end. In the frame of a collaboration with Orange Labs, the studies lead to three main results.

The first one is the probablistic equalizer which is based on accurate energetic channel model. This function runs jointly with an iterative channel decoder to improve the bit error rate [241]. The second result is the development of a new algorithm to estimate the energetic coefficients. This function takes advantage of the Expectation-Maximization algorithm (EM) to provide accurate energetic coefficients to the equalizer [240]. A simpler method based on a novel training sequence has been proposed [277]. The final result is an optimal architecture in a fixed point precision. The optimisation is partly based on a chi-square law approximation with a gaussian distribution. This implementation allows to meet the low-cost constraint of the digital implementation [239, 238].

3.3 References

3.3.1 ACL: Articles in ISI-Indexed Journals

3.3.2 ACLN: Articles in Other Refereed Journals

3.3.3 ACTI: Articles in journals without editorial committee

3.3.4 ACTI: Articles in Proceedings of International Conferences

3.3. References

3. Complex Digital Electronic Systems (SEN) 3.3. References

3.3.5 ACTN: Articles in Proceedings of French Conferences

3.3.6 COM: Talks in Conferences Which Do Not Publish Proceedings

3.3.7 AFF: Posters in Conferences

3.3.8 OS: Books and Book Chapters

3.3.9 DO: Journal or Proceedings Edition

3.3.10 AP: Other Productions: Database, Registered Software, Registered Patent, . . .

3.3. References

Chapter 4

Electronics and RF Systems (ELECRF)

Team leaders B. Huyart (P), P. Loumeau (P).

Faculty
X. Begaud (MC), E. Bergeault (P), J.C. Cousin (MC)
P. Desgreys (MC), B. Huyart (P), A.C. Lepage (MC, 09/07–),
P. Loumeau (P), J.F. Naviner (MC), V.T. Nguyen (MC, 04/05–),
H. Petit (MC)

PhD students
A.C. Lepage (01/02–06/05), S. Bensmida (01/02–08/05), A.J.B. Braga (10/02–09/06),
V.Y. Vu (10/02–12/05), L. Schreider (11/02–04/06), N. Ksentini (12/02–11/07),
H. Ghannoum (10/03–12/06), G.L. Abib (10/03–09/07), D. Camarero De La Rosa (11/03–06/07),
E. Rebeyrol (01/04–10/07), M. Ben Romdane (02/04–02/09), I. Masri (04/04–04/07),
F. Ziade (06/04–04/08), A. Latiri (07/04–06/08), M. Vahdani (10/04–10/08),
C. Mohamed (01/05–09/08), R. Mina (03/05–12/08), S. Martinez Lopez (09/05–09/08),
K. Mabrouk (12/05–12/08), M. Bahouche (02/06–), H. Khushk (09/06–),
W. Altabban (12/06–), M. Grelier (10/07–), C. Jabbour (10/07–),
F. Linot (11/07–), R. Mogharini (11/07–), F. Targino Vidal (12/07–),
D. Bibiano Brito (10/08–), A. Grugel (10/08–), P. Maris Ferreira (10/08–),
R. Mohellebni (10/08–), A. Thior (10/08–), Q. Chu (11/08–),
S. Kowlgi Srinivasan (04/09–09/09), A. Maalej (01/09–).

Post-docs, engineers and sabbaticals
G.L. Abib (10/07–03/08), S. Bensmida (10/05–10/06), D. Camarero De La Rosa (07/07–12/08),
R. Guelaz (09/07–03/09), S. Hamieh (06/07–02/08), H. Fakhoury (06/08–06/09),
A. Beydoun (02/08–), A. Khy (05/05–).
4.1 Objectives

Our research deals with the integration of radiofrequencies devices for wireless mobile communication systems. The activity is supported by public and industrial fundings. The current developments are made in close interaction with companies like STMicroelectronics, NXP, CEA, Thales, Thales Alenia Space, Thales Airborne Systems, LNE, Orange Labs or Schneider Electric.

From reconfigurable RF front–end to software defined radio: The goal of the software defined radio is to shift the processing of the received signal into the digital domain with the analog to digital conversion immediately after the antenna. The “software defined radio” main interest is to facilitate standard reconfigurability using numerical processing and simple software downloading. Yet, the software defined radio calls for analog to digital conversion performances that are not currently achievable. Our work concentrates on the joint optimisation of analog and digital functions that would match the software radio feasibility criteria. Novel concepts of electronics architectures are demonstrated through the design, fabrication and test of innovative CMOS circuitries. The long term goal is the building of a software defined radio platform.

Nanoelectronics architectures and circuits: New applications require an increased level of hardware and software integration at chip level if one wants to keep a moderate manufacturing cost. The evolution towards nanoscale technologies for a higher transistor density is therefore essential in a highly competitive environment. However, at decananometric or nanometric scale, new physical phenomena must be taken into account and modelized. Our research covers the modeling and the evaluation of new nanodevices as well as the study of smart acquisition interfaces satisfying the requirements of performance and portability.

RF metrology: Increasing communication rates as well as more demanding requests on wireless systems calls for improved RF metrologies. Our work involves:

- The new definition of standards for the measurements of both RF power and RF scattering parameters in the frequency range 1-18 GHz.
- The non-linear characterisation of power amplifiers in the frequency band 900 MHz - 10 GHz using numerical pre-distortion and source/load pull techniques.
- The sounding of indoor radio propagation channel in the ISM band 2.4 GHz.

Wireless communication systems technology: Our work on wireless communication systems technology concentrates on the so-called “RF front-end” which is one of the most sensitive part of communicating objects. It involves improved modulation/demodulations schemes as well as the study of novel antenna technologies applied to several wireless communication standards from 800 MHz to 40 GHz. The design of circuits for RF “Front-end” using MMIC or hybrid technology on GaAs or dielectric substrates is based on the three-phase “Zero IF” receiver. Concerning
the antenna design, the demand is currently on wideband and discrete structures in many application areas. Our research topics are focused on wideband and low-profile antennas and arrays. In the last few years, we developed and applied novel artificial materials for the antenna's reflector which has led to innovative and performant antennas. These materials are also used to reduce the coupling factor between the elements of an antenna array.

4.2 Main Results

The main research results obtained during the period 2005-2009 are presented below for the research areas of the “Electronics and RF systems” team.

4.2.1 From Reconfigurable RF Front-End to Software Defined Radio

Faculty P.Desgreys, V.T.Nguyen, H.Petit, J.F.Naviner, P.Loumeau

Main events Technical chairman of NEWCAS-TAISA09 IEEE International Conference, Coordinator of the project TEROPP between 6 Carnot Institutes and 3 Fraunhofer institutes, creation of the GIS eSys “Groupement pour l’Electronique des Systèmes”.

Projects Versanum ANR-05-RNRT-010-01, TEROPP ANR-07-P2IC-011 01, HyperSCAN ANR-06-TCOM-023-06.

Direct RF sampling and signal processing: Direct analog to digital conversion of the radio frequency (RF) signal is still unfeasible at present time, due to the high requirements imposed on the analog to digital converter. This motivates the need for a highly flexible RF front-end that can be fully integrated in low cost digital deep-submicron CMOS processes. Different techniques for shifting the RF and analog circuit design complexity to a digitally intensive domain were developed recently. A collaborative project with STMicroelectronics [299] was launched on direct RF sampling and discrete-time analog signal processing. The goal was greater flexibility and reduction of cost and power consumption in a reconfigurable design environment. To validate the flexibility and reconfigurability of the receiver, GSM and 802.11g communication standards have been addressed and adopted during system level study. The frequency plan and filtering scheme were made different for each standard to fully analyze and validate the flexibility of the architecture. A circuit designed and fabricated in 90nm CMOS technology was able to demonstrate the functionality of the receiver.

Non-uniform sampling: In the previous project, the first CMOS anti-alias filtering stage was improved but the costly discrete RF filter could not be suppressed. To deal with the suppression of RF anti-alias filtering, Non Uniform Sampling (NUS) based receiver architectures have been studied in a collaborative project with SUP’COM Tunis. We have demonstrated relaxed constraints on both RF filter and ADC dynamic power consumption using appropriate NUS architecture [307].

Analog to Digital Phase Locked Loop (ADPLL): An RF synthesizer is another challenging block of a RF analog front-end. By replacing analog blocks, it allows simpler reconfigurability in the case of wideband and high resolution applications. In this context, an ADPLL architectures has been studied and modeled in order to minimize the jitter noise and facilitate the design reuse [290]. The architecture was then proposed to NXP who has fabricated a successful demonstration circuit in 65nm CMOS technology in a collaborative project with TELECOM ParisTech. The collaboration will continue with a new CIFRE thesis.

Software defined radio: The development of the software radio concept is still very much limited by the available resolution and speed of the analog-to-digital conversion stage. Parallel analog-to-digital converters (ADCs) seem to be the best suited way of increasing analog-to-digital conversion rates in complementary metal-oxide-semiconductor (CMOS) technologies. To demonstrate the feasibility of such a goal, a four-channel time-interleaved (TI) SD ADC has been implemented in an advanced 65 nm CMOS process [198]. The objective was an EDGE/UMTS/WLAN
tri-mode TI ADC with signal bandwidth from 135 KHz to 12.5 MHz and resolution from 8 bits to 13 bits. Three intrinsic problems must be overcome: gain-mismatch, offset-mismatch and clock-skew. Among these problems, clock-skew is the more challenging one. We have implemented and demonstrated experimentally a new Mixed-Signal Clock-Skew Calibration Technique based on a digitally trimmable multiphase sampling clock generator. This demonstrator can correct an initial clock skew of thousands of picoseconds with a granularity of 1.8 ps [294]. Three patents have been filed like [440], [448].

Opportunistic Radio: Cognitive radio systems are aiming at seamless mobile connectivity and optimum spectrum management. The ultimate evolution is the opportunistic radio where the intelligence and decision power are mostly on the terminal side. Ideally, a wide band RF front-end for future mobile opportunistic terminals must cover multiple standards and bands (from 400 MHz to 5 GHz), and is able to scan the spectrum to detect un-used bands. In this context the team coordinates the TEROPP project - Technologies for terminals in opportunistic radio applications - that associates six Carnot Institutes and three Fraunhofer Institutes. The team is implied in the co design and optimization of the wide band front end elements. This project started in January 2008 and the end will be in September 2011.

Disruptive technologies Disruptive technologies offer new ways to accomplish breakthroughs in cognitive and opportunistic radio. Based on superconductivity physics, the RSFQ (Rapid Single Flux Quantum) logic is a very low power consumption and ultra-fast electronic logic which is considered as the best alternative to CMOS in the ITRS for ultra high frequency applications. The team has proposed an RFSQ Analog to Digital architecture in a work conducted within the ANR Hyperscan project. The goal is a 2x8 bits and 500 MHz BW Sigma-Delta analog-to-digital converter (ADC or CAN) circuit with performance specifications to achieve space telecoms at 30 GHz carrier frequency. To verify the project feasibility, we have developed a model that implements superconductivity physics into the RFSQ ADC circuit simulation [433].

4.2.2 Nanoelectronics Architectures and Circuits

Faculty P.Desgreys, J.F.Naviner

Projects NANOSYS “Action Concertée Incitative CNRS”, NANO-RF (Institute Telecom incentive project), French-Brazilian project supported by CAPES and COFECUB.

Currently developed technologies in electronics have all entered the nanoscale area, and low dimension physical phenomena which need not be taken into account in the past cannot be anymore neglected in the design process. Disruptive technologies are emerging and may become alternatives or complements to the massively used CMOS technologies in the future [172]. In 2004, we began to study novel nanoscale technologies in order on one hand to propose new methods in the architecture and circuit design process and on the other hand to evaluate potentialities of emerging technologies compared to MOS technology. More precisely, the following axis were considered:

- portability of mixed-signal architectures to CMOS nanoscale technologies (collaboration with STMicroelectronics);
- reliability of mixed-signal architectures and circuits;
- device modelling, performance assessment and the comparison with MOS.

Note that the last two axes were initiated in the frame of the national Action Concertée Incitative NANOSYS whose objective was “Architectures pour l’intégration des nanocomposants moléculaires”.

Device modelling, performance assessment and comparison with MOS: Both fundamental and economical CMOS limits generate the need for complementary and alternative technologies, with molecular electronics among the most promising ones. In the framework of two projects NANOSYS (ACI) and NANO-RF (Institute Telecom incentive project) in 2006 and 2007, a compact model of Carbon Nanotubes Field-Effect Transistors (CNTFET) was developed in VHDL-AMS language [336] to explore the high-frequency performance of CNTFET. We have shown
that the cut-off frequency expected for a MOSFET-like CNTFET is well below the performance limit, due to the large parasitic capacitance between electrodes. Our model demonstrates that an array of parallel nanotubes combined in finger geometry to produce a single transistor channel significantly reduces the parasitic capacitance per tube and, thereby, improves the high-frequency performance.

Architectures for sensor devices: Supported by a French Brazilian CAPES/COFECUB project, we have developed research activities on the reconfigurability of sensor acquisition interfaces. Reconfigurability is needed to adapt the interface characteristics to those of a particular sensor, to those of the environment and to the particular type of measurement. These objectives are in some way a generalization of the calibration or self-calibration problems. Our main target was the biomedical area where each patient’s impedance is different. Yet, the measurement accuracy must be kept unchanged to allow for rigorous diagnosis and appropriate medical decisions. Our main result was the development of an automatic compensation method that deals with the impedance mismatch of electrodes in applications like ECG, EEG, etc. This thematic has now been integrated in the researches on reliability considering the convergent problematics [379], [380].

Reliability of mixed-signal architectures and circuits: Works on reliability of analog or mixed-signal architectures were initiated in Oct. 2008 with a PhD thesis. Considering that many circuits are today Systems-on-Chip (SoC), that they include often various analog or mixed-signal sub-circuits and that the reliability level of a SoC results from both the reliability of each sub-parts and the connections/interactions between them, our main objectives are:

- to assess the reliability of basic functions considering the physical causes of failures (ageing effects or other causes),
- to assess the reliability of an architecture working at an abstracted behavioural level,
- to compare basic functions circuitries and architectures on both performance and reliability criteria,
- to define methods of architecture/circuit design that includes the reliability in the design criteria.

The present work is focusing on the reliability of radio-frequency front-ends. After studying the causes of degradation and failures in nanoscale integrated circuits with ageing, we have been working on the reliability assessment of a Low-Noise Amplifier (LNA) given the reliability model of the constituting devices [362].

4.2.3 RF Metrology

Faculty X.Begaud, E.Bergeault, J.C. Cousin, B.Huyart

Projects Bilateral project with LNE, Bilateral project with Orange Labs, Bilateral project with Schneider Electric, French-Brazilian project supported by CAPES and COFECUB, ANR Smartvision (Système multi sensor de détection d’objets cachés).

Power Standards: In the HF domain, the power standard is made of a calorimeter including a bolometric fixture. A power standard has been designed and fabricated in coplanar (CPW) waveguide technology with low return losses up to 8 GHz. A 3D electromagnetic simulation and measurements using TRL (Thru, Reflect, Line) calibration were performed. It allowed us to set the entire electrical model, including :

- the transition from the SMA connector to the CPW line
- the radiation
- the γ constant of propagation and the Zc characteristic impedance of the CPW line
4.2. Main Results

• the DC-blocks

The obtained average deviation between the computed and measured efficiency by a microcalorimeter is less than 1.2%. The computed and the measured values are sufficiently close to open the way for a programmable HF power standard using our technology. [394], [395].

Standard Impedances for S-parameters measurements by a probe station: In the context of the design of Microwave Monolithic Integrated Circuits (MMIC), the devices characterisations should be performed on wafer for optimising the reliability and reducing the manufacturing cost. Valid S-parameters measurements with a probe station is however an open metrological challenge. In collaboration with the LNE institute, we realised and tested calibration kits associated to a TRA (Thru, Reflect, Attenuator) calibration method for probe station measurements [398][395].

The main advantage of the TRA method in comparison with usual LRL (Line Reflect Line) method is the small size of the new standards. In that way, the manufacturer may add standards on the tested devices wafer to get the same electromagnetic propagation conditions between the calibration step and the test step.

Non-linear characterisation of power amplifier: Non linearities at the RF front-end level (power amplifiers for example) are a known source of impairment in wireless digital communications. It causes spectral spreading over adjacent channels and distorts the base band data. To reduce the distortion effects due to power amplifiers in the case of FSK, QPSK or 16 QAM modulated signals, we have successfully exploited a linearisation technique using a memoryless computed predistortion of the base band signals [314]. In order to study the impact of source and load impedances at the fundamental, the second harmonic and the low (base band) frequencies on the linearity, the efficiency and the level of transistors output power, a “sourcepull”-“load-pull” characterisation bench involving base band predistortion has been demonstrated [292, 315, 326, 293].

Radio communications channel sounding: The performances of a wireless propagation channel are strongly dependent on the propagation environment between the emitter and the receiver. A real time propagation channel sounder operating both in the time domain and the spatial domain is highly desirable for the complete characterisation of the channel specificities. Most sounders consist of virtual antenna array or actual antenna array with switches and few emitting elements. Furthermore, the output of the antenna is generally connected to a Vector Network Analyzer (VNA).

In contrast, we developed a sounder designed for non stationary MIMO channel. The sounder is formed by a linear array of 4 antennas at the emitter side and a linear array of 16 antennas at the receiver side. Each antenna is connected to a low cost zero IF receiver designed by our lab (see next section). The number of emitting elements permits to increase the range of Doppler frequency measurement and the precision on the AOA of the waves.

The current version of our sounder measures the angles of arrival (AOA) of impinging waves in the azimuth and elevation plans altogether with their time delays in indoor environments. In the case of non stationary channels, a chirp signal (FMCW) is used instead of step CW in order to reduce the acquisition time of the sounder [303]. To demonstrate the unique accuracy of the sounder in time-varying environments, we carried out an experimentation with an emitter moving at a speed of 1.1m/s along a rail parallel to the receiver antenna array. The Doppler frequency was measured with a precision of 0.2 Hzs [363].

The angles of departure of the emitted waves are determined using a virtual array of a 4 antennas. In that case, the channel is assumed to be stationary [364]. The sounder operates in the frequency range 2.1-2.8 GHz which is the bandwidth of the quasi Yagi antenna we have designed. The time and angle resolutions of the sounder are respectively 0.5ns and 2° using sub space methods (MUSIC, ESPRIT).

The correlation between the orthogonally polarized waves must also be characterized if the designer wants to exploit polarisation diversity. The quasi Yagi antennas have been replaced by a home designed array of 4 double patch antennas which covers up to 500 MHz around 2.45 GHz with double polarisation capability. A 2-paths scenario was emulated in an anechoic chamber and joint time delay, direction of arrival and polarization estimation were performed. The discrepancies between theoretical and experimental values are less than 0.2 ns and 10° [365].
A second research activity concerns the design of a channel sounder for Ultra Wide Band (UWB) applications. A UWB RF receiver using microstrip technology on FR4 substrate and UWB antennas have been codesigned in the frequency range 6-8.5-GHz [338]. Presently, the SIMO channel sounder consists of 8 receivers. Preliminary experimental results performed in an anechoic chamber demonstrate an accuracy of 2° for the AOA (Angle of Arrival) azimuth and 0.1 ns for the delay [339].

A third research activity was the realisation of a MIMO platform which was derived from the sounder by replacing the FMCW source by 2 modulated sources of same frequency 2.4 GHz. Beamforming was used in order to recover the signal of each source and improve the link quality in a spatial multiplexing mimo system [319].

Radar Applications: The aim was the design of a short range (1 m) radar operating in the 2.45 Ghz ISM band for low cost operation. The challenges for such radar are the detection of close targets using a signal of limited frequency bandwidth (80 MHz) and the rejection of unwanted signals in a widely used electromagnetic band. Using our work on demodulation techniques, a new radar architecture was designed based on a coded BPSK signal and the phase difference detection of successive carrying signals) [367]. This work has been done in collaboration with Schneider Electric and protected by two patents [442].

4.2.4 Wireless Communication Systems Technology

Faculty X. Begaud, B. Huyart, A.C. Lepage

Main events PhD Award of the Thales AirBorne Systems (2006, L. Schreider); UWB Autumn's School: Communications, Localization and Radar (23th-27th October 2006, Valence, France) in the framework of GDR ONDES, CNRS with X. Begaud (General Chairman).

Projects CONRAHD/OPTIMUM (CONNexion Radio sans fil Haut Débit) from the French Cluster “SYSTEM@TIC PARIS-REGION”, bilateral projects with Thales Airborne Systems (2) and Thales Air Systems (1); PUMA (Produit Ultra haut débit sur bande millimétrique) from the French Cluster “SYSTEM@TIC PARIS-REGION”

MMIC design for RF “front-end”:

Within the framework of CONRAHD/OPTIMUM, we realised the design and the tests of an integrated mixer circuit on GaAs in the 40.5-43.5 GHz frequency bandwidth. This resistive up-converter mixer is dedicated to Local Multipoint Distribution Service (LMDS) applications for short ranges, multi users, multi applications or multi communication standards. The mixer is the most linear device reported so far in this bandwidth in the up-converter mode [356].

For software defined radio applications, we have designed a Zero-IF three-phase demodulator in MMIC technology operating in the 1-24 GHz bandwidth to solve the problems of multi standards management [414, 443]. The main contributions were in the design of phase shifters and distributed mixers which can operate in such very large bandwidth.

Another three-phase demodulator and a classical IQ demodulator using Gilbert cell have also been designed and compared around 40 GHz [439]. They demonstrated direct demodulation of high frequencies signals (upper than 40 GHz) to base band signals. We proved that the use of Zero-If three-phase demodulator cancelled naturally the DC offsets as well as many damaging non linearities effects for the reception sensibility of a Zero-If demodulator [441]. An original calibration algorithm, based on blind technique using an unknown signal for homodyne receivers, was developed to reduce significantly the physical and signal processing stresses in the case of software radio applications [302]. The results were further improved using a bytes synchronisation method for blind-calibrating the demodulator and taking into account the defaults introduced by the propagation channel [360].

Wide band antennas design: The RF team’s research is devoted to the design of wideband antennas and arrays. We initially focused our work on UWB (UltraWideBand) applications. While most UWB studies concentrate on omnidirectional antennas, we developed a unique compact,
4.3.1 ACL: Articles in ISI-Indexed Journals

4.3.2 ACTI: Articles in Proceedings of International Conferences

4.3. References

4. Electronics and RF Systems (ELECRF)

4.3. References

4.3.3 ACTN: Articles in Proceedings of French Conferences

4.3. References

4. Electronics and RF Systems (ELECRF)

4.3.4 COM: Talks in Conferences Which Do Not Publish Proceedings

4.3.5 AFF: Posters in Conferences

4.3.6 OS: Books and Book Chapters

4.3.7 AP: Other Productions: Database, Registered Software, Registered Patent, ...

4.3. References

Chapter 5

Optical Telecommunications Group (GTO)

Team leader Didier Erasme (P).

Faculty
G. Debarge (MC), D. Erasme (P), R. Gabet (MC),
P. Gallion (P), Y. Jaouën (P), C. Ware (MC).

PhD students
F. Saibi (10/01–01/05), M. Lourdiane(10/00–01/05), G. Bouquet(11/01–03/05),
A. Guernache (11/01–04/05), M. Valla (*/*–06/05), S. Agnolini (10/01–04/07),
E. Gueorguiev (11/01–07/09), S. Grot (10/02–03/06), G. Canat (10/02–12/06),
F. Kéfélian (10/02–12/05), B. Bristiel (11/02–03/06), J. Renaudier (11/02–05/06),
L. Yi (*/*–02/07), I. Fsaïfes (11/03–06/07), H. Teimoori (10/04–09/07),
S. Jiang (10/04–02/08), J. Zhou (*/*–10/08), F. Gómez Agis (02/05–10/08),
V. Lanticq (05/06–06/09), P. Hamel (10/05–03/09), Q. Xu (10/05–04/09),
M. Sabban (11/05–04/09), D. Fafchamps (10/05–), J. Petit (10/05–),
W. Akhtar (10/06–), A. Farhat (10/06–), M. Gharaei (10/06–),
S. Hocquet (10/06–), B. Bennai (11/06–), S. Cordette (12/06–),
O. Bertran Pardo (05/07–), F. Saliou (07/07–), C. Caillaud (10/07–),
S. Mumtaz (10/07–), J.C. Antona (12/07–), M. Selmi (10/08–),
G. de Valicourt (10/08–), H. Brahmi (12/08–).

Post-docs, engineers and sabbaticals
M. Costa E Silva (03/05–01/09),
C. Gosset (09/08–08/09),
F. Mendieta (Prof. Sabbatical, CICESE) (08/05–03/08).

External collaborators
J-C. Bouley (prof. associé) (07/04–).
5.1 Objectives

The evolution of optical communication systems represents a particularly challenging guideline for research activities taking place in the GTO group of Télécom ParisTech. In addition to the topics directly relevant to the upgrading of optical networking techniques, architectures, devices, components, etc., our field of activity expands both to subjects that use similar methods and technologies and to characterization systems for telecommunication devices.

The last four years have represented an important transition period for the field of optical communications. In the early 2000s, the strong development of the “copper” access techniques (ADSL, Cable) and the remaining overcapacity of metro and core optical network opened a new development window for the next technology step strongly relying on optical technology: The transition of the fixed access network onto an optical medium (FTTH), convergence techniques for carrying mobile communication signals over optical fibre (RoF), access-metro convergence and finally the new requirement for capacity and connectivity in the metro and core networks due to the explosion of the data exchanges for domestic (HDTV, VoD, P2P) and professional (data storage) applications. Presently, the three traditional fixed-network segments are all going through a strong evolution process:

- with the deployment of FTTH (Fibre-to-the-home) the optical access network has had to enter the industrial world with some rather traditional solution while more advanced solutions which would better take advantage of optical technology are still under strong competitive development (WDM PON, OCDMA, ...)

- the metropolitan network has to cope with an enhanced connectivity and some constraints related to equipment cost which requires new technical solutions;

- in order to cope with the increase in the capacity demand, the core network is migrating toward higher individual channel bit-rates up to 40 Gbit/s (leading to new transmission impairments) in a rather traditional way. However, it is now quite clear that further evolution, which requires a better usage of the fiber optics bandwidth, has to rely on new paradigms. These are bound to make use of the somehow under-considered knowledge in digital communication that has been the key development tool of RF mobile communication.

In this wide panorama, the GTO group relies on its theoretical competence and its modeling and experimental know-how for developing new concepts and for participating in advanced collaborative research on optical systems.

A first research axis concerns the development of new optical signal processing techniques and functional analysis of new components for communication systems. This field covers several
related studies gravitating around non-linear optical effects and behaviors concerning light emission, light amplification, light transmission and new reception techniques. Although a number of applications lie in the field of telecommunication, the activity expands to other application areas such as energy, industrial process and defense.

The second research axis lies closer to the actual networks and transmission systems structures, approaching multiplexing techniques, high bit rate communication, new optical network architectural topics.

Finally, a specific research axis is related to quantum communications in particular to quantum key distribution for cryptography systems.

These research axes usually associate theoretical investigation and modelling activities, simulation using internal or commercial software and experimental activities. The latter rely on a rather well-equipped optical laboratory which includes a 10Gbit/s transmission platform, picosecond optical facilities allowing some 40Gbit/s experiments and dedicated characterisation and sensor set-ups.

The reporting period has been characterized by many national initiative interactions, (ANR, Cifre) and an enhanced activity on the European landscape. Through FP6-e-Photon/ONE$^+$ and FP7-BONE and FP7-EURO-FOS Networks of Excellence our international activity has been pushed to a high level. In addition to project review papers involving many teams, we can count journal publications with laboratories representing as many as 7 different countries (Denmark, Japan, USA, UK, Mexico, China, Greece).

5.2 Main Results

The main research results obtained during the period 2005-2009 are presented below for the research areas of the GTO team.

5.2.1 Optical Functionalities and Novel Devices for Communication Systems and Networks

Faculty G. Debarge, D. Erasme, R. Gabet, P. Gallion, Y. Jaouën, C. Ware.

Projects RNRT-ROTOR (01/04–12/07), Pôle System@tic-CARRIOCAS (10/06–09/09), ANR AROME (01/07–12/09), ANR L2CP, FP7-EUROFOS (05/08–04/12), trilateral projet with EDF and LCPC, Bilateral project with ONERA and with CEA, 2 cifre PhD.

The widespread introduction of broadband at all levels of communication networks, the ubiquity of data exchange, the wired network infrastructure increasingly using the optical medium, and its being extended over the last mile all the way to the end-users, are changing the deal on signal processing functions implemented directly in the optical domain, giving them a foremost place in system design. These optical functionalities aim at keeping, as best can be done, the optical signal’s integrity, avoiding optical-to-electrical conversions. The intrinsically high speed of the physical phenomena to be used allows them to take over processes which were traditionally implemented in the electrical domain, and the development of devices adapted to these applications.

Clock Recovery

Clock recovery of a high-bit-rate digital signal (10, 40, 160 Gbit/s) is a required functionality at transmission end or in a routing node. Two techniques have been studied: self-pulsating lasers and opto-electronic phase-locked loops.

On the former, the ROTOR RNRT project1 to point out the interest in quantum dot lasers structures for optical engineering and radio frequency signals in general has demonstrated ultra

1Partners: CNRS LPN Laboratory, Alcatel Thales III-V Lab, Alcatel Lucent, ENSSAT, EUROPTEST, Highwave
low self-pulsating line width and the superiority of all-optical techniques over the electrical ones for clock recovery at 43 Gbit/s [638, 499, 500].

Second, a phase locked-loop can use a nonlinear optical device (SOA or PPLN) as an ultra-fast phase comparator. It allows clock recovery of RZ signals—and NRZ in some cases—as well as OTDM demultiplexing by recovering the “sub-clocks”. Collaborating with the Technical University of Denmark and the National Institute for Materials Sciences of Japan, we demonstrated sub-clock recovery [513] and full 1/64 OTDM demultiplexing at 640 Gbit/s. [469]. This was the second-ever demonstration of clock recovery at that high a bit rate, and the first involving a PPLN device, which was announced among record-setting postdeadline papers in OFC 2008.

This activity, in the framework of e-Photon/ONE+ and now EURO-FOS2, was rewarded by an invited paper in the Journal of Lightwave Technology [490] and the “Letter of the Month” of Electronics Letters. It is now part of the topic of a franco-german PICF grant application and a Joint Experimental Activity in EURO-FOS.

New Semiconductor Sources and Devices

The recent evolution of the optical communication network led to a large demand for new low-cost and high-performance components. The CARILOCAS project[3] is dedicated to setting up an experimental 40Gbit/s network for high capacity data exchanges, included a task related to the development of low cost front end optical sources. In collaboration with GIE Alcatel-Thales III-V lab, we were able to demonstrate how “dual modulation”, consisting in modulating simultaneous the laser and the modulator of an EML source, leads to an extended transmission span (from 80 to 160 km) at 10Gbit/s [547]. Our involvement in the ANR project AROME[4] is dedicated to the evaluation of the very large spectral bandwidth semiconductor optical amplifiers fabricated in GIE Alcatel-Thales III-V lab. The group is involved in other devices development through 2 new Cifre theses with III-V lab (on 100G receivers and reflective SOA modules for access networks).

Distributed Amplification

The distributed amplification based on the Raman effect, appears as an alternative or an additional technique to the doped fiber amplifier for optical telecommunications. However noise transfer from the pump noise to the signal, the pump polarization fluctuation and the double Rayleigh scattering strongly impact the noise figure [455, 479, 521, 539] and constrain their use. A new mechanism of noise associated with the fluctuation of the pump polarization induced by spatial fluctuation of the birefringence has been identified and allows interpretation of experimental reports [477]. As for the Brillouin effect, when it does not limit the power injected into a fiber, it is an irreplaceable tool in the design of optical sensors [522].

Brillouin Effect Applications

Given its low required power threshold, the Brillouin effect in optical fiber is one of the most promising nonlinear effect to design new all-optical processing. A self-referenced technique for measuring the Brillouin gain in an optical fiber has been recently proposed; and the importance of acousto-optic effective area in place of optical effective area on the Brillouin efficiency has been

2Partners: Institute of Communication & Computer Systems/ National Technical University of Athens (leader), Heinrich-Hertz Institute, University of Essex, Universitat Politecnica de Catalunya, ACREO AB, Technical University of Eindhoven, Research and Educational Laboratory in Information Technology, Chalmers University of Technology, University of Karlsruhe, Politecnico di Torino, University College Cork, Scuola Superiore Sant’Anna, Universidad Politecnica de Valencia, Interuniversitair Micro-Elektronica Centrum IMEC, Instituto de Telecomunicacoes, Technical University of Denmark

3Partners: Bull, CGG-Veritas, Draka Comteq, EDF, France Telecom, GIE Alcatel Thales III-V lab, Hewlett Packard, Renault, Kyia, Medit, N2Nsoft, Oxaya, CEA, CNRS, Ecole centrale de Paris, IEF (université Paris-Sud 11), INRIA, Marben products, Prism (Université de Versailles Saint-Quentin), Supélec, Telecom et Management SudParis

4Partners: Alcatel Thales III-V lab (leader), FTR&D, ENIB, INSA Toulouse, IEMN
confirmed for the first time \[484\]. The slow-light concept has been changed from a scientific curiosity to a rapidly growing field with many potential applications. We have demonstrated simultaneous demodulation and slow-light delay of DPSK signals at flexible bit rates using Brillouin based optical filtering effect. A record delay-time of 81.5ps with error-free operation (BER <10^{-9}) has been obtained for 10Gb/s \[518\]. The delay and BER performance of 10Gb/s signal in Brillouin-based slow-light delay line have been evaluated in terms of NRZ, PSBT and DPSK modulations formats \[517\]. The distributed Brillouin-based optical sensors appear to be one of the most promising techniques for temperature and strain measurement. Under a collaboration with EDF, our contribution is focused on fiber design, especially in terms of Brillouin spectrum \[541\].

High-Power Fiber Lasers
The technology of rare-earths doped optical fibers (Ytterbium (Yb\(^{3+}\)) for amplification at 1µm and Erbium/Ytterbium (Er\(^{3+}/\)Yb\(^{3+}\)) at 1.55µm) represents a strong contender for applications requiring high optical power. Our contribution is carried out mainly through collaborations with external laboratories and companies: ONERA, Keopsys and CEA \[475, 537\], PhLAM laboratory of University of Lille. With ONERA we have participated in the design of LMA fiber amplifiers \[458, 460\], in the analysis of Brillouin spectrum of doped fibers in connection with doping \[459\], and more recently the combination of coherent fiber amplifiers \[481, 565\]. The collaboration with PhLAM concerns the design of Ytterbium-doped solid core photonic bandgap fiber laser operating around 980nm \[495\].

Optical Low Coherence Reflectometry
The optical low-coherence reflectometer (OLCR) developed in our laboratory has been upgraded over the years and has proven to be a unique investigation tool for the study and the characterization of new photonic components. Through collaboration with component makers, we have been able to measure some otherwise inaccessible parameters in optical wavelength mux-demux, specialty optical fibers, fiber Bragg gratings, semiconductor devices, including semiconductor optical amplifiers... Our state-of-the-art phase-sensitive OLCR spatially resolves internal reflections of the device under test, and allows measurement of different polynomial terms of dispersion, birefringence, loss / gain material coefficient, phase/amplitude coupling coefficients. It has attracted many national and international collaborations, industrial and academic. The latest results concern the study of photonic bandgap semiconductor waveguides under the ANR-L2CP project \[461, 492, 536, 546\] in collaboration with Thalès R&T and specialty fibers characterization \[467, 474\] for which the OLCR provides incomparable elements of analysis.

5. Optical Telecommunications Group (GTO)

5.2. Main Results

5.2.2 Optical Network Evolutions

Faculty D. Erasme, P. Gallion, Y. Jaouên, C. Ware.

Projects ANR-Supercode (10/06–11/09), ANR-TCHATER (10/07–12/10), FP6-e-Photon/ONE\(^+\), FP7-BONE (1/08–12/10), FP7-EUROFOS (05/08–04/12), research project Orange labs, 3 Cifre PhD.

Fast development of bandwidth-consuming services like high-definition/on-demand television, network gaming, grid computing, makes stringent the need to further network capacity. The objective to provide broadband to a maximum of users ("broadband-for-all") has been leading research and development in the field of fibre-to-the-home (FTTH) technology for the deployment of high bit-rate access networks. The optical networks must manage interfaces with the copper links and radio access technologies (fixed or mobile) or eventually replace other solutions to provide unmatched performances. Deployment of FTTH will significantly impact the capacity requirement
carried by metro and core transport networks in a medium-term future. The fiber capacity must also be maximized through the deployment of new techniques such as new multi-level modulation formats eventually combined with coherent detection, new techniques for multiplexing and routing (packet switching).

Optical Access and Code-Division Multiple Access

Wide adoption of optical access network requires upgrading existing PONs to share bandwidth among more users. An important access to research in PON architecture and components exists through collaboration and Cifre Thesis with FT-Orange labs on new generation PON including extended PON, WDM PON, etc.

On the other hand, we have developed a research activity on a more prospective access network possible evolution namely OCDMA multiplexing techniques. CDMA (Code Division Multiple Access) in the optical access networks allows scrambling and a flexible bandwidth resource sharing between users. For the direct optical detection channel, we have pointed out that the prime sequences (PS) appear as a good compromise between the length and the weight of the code and the number of users [464]. Implementation of all-optical encoders and decoders using Bragg gratings recorded in photo-optical fibers (made in collaboration with the laboratory PhLAM of the University of Lille) has been analyzed for different code structures [466].

Additionally, the ANR-SUPERCODE project combines WDM and OCDMA by designing a supercontinuum pulsed source which can be shared among many users by being sliced into WDM channels [586, 597], each of which supports multiple users through all-optical encoding and decoding. This last work has started building on direct-sequence codes (DS-OCDMA), now with the extended quadratic congruence (EQC) code family for better multiuser performance.

However, this is still an amplitude-only coding scheme; as in the long-haul context, using the phase of the optical field would unlock the full bandwidth of the optical fiber, if it can be done in a cost-effective way for the access network. This is SUPERCODE’s final objective: using spectral-phase coding thanks to enhanced FBG-based encoders using phase-shifted chirped Bragg gratings. This technique, which could either complement or even supersede WDM, should yield a much lower crosstalk between users on the same channel, thus supporting more users for a lower penalty.

Radio-Over-Fiber

The interface between the radio and optical fiber networks (radio-on-fiber), remote antennas for radar, introduce new challenges for fiber optic transmissions, which should preserve the dynamics and the linearity of the signal even in the presence of attenuation, GVD and PMD dispersion, nonlinearity transmission impairments and all optical signal processing. An original approach based on optical injection allows the heterodyne generation, transmission and remote control of radio frequency signals with high spectral quality [462, 635]. A generalization on injection locking optical phase synchronization has been proposed by using the Green function approach [482, 642, 580].

Metropolitan and Long-Haul Systems

Today’s processing capability allows to perform digital signal processing for optical communication systems at high bit rates. In close collaboration with the Digital Communications group, the potential and future trends of electrical signal processing techniques to mitigate e.g. noise accumulation, linear and nonlinear distortions are beginning to be investigated.

Under the project ANR-ECOFRAME, we have modeled and simulated the physical channel of an optical ring WDM network architecture. We provide the parameters of the statistical distribution

6Partners: Institut Carnot de Bourgogne (leader), CNRS PhLAM, XLIM
7Partners: Alcatel, Orange, Prism Laboratories, XLIM
χ² and estimate the performance in collaboration with XLIM working on FEC implementation [528, 501]. An extension of the concept to mesh networks has been proposed.

On the other hand, the project ANR-TCHATER concerns the design of a real-time coherent receiver at 40Gbit/s using a FPGA implementation. Our contribution concerns the design of hard and soft FEC solutions adapted to optical coherent systems. Differential encoding is required for PSK transmission systems but leads to higher BER because each transmission error corrupts multiple consecutive bits. A new construction of the codeword has been proposed, allowing performance enhancement and complexity decrease [544, 645].

Finally, we have begun to explore higher spectral efficiency modulation formats, such as M-QAM and OFDM, that can allow enhanced bit-rate while reducing electronic circuits speed [551]. In collaboration with Orange labs, a comparison of 40Gb/s ultra-long haul WDM transmission system performances has been realized [493, 494].

Optical Packet Switching
The evolution of optical networks toward more efficient and more flexible architectures has led research work to wonder how the network could transmit and route optical packets or optical bursts directly on the optical layer. Studying the routing of optical packets requires an analysis of techniques allowing label recognition and transparent packet forwarding. On the basis of our knowledge of all-optical signal processing devices, we have developed several elements required for the design of a switching node, including an optical half-adder [502], a time-to-wavelength (series-to-parallel) converter [503] and an all-optical decoder [504]. Finally, in collaboration with partners teams of the FP6-ePhoton/One NoE, we have proposed an entire packet-switching node whose optical elements had all been demonstrated experimentally by one of the participating groups [505].

5.2.3 Quantum Communications and Cryptography

Faculty P. Gallion.

Main events Organisation of the CLEO Focus Meeting on “Nonlinear, Quantum and Chaotic Optics: New Directions in Photonics and Optical Communications” in ECOC’06 conference.

Projects ANR-HQNet (12/06–11/09).

Quantum key distribution (QKD) is the only known way to achieve cryptographic keys distribution with unconditional security. Quantum security first results from the impossibility to duplicate the signals received (non-cloning principle) or to take away a significant part of the signal without making the intervention known through a major change to the error rate of received signals. The security is based secondly on the disturbing or destroying character of any observation and the errors resulting from incompatible observations of a single quantum object.

Quantum cryptography is today leaving the promises of the physics of the last century for the trial implementations. The unconditional security range is obviously limited by optical channel and device impairments. Quantum cryptography must now prove its worth with the technological reality and deal with the algorithms and hardware securities, in a rich multi discipline problem including digital communications, optical communications, information theory, electronics signal processing and computing. In collaboration with our Electronics group and the Computer Science Department we have developed a validation platform for quantum cryptography gathering these various skills and involved in various projects such as the “High bit-rate and versatile Quantum Network” (ANR-HQNETPartners: FEMTO, Georgia Tech Lorraine, Smart Quantum, Photline) including also efforts from the FEMTO Laboratory of Besançon, the Georgia Tech Lorraine Laboratory and Smart Quantum and Photline companies.

8Partners: Alcatel-Lucent France (Leader), E2V semiconductors, INRIA Lyon, ENS Lyon
The compatibility of QKD with optical networks requires an operation at telecommunication wavelengths and does not allow polarization encoding. We proposed and validated the use of a QPSK phase modulation, turning to PSK signals after the Bob choice of basis, in association with a homodyne optical detection. As long as single-photon sources remain unavailable, we have to deal with non-orthogonal signals from quantum level coherent fainted pulses. We conducted the theoretical and experimental comparison of a balanced homodyne receiver with a high local oscillator level using PIN photodiodes with an unconditionally hypothesis-canceling interferometrical receiver on one of 2 photon counters [515]. Our homodyne receiver appears as a good alternative to the photon counters technique in view of its closeness to a quantum efficiency of 1, its thermal-effect-free operation and speed compatible with the key rate required by today applications. An intrinsic error rate resulting from the vacuum fluctuations entering through the signal port leads to a theoretical quantum bit error rate (QBER) which is approached quite easily in practice, the standard quantum limit (SQL). The use of a multiple-threshold decision allows for the optimization of the quality and the rate of the key generation. The mandatory recovery of both optical and data phases is provided by a time-multiplexed reference signal transmission and phase-tracking loop. We have shown the possibility of recovering the phase with performances very close to the quantum limit by sequential steps on both quadratures of the field received [514] and undertaken the study of security under different types of attack.

We have been among the first contributors to the apparition of quantum crytography in IEEE optical communication journals and world largest conferences [526, 555, 557, 556, 487]. Finally, we have been invited by Emil Wolf to write a review chapter in the prestigious series “Progress in Optics” [640] and we have proposed a new general formulation for the Quantum macroscopic nonlinear optics [478].

5.3 References

5.3.1 ACL: Articles in ISI-Indexed Journals

5. Optical Telecommunications Group (GTO)

5.3. References

5. Optical Telecommunications Group (GTO)

5.3.2 ACTI–A: Articles in Proceedings of Major International Conferences

[554] C. Ware and D. Erasme. 30 GHz sub-clock recovery using an opto-electronic phase-locked loop based on four-wave mixing in a semiconductor optical amplifier. In CLEO/Europe, number CI3-5-MON, Munich, Germany, June 2005.

84
5.3.3 ACTI–B: Articles in Proceedings of Other International Conferences

[575] F. Gómez Agis, C. Ware, and D. Erasme. Clock synchronization and sub-clock extraction of optical signals at high rates using an opto-electronic PLL based on three-wave mixing in PPLN. In International Conference on Transparent Optical Networks (ICTON), Rome, Italy, July 2007. Invited conference.

[585] H. Teimoori, J. D. Topomondzo, C. Ware, R. Gabet, and D. Erasme. All-Optical 3’8 SOA-based Decoder Design

5.3. References
5.3. References

5. Optical Telecommunications Group (GTO)

5.3.4 ACLN: Articles in Other Refereed Journals

5.3.5 ACTN: Articles in Proceedings of French Conferences

5.3.6 ASCL: Articles in Journals without review committee

[610] H. Teimoori, C. Ware, J. D. Topomondzo, and D. Erasme. Traitement du label de paquets optiques pour les réseaux optiques de communications. In Journées Nationales d’Optique Guidée JNOG’07, Grenoble (France), June 2007.

5.3.7 COM: Talks in Conferences Which Do Not Publish Proceedings

5.3.8 ASCL: Articles in Journals without review committee

5.3. References

5. Optical Telecommunications Group (GTO)

5.3.8 OS: Books and Book Chapters

5.3.9 AP: Other Productions: Database, Registred Software, Registred Patent, ...

Part II

Network and Computer Science
Network and Computer Science (INFRES)

During the period of this evaluation, the Networks and Computer Sciences Department was averaging about 50 permanents including faculty and engineers. Its growth stayed modest with an increase of one or two faculty or engineer each year. However in the same period of time its revenue growth was at a remarkable rate of over 30%. As for this year ending, despite the economic crisis, we are forecasting a 5% growth in revenue. As a consequence, counting in term of FTFE (Full Time Faculty Equivalent, who are clearly responsible for getting most of our research contracts and grants), the ratio revenue per FTFE has been growing similarly to reaching nearly 150k€ this year from about 80k€ at the beginning of this evaluation.

The Networks and Computer Sciences Department has a long tradition of studying complex network or software system architectures. Both complex network systems and complex software systems are constrained by a series of classical common high level requirements including: scalability, quality of service, availability, maintainability, safety, security, dependability, usability, and of course performance and cost saving. Today, energy saving and durability would certainly have to be added to the list, even if they are not really as new as it would seem. Fortunately, this list changes very slowly. However, system elements change fundamentally and at a fast pace: links between nodes became optical or wireless. This allowed nodes to become mobile, to appear, disappear, and reappear at another end of the network. Networks are becoming networks of ‘things’ as they include all kind of cell phones, sensors, RFIDs or even robots (like drones). These things can be more or less ubiquitous, more or less autonomous. Let's stop here for a moment and describe later our vision for the research in the Department; this rapid landscape should be sufficient to explain how research is led in the Department. For instance, one specific category of system could have been chosen and thoroughly studied under the entire variety of high level requirements. Instead, it has been chosen to focus on the various ‘Gordian’ knots found in complex software systems and networks that have high scientific value and make these systems or networks difficult to develop, maintain, and control.

For instance, how to process and analyze a large amount of data ‘on the fly’ as they arrive from multiple nodes? How to efficiently search through a vast heterogeneous set of data more or less reliable over the web? How to rapidly develop and verify a real time system re-using existing components? What kind of middleware can support collaborative applications over a wireless self-configuring network? How to broaden the interaction with a computing device using solely the movement of a thumb? All these various questions are illustrating part of the research led in the Information Systems and complex systems (IC2&S3) Group.

Sometimes good common sense and solid methodologies are just not enough. When it is about pushing the constraints over the requirements described above to the limits of what physics can offer, for instance using quantum theory to establish the highest level of security possible. When it is about providing with the best tools possible allowing designing the best network architecture to fight in the fierce economy of the telecommunication industry, for instance making some advance in probability theory using the Malliavin calculus. When it is about optimizing an optical network using graph theory or linear programming elevating drastically technology barriers. Discrete or not, mathematics are impassable and are a key component in the research
led in the Department. Members of the Mathematics of Information, Communication, and Computation (MIC2) Group are dedicated to this critical effort.

Last but not least, the members of the Networks, Mobility, and Security Group are studying a broad variety of network architectures (P2P, mobile, mesh, or hybrid,...) going from the core layers of the communication network to the service layers: establishing how congestions can be avoided, looking at various architectures and making contributions to new protocols able to transport data, voices, images, or video; analyzing QoS or performance; managing mobility or radio resource; revisiting scheduling or failover algorithms. At last, in order to conduct its research in the domain of security, the group is mastering a large array of technologies spanning from novel usages of the smart card to game theory.

To succeed, the Department is demanding more than just publishing even important books like the J. Sakarovitch’s one. To reach critical mass, it is participating to common labs like UBI-Media with Alcatel-Lucent, BiLab with EdF today extended to France Telecom and Inria, or more recently with the LinC with UPMC, Inria, and Thomson. It has constant and noticeable contributions to many industry standards (AADL just to pick one in the domain of embedded systems), an increased number of patents and public domain software. It also has a strong contribution to the Telecom ParisTech curriculum as well as the program of continuing education. At last, the Department has been able to create two start-ups SeQureNet and Ether Trust both in the domain of security.

<table>
<thead>
<tr>
<th>Faculty [IT, CNRS]</th>
<th>[37.8, 3.2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD students</td>
<td>56.5</td>
</tr>
<tr>
<td>Post-docs, engineers and sabbaticals</td>
<td>14.3</td>
</tr>
<tr>
<td>Defended PhD theses</td>
<td>44</td>
</tr>
<tr>
<td>Defended HDR</td>
<td>5</td>
</tr>
<tr>
<td>Journal papers</td>
<td>155</td>
</tr>
<tr>
<td>Papers in conference proceedings</td>
<td>608</td>
</tr>
<tr>
<td>Chapters and books</td>
<td>66</td>
</tr>
<tr>
<td>Patents and software</td>
<td>14</td>
</tr>
<tr>
<td>Grants [public, private, european] (k€)</td>
<td>[2870, 2464, 2734]</td>
</tr>
</tbody>
</table>
Chapter 6

Information Systems and Complex Systems (IC2/S3)

Team leaders I. Demeure (P), G. Hebrail (P).

Faculty T. Abdessalem (MC), B. Burtschy (P), B. Cautis (MC, 10/07–), A. Dantzart (MC), J.L. Dessalles (MC), A. Grumbach (P, –10/08), Y. Guiard (DR CNRS, 10/07–), G. Hebrail (P, 12/06–), J. Hugues (MC), E. Lecolinet (MC), A. Mari (CR CNRS, –09/05), E. Najm (P), G. Origgi (CR CNRS, –09/05), L. Pautet (P), J.M. Saglio (DE, –01/07), C. Potier (MC), F. Rossi (MC, 09/08–), P. Senellart (06/08–), S. Tardieu (MC), S. Vignes (MC), F. Yvon (MC, –08/07).

PhD students M. Baglioni (11/09–), G. Bailly (11/06–05/09), K. Barbaria (10/05–12/08), E. Borde (12/06–), R. Chiky (10/05–01/09), B. Csernel (CIFRE 11/04–02/08), J. Delange (10/07–), N. Derouiche (10/08–), A. Dimulescu (10/08–), N. Gabsi (CIFRE 11/07–), O. Gilles (03/07–), X. Grehant (10/06–), B. Gueni (10/05–), H. Ha Duong (10/06–), I. Hamid (02/05–05/08), J. Hugues (10/02 – 09/05), Z. Kazi-Aoul (10/03–2/08), G. Lasnier (10/08–), S. Malacria (11/08–), S. Naqvi (10/02–12/09), G. Paroux (CIFRE 10/04–06/09), I. Perseil (10/05–), X. Renault (1/2007–), A. Roudaut (11/07–), M. Tahir (12/06–07/09), T. Vergnaud (10/03–11/06), Y. Yu (01/07–12/07), B. Zalila (10/05–11/08).

Post-docs, engineers and sabbaticals G. Bailly (06/09/05/10), N. Benguigui (délégation CNRS, 10/08–09/09), R. Blanch (12/05–09/05), P. Busch (Technician), P. Dax (DE, acting as research engineer), B. Dupouy (MC, acting as research engineer), P. Feiler (CMU/SEI 04/08–06/08), S. Ferrandiz (02/07–11/07), S. Gadret (CE), S. Gardoll (CNRS engineer, 01/09–), S. Huot (02/06–01/07), K. Jouini (08/08–07/09), K.P. Maalej (11/07–01/09), G. Mouret (Research engineer), H. Olafsdottir (10/08–), A. Tabard (04/09–), S. Tardieu (MC, acting as research engineer).

External collaborators A. Cotton (Thales Communications), A. Fantechi (Univ. Florence), P. Feiler (CMU/SEI), A. Galland (PhD student, INRIA Saclay), S. Jarp (CERN), E. Khramlov (PhD student, Free University of Bozen-Bolzano & INRIA Saclay), F. Kordon (LIP6/MoVe), F. Singhoff (UBO), P. Toft (HP Labs, Bristol).
6.1 Objectives

This section reports on the research work accomplished both within the IC2 and the S3 groups. The decision to federate both groups in one report was taken because although S3 is about the same size as the other groups nevertheless only a small half of the members of S3 are active in research while the other half consists in engineers and technicians providing operational network and system support to the INFRES department. It therefore seemed appropriate to present altogether the research accomplished in the computer science field within the INFRES department.

The research activity of the team focuses on Information Systems and their architecture, in their various forms: Distributed, Ubiquitous, Data Intensive, Complex, Web based, Real Time and Embedded; the team has important contributions to the main tiers that constitute these Systems: Human Computer Interfaces, Middleware, Data Bases and Services. Hence, the main challenges addressed by the team are related to:

- the mobile and highly distributed nature of today systems which stresses problems of reliability, connectivity, data sharing and coherence
- the monotonic growth of data that needs to be combined with more flexible structures (both on the web and within large companies)
- new levels of software complexity for which there is a strong need for new software engineering techniques (complexity and scalability on the number of components in enterprise IS and web services, reliability in embedded systems)
- the human computer interfaces which is a critical factor of acceptance and usage of computerized systems.

These challenges are cross-disciplinary: from a practical point of view, the activity of the team has been developed along the following dimensions:

- (1) Business Intelligence for Enterprise Information Systems;
- (2) Databases: management of web data, distributed management of trust and data access;
- (3) Middleware: that needs to be adaptive in many different ways;
• (4) Software Engineering for distributed real-time embedded systems: which is model based, taking advantage of formal semantics and supporting transformation tools;

• (5) Human Computer Interaction: mobile interaction, manipulation of a large amount of data.

Dimension (1) and partially dimension (2) are mainly related with the application level of Information Systems. Dimensions (2) and (3) cover the technical architecture of IS. Dimensions (4) and (5) are related to the design of IS. The objectives within each dimension, together with corresponding basic research are developed and described below.

Business Intelligence (BILAB Project)
The activity of the BILab Project covers several aspects of the Business Intelligence field in relation to both theoretical approaches and industrial applications. The two main challenges we address are (1) facing the increasing volume of available data to feed BI systems and (2) the need for almost real time reporting on the enterprise activity. Consequently, a major activity during the period has been related to data stream processing. Data stream processing has been studied intensively recently is to process data on the fly as they arrive instead of storing them beforehand in a data warehouse. This approach is referred as Data Stream Querying (if the goal is to query data) or Data Stream Mining (if the goal is to mine data).

Within this context, the BILab Project developed a research activity in this domain which is very active in the USA but not yet in Europe, and focussed on summarizing the history of data streams. Indeed, all existing data stream processing approaches can only provide results from the part of the stream posterior to the definition of queries or mining tasks.

Industrial applications mainly cover the telecommunication and energy fields.

Databases and the World Wide Web (DBWeb Project)
In this project, we study the fundamental issues raised in modern data and knowledge management systems, especially on the World Wide Web and in collaborative contexts oriented towards peer-to-peer networks. Research interests cover theoretical foundations as well as practical solutions and applications of data and knowledge management systems. The main challenges we address are:

• Query optimization over structured or semi-structured data,

• Web data management, with heterogeneous data, with restricted access patterns (deep Web), uncertain and contradictory data,

• Mining of very large graphs, and in particular of the Web graph,

• Relevance in communication and its applications in modern knowledge management systems,

• Distributed management of trust and data access in large information-sharing networks,

• Data management for mobile sensors.

Adaptable middleware
Existing middleware technologies for Mobile Ad hoc Networks applications (MANet) or Distributed Real time Embedded Systems (DRE) (such as TAO) provide general purpose execution platforms targeting a large spectrum of application domains. Their complex design patterns induce large memory footprints and execution overheads but also produce systems that are difficult to analyse and verify.

Our research is precisely aimed at addressing this pitfall. Our goal is to produce a verifiable and highly configurable middleware factory. The sought and delivered factory should be based
6.1. Objectives

Information Systems and Complex Systems (IC2/S3)

on a flexible, modular and versatile architecture that allows for the automated generation of middleware instances matching specific application requirements. This endeavour involves also the design and delivery of predefined or automatically generated components that support specific distribution and communication functions. The factory should allow for the verification of these individual components as well as their sound integration in the delivered middleware.

General purpose middleware also fail to resolve MANet specific needs. A MANet is a self-configuring network of mobile nodes connected by wireless links. MANets are highly dynamic. Changes may impact network topology in many ways - nodes may become out of reach of each other, or may have energy failures. Hence servers must be redundantly distributed over the nodes. The supporting middleware must manage dynamic service location and routing. Thus they must monitor the topology and adapt with appropriate actions. They must also preventively manage power consumption by monitoring and balancing node activities. These are the goals we pursued in designing middleware for MANets.

Model driven development

Our main endeavour is to define and build a development process, endowed with a supporting transformational tool chain, that aims at producing systems that faithfully implement high-level requirements. Mode Driven Engineering (MDE) is a key enabling technology: models are versatile as they can describe various software and system engineering artefacts: from requirements down to resources, platforms, application components, infrastructure components, etc. The applicability of MDE to Distributed Real time Embedded systems (DREs) has not been properly addressed yet by the research community.

Our aim is precisely to bring the potential benefits of MDE to reality in the realm of DREs and safety critical systems. Thus, the sought and delivered tool chain has distinctive features that are hard to obtain in DREs.

Cost reduction and higher quality are to be achieved by extending the automatic code generation capabilities to distributed code and to the automatic deployment of the system. It is to be achieved also by allowing for the integration of predefined components (COTS) in the transformational process. Such an automatic code generation allows to produce the optimized and analyzable components of PolyORB-HI, our DRE AADL middleware (previously described). System quality and correctness is to be enhanced by the use of formal verification of both the functional (deadlock/starvation non-appearance) and non-functional (schedulability, response time) properties of systems.

The delivered process should address and integrate the different domains of expertise that are involved in building complex space and avionics systems, from requirements capture, through formal modeling and property assessment, down to to the final implementations.

Advanced Interaction and Visualization (VIA Project)

This project is devoted to fundamental and applied research on Human Computer Interaction (HCI). It focuses on the double challenge of representing and manipulating more and more data, and to allow this not only on standard computers but also on small, mobile and non traditional devices. Our main contributions take place in the following domains:

- Novel interaction techniques and principles, with an emphasis on leveraging input dimensions that had been overlooked so far,
- Mobile interaction, with a special effort toward increasing the "interaction bandwidth" between users and their devices (tablets, iphone, ...),
- Information visualization, and more specifically interactive visualization, which aims at allowing users to explore and manipulate the data actively,
6. Information Systems and Complex Systems (IC2/S3)

6.2 Main Results

6.2.1 Business Intelligence (BILab)

Faculty B. Burtschy, A. Danzart, G. Hebrail, C. Potier, F. Rossi, S. Vignes.

Main events Organization of several workshops: Temporal data mining at EGC2008 and EGC2009; 28th International Symposium on Forecasting (ISF), Nice, France, June 2008; International Workshop on data stream management and mining, University of Beihang, Beijing, October 2008; European Workshop on Data Stream Analysis, University of Naples, Caserta, March 2007; 14th Annual Conference of the Société Francophone de Classification (with the MIC2 team of INFRES), September 2007.

Projects ANR MDCO MIDAS (2008-2010).

Industrial collaborations Orange Labs (2 CIFRE PhD students, EDF R&D (BILab: a joint research laboratory on BI created in 2007).

Since 2007, most of the activity related to BI is inscribed into a new joint research laboratory with the research centre of EDF (Electricité de France). This laboratory is called the BILab (see http://bilab.enst.fr). This collaboration enables closer relationship with a large industrial company. During year 2009, the BILab is extending to another large industrial company (Orange Labs) and another research organization (INRIA, Axis Project). This extension is a great opportunity for our project because both EDF and Orange are very large companies having real practical problems related to managing a huge amount of data in a BI perspective. EDF data is mainly related to electrical power consumption of all customers which will be available massively with the development of smart meters. Orange data is also related to the usage of services by customers, both on telecommunication calls and internet access.

Data stream management

Data stream management systems (sometimes called complex event processing systems) are systems which extend the standard database technology to query data available in the form of streams of structured records. We developed a prototype with one of the first commercial DSMS (STREAMBASE) which processes electrical power consumption data available from electrical power smart meters [862]. Still in the context of electrical power smart meters, a new data model was defined to transmit data from households to the utility information system. This data model describes appliances of the household and their usage in terms of On/Off events. A simulator of such events was also designed and developed to generate a data stream from each household. Generated streams are captured by a Data Stream Management System in order to show that few basic queries are sufficient to supervise the household electrical power consumption [742].

Our main activity related to data stream processing focuses on summarizing structured data streams: this requires the summaries to be built incrementally with little computation for each record and bounded or slowly growing disk space for storage. We developed several new approaches to summarize one or several structured data streams:

- Streamsamp: a random sampling approach which summarizes a unique stream but is combined with a technique which decreases the precision (and thus the storage space) for older data [725]. Several experiments have shown the efficiency of this algorithm however its accuracy decreases with very old data. In order to solve this issue, an hybrid approach has been developed and assessed: it combines the streamsamp algorithm with another existing algorithm (clustream) based on micro-clustering [836].
• **Crosstream:** an approach which summarizes three related streams. Two streams contain information about two different entity types and the third stream contains information about the relationships between entities [868].

• A temporal sampling approach applicable to a large number of distributed streams all producing the same type of information. The temporal sampling is adaptive and optimized to provide good precision on aggregation of any subset of the streams. The optimization is performed in relation to: (1) a maximum available bandwidth for stream transmission, (2) individual values of each stream. This approach has been applied and assessed on time series issued by electric power meters [724].

Beyond the definition of these algorithms, much work has been done on designing new ways of evaluation of the accuracy/precision of the summaries, and running comprehensive experiments both on artificial and real data. Indeed, standard assessment methodologies had to be revisited to take into account the temporal evolution of data inherent to streams.

Finally, a first study was carried out on the management of OLAP data cubes fed by one or several streams. A load shedding method was designed to sample randomly incoming data, in order to be able to continue to feed the cube when the input rate is too high. Confidence intervals on queries on such a data cube were theoretically defined [835].

Time series and functional data mining

BI deals frequently with time varying objects. Such objects are better understood as functional data: each object is described by some functions that map time to appropriate values describing the object on a given dimension at the specified date. Rather than analysing snapshots of the objects, one handles their complete evolution through time by targeting directly the functions.

We provide exploratory analysis of functional datasets via a combined clustering and segmentation approach. Functions are clustered into homogeneous clusters with the specific property that each cluster is represented by a simple functional prototype, for instance a piecewise constant function. The complexity of the prototype set (e.g., the total number of constant parts) is globally optimized by an efficient dynamic programming scheme [755]. Related work include [774] in which a piecewise constant approximation of functional data is built in a supervised manner: one finds a simplified representation optimized according to an external criterion (such as the ability to separate efficiently two classes of functions).

In [884], we handle time varying data in a quite different manner: in this case, the evolution through time of an unique system (a web server) is studied. A time aware clustering algorithm is used to track the evolution of the web server usage patterns.

Several approaches related to time series modelling, analysis and forecasting have also been developed, with applications in the domain of software reliability (see [781], [783], [782], [811], [676], [690]).

Web and social network mining

We have recently started to work on exploratory analysis of social networks and proposed in [801] a new clustering method for graphs. It produces communities that optimize a trade-off between a graph clustering quality measure (Girvan and Newman’s Modularity measure) and a visualization quality measure inspired by the self organizing map algorithm. The method results in a coarse grained graph that is both a faithful simplification of the original graph and easy to represent and draw.

6.2.2 Databases and the World Wide Web (DBWeb)

Faculty T. Abdessalem, B. Cautis, J.-L. Dessalles, P. Senellart.

Main events and external collaborations Ongoing collaborations on XML data management with the Database group of University of California San Diego (Alin Deutsch) and Athens University of Economics and Business (Vasilis Vassalos).
6. Information Systems and Complex Systems (IC2/S3) 6.2. Main Results

Ongoing collaborations on data exchange, probabilistic databases, and the deep Web with the University of Oxford and INRIA-Saclay GEMO project (Serge Abiteboul).

Extended research stay of P. Senellart at Max-Planck-Institut für Informatik (Saarbrücken, Germany).

We study the problem of querying data sources that accept a limited set of queries, such as sources accessible by Web services which can implement very large (potentially infinite) families of queries. For the relational data model, we revisited in [659] a classical setting in which the application queries are conjunctive queries and the source accepts families of (possibly parameterized) conjunctive queries specified as the expansions of a (potentially recursive) Datalog program with parameters, under the assumption that sources satisfy integrity constraints. For semi-structured databases, we study in [660] the problem of querying XML data sources that accept only a limited set of queries, such as sources accessible by Web services which can implement very large (potentially infinite) families of XPath queries.

As part of the work on XML query optimization, we proposed a rewriting algorithm that exploits minimization opportunities raised in composition-style nesting of queries [664, 875]. More precisely, we consider the simplification of XQuery queries in which the intermediate result constructed by a subexpression is queried by another subexpression, focusing on algorithms that can recursively prune query expressions, eliminating useless intermediate results. Still in the field of view-based query optimization, we study in [722] view-based rewriting for XPath in the presence of node identifiers or keys. We consider restrictions under which an XPath can be rewritten in polynomial time using a combination of views and effective algorithms that can work for any documents or type of identifiers. Moreover, we consider the complexity of the related problem of deciding if an XPath with intersection can be equivalently rewritten as one without intersection or union.

We deal with the general problem of knowledge discovery and information extraction in the deep Web [813], and propose unsupervised and fully automatic techniques to perform an intensional (and not extensional) indexing thereof [673, 809]. For that purpose, we have the need to develop a probabilistic semi-structured data model that consists in annotating a tree-like document with conjuctions of literals representing independent probabilistic events. We study in depth the expressiveness of this model [672, 648], and propose efficient algorithms for querying and updating probabilistic data [708].

We develop techniques for the mining of large graphs: discovery of synonyms in the graph of a dictionary [911], of similar articles in that of an encyclopedia [670], of key actors in a collaboration network, prediction of the evolution of the World Wide Web graph, etc.

The extraction of complex data from semi-structured (HTML) sources is another recent direction of research of the group. We study techniques for template generation that exploit domain knowledge and semantics over the data.

In this project, we also carry on a basic research activity on relevance in communication in order to understand the foundations of modern knowledge systems. In our modelling work on relevance, we try to understand and predict what makes the content of a communicative act relevant. The ambition is to offer a predictive theory of what people talk about. This work has led to the Complexity drop theory [889]; interesting events are those which are less complex to describe than to generate (see: www.unexpectedness.eu). We could also formulate a Generative theory of relevant argument [736]. Lastly, we designed a model in which relevant communication is possible between non-cooperative (selfish) agents [887]. In this model, relevant communication is profitable to the emitter because it advertises definite qualities (relevance) that are appraised by listeners.
Still related to human aspects of modern knowledge systems, we work on the management of trust and access control in open contexts such as collaborative environments and social tagging platforms (Flickr, Del.icio.us, CiteUlike, etc.). In particular, we are interested in the mechanisms by which trust (or distrust) relations between users can be built based on user activities, thematic proximity, reputation and peer evaluation, social links, and so on.

Finally, we work on spatio-temporal data streams and location service applications [706, 861]. We analyzed the necessity of a spatial windowing over spatio-temporal data streams and, based on the query language CQL (Continuous Query Language), we propose a appropriate syntax and formal semantics for spatial windowing operations.

Additional and up-to-date information on DbWeb main results and publications can be found on the project web page http://dbweb.enst.fr

6.2.3 Adaptable Middleware

Faculty I. Demeure, J. Hugues, L. Pautet.

Main events and external collaborations Summer school on Real Time Systems (ETR 09) by L. Pautet, France Telecom R&D, TAI/Thales, SC2/Thales, Agence Spatiale Européenne (TOS-EME/ESA), Peter Feiler (SEI/CMU), Fabrice Kordon (LIP6/UPMC). Member of the SAE (Society of Automotive Engineers) ADL (Architecture Analysis Design Language) standard committee.

Projects ANR Flex-eWare, IST ASSERT, contracts with ESA and AdaCore RNRT-Transhumance, IST-POPEYE STREP, Contract with Orange R&D.

Adaptable middleware for distributed real time embedded systems

We study the problem of middleware engineering in the context of distributed real-time embedded (DRE) systems [901].

To tackle the middleware development complexity, we defined the schizophrenic middleware architecture. It makes it possible, for the first time, to instantiate simultaneously several distribution models with an excellent code reuse ratio compared to other approaches [757]. PolyORB, an implementation of this highly configurable architecture [758], is now industrially supported by AdaCore.

PolyORB is one of the very few middleware platforms to have been modelled and verified on some non-trival configurations using Petri nets (collaboration with LIP6/UPMC) in order to assess properties like deadlock free, livelock free or buffer dimensioning [900]. To improve the analysability of both the DRE system and its middleware, we decided to comply with the Ravenscar profile, a concurrency model for use in High-Integrity systems [758]. We also decided to use the Architecture Analysis and Description Language (AADL) (collaboration with SEI/CMU) to support our new design process for DRE systems [687].

We revisited PolyORB and the schizophrenic architecture [763] to define PolyORB-HI. It takes advantage of AADL to precisely deduce deployment and configuration information to automatically generate optimized and analyzable middleware components [817]. This AADL executive platform was one of the main results of the IST project ASSERT leaded by the European Space Agency, but also of the ANR Flex-eWare project. For instance, THALES reduced by a factor of 500 the memory footprint of executables produced with a concurrent approach. PolyORB-HI associated with our code generators is currently the first AADL execution platform for producing both Ada, C or RTSJ DRE systems.

We are studying the impact of new trends towards more complex DRE systems, like hierarchical partitioning as well as the duality of the safety and security features on middleware architecture. POK has enriched PolyORB-HI with safety (ARINC) and security (MILS) features coming from partitioned systems [729]. To our knowledge, POK is the first open-source kernel providing...
both ARINC and MILS services. In the context of ANR Flex-eWare, we also made architectural improvements to enforce mode-based reconfiguration [718].

Adaptable middleware for collaborative applications over MANets
We designed and prototyped adaptable middleware solutions for Mobile Ad hoc Networks (MANets) providing support for collaborative applications. This led us to the following contributions.

Publish-subscribe system for MANets. Chapar is an event system designed for MANets [772]. It supports event persistency to resist transient disconnections and network partitioning. Following a cross-layer approach, Chapar relies on the Multipoint Relays (MPRs) defined in the OLSR MANet routing protocol as distributed brokers, and uses the OLSR routing table to disseminate the events. The support of persistency coupled with the cross-layer approach taking benefit from the OLSR MANet routing protocol, make Chapar quite unique.

Data-sharing system for MANets. Our system uses a predictive algorithm based on semantic information about the user and the data and previous access patterns to decide how to proactively replicate data. It creates enough replica to prevent data loss in case a peer unexpectedly disappears or a partition occurs. To this end, we proposed a stable group creation algorithm based on long lasting connectivity. While data sharing systems for MANET already exist, both the use of semantic information and of temporal stability are new in this domain. We illustrated the interest of the proposed algorithms by studying how a wiki service on MANETs would benefit from them [751], [750].

Energy-aware middleware for MANets. We proposed architectural guidelines, mechanisms and algorithms to design an energy aware middleware for MANets [857]. Each middleware module is designed with various level of functioning. When the energy level is high, the middleware provides all functionalities. When the energy level decreases, the functionalities are degraded in order to preserve the battery. The experiments performed showed a reduced energy consumption of about 20 % for the experiments conducted with ciphering and non acknowledged transport.

Open source software. Our contributions were prototyped and integrated to either one of the two platforms developed within the framework of POPEYE an IST STREP Project, and Transhumance an ANR RNRT project. Both platforms are available as open source software on Sourceforge. These developments were conducted jointly with our Transhumance and POPEYE partners and in particular with THALES present in both projects.

Innovative demonstrators. Finally, another contribution of this work lies in the cooperation with digital media designers (SES department) in order to propose innovative services, such as the above mentioned treasure hunting game, as demonstrators [1594], [731].

A flexible architecture for the adaptation of composed multimedia
We proposed and prototyped PAAM (Provision of AdAptable Multimedia composed documents) a service oriented architecture for the adaptation of multimedia documents to user preference and context. A novelty in PAAM, with respect to related work, is that adaptors are offered as shared resources by the participants; hence PAAM is an example of peer-to-peer collaboration overlay that provides all the functionalities to declare, look for, select and compose adaptors located at participating peers. For the project purpose, we extended WSDL (Web Services Description Language) to describe adaptors in order to make them easily declared, looked-up and composed. We proposed a complete adaptation chain that was implemented using the web services technology [2126].

6.2.4 Proof Based and Model Driven Developments

Faculty J. Hugues, E. Najm, L. Pautet, S Vignes.

Main events Organisation of AFADL’06 by S. Vignes; Neptune’08 et ’09 by J. Hugues, S Vignes; FORTE’06, SDL’07 and ICSSEA’08 by E. Najm; IEEE/IFIP RSP’09 by J. Hugues

Projects and ACI FIACRE, ANR Flex-eWare, IST ASSERT, contracts with ESA and AdaCore,
6.2. Main Results

Model based development for distributed real time embedded systems

We have built a combined expertise in modular middleware, formal modelling and software engineering. This wide range of expertise helps in delivering a full toolchain targeting the development of DREs.

We chose the AADL (Architecture Analysis and Design Language) as our pivot modelling language. AADL is an Architecture Description Language (ADL) well suited for DRE’s. We have taken a leading position in the standardisation of this language, proposing several contributions to the core AADLV2 standard, and taking the lead on the definition of some annexes on data modeling, integration of programming languages, and on the integration of ARINC653 for the modeling of avionics system.

Based on AADL, We have designed a “Verification Driven Engineering” process, where one iterates in order to enable verification at model level. We have shown that we need multiple formal methods to support the full engineering process. Therefore, we explored different tracks:

We adopted the Ada Ravenscar profile as one of our target patterns towards code generation, for its robustness and suitability for high-integrity systems as well as for its deterministic behaviour and its schedulability analysis capabilities.

We have defined the Ravenscar Meta Model (RMM) that we endowed with a formal semantics in order to make the generated code amenable for verification. We have also defined a novel “deterministic” intertask communication pattern that we proved to be sound (cooperation with INRIA)

We developed a prototype: ARC, to validate our transformations and with UBO the possibility to perform high-level schedulability analysis of DREs.

We studied in collaboration with LIP6, the possibility to use Colored or Timed Petri Nets as another tool to support verification, and with UBO the possibility to perform high-level schedulability analysis of DREs.

We studied in collaboration with CMU/SEI the possibility to express safety and security properties on AADL model. We defined an AADL annex (REAL) to express design patterns mandated by ARINC or MILS.

Ocarina is the Open Source platform software that gathers our AADL tools and contributions. Ocarina has been tested and validated by academic and industrial partners as part of our funded R&D projects IST-ASSERT and ANR Flex-eWare in collaboration with ESA and Thales. Ocarina provides also a method for the integration of other modeling frameworks like SCADE or Simulink.

Proof based orchestration of web services

We defined a novel approach for the sound orchestration of services, based on expressing jointly behaviours and their types. We proposed (1) Orcharts (orchestration charts) to define session based services and (2) Typecharts to support session types with complex interaction patterns that generalise the request/response interaction paradigm defined in BPEL. We defined an algorithm for deciding behavioural well typedness and showed that it guarantees an important safety property: in all states of any configuration of well typed orcharts, all exchanged messages are expected and understood by their target partner.

Model based approach for formalising security properties

Our main contribution is a method to formalize security properties derived from the Goal-Oriented Requirements meta-method. In this method, we match goals with security properties (for instance preventive security measures). We have adopted multiple notations to capture these properties: Natural language, a UML security profile, and formal methods (B and Z). Graphical UML descriptions are readable by domain experts and are used to support validation activities whereas formal methods are needed to support verification. Formal models are used to check the consistency of the documents and to generate test scenarios. The UML and formal models are tightly linked so as to make sure that “what you validate is that you verify”.

We have applied our RE process and method to the domain of airport security (cf. EDEMOI Project). However, various domains including safety critical embedded system or ambient and pervasive adaptation, are concerned by confidence in the security properties and will be
confronted with certification activities.

6.2.5 Advanced Interaction and Visualization (VIA)

Faculty E. Lecolinet, Y. Guiard

Main events Official launching of the UBIMEDIA laboratory (2008); Conference organization (IHM 2006 and UBIMOB 2006: program co-chair), Special journal issue (Document Numérique, Hermès 2006)

Collaborations UBIMEDIA joint research lab with Alcatel-Lucent Bell Labs (created in 2008), co-direction of a PhD Student with L. Nigay (LIG), various research collaborations with INRIA/Aviz & INRIA/InSitu (Orsay), ESPCI/LOA, Paris8 PPCS & MISTIC, LIP6 (Paris), Université de Guanajuato (Mexico), other teams at TELECOM ParisTech (INFRES/S3, TSI/MM, SES/SHS, IP) and with the members of the projects we are involved in.

Our work on novel interaction techniques led us to develop new kinds of Marking menus, such as WaveMenus [711], FlowerMenus [712] and LeafMenus [804]. These techniques, based on gestural interaction, allow users to easily learn in novice (i.e., closed-loop) mode and later quickly execute in expert (i.e., open-loop) mode fairly large sets of commands. Gestural interaction is related to pattern recognition, especially handwriting recognition, a research field where we have collaborated with other researchers [657]. We have also worked on digital pen [854], tangible interfaces [787], tactile feedback [697] and developed hybrid devices that intermingle tangible interfaces and tactile feedback [789]. We also designed iSphere, a spherical input device currently under evaluation, aimed at facilitating interaction in 3D virtual worlds. Finally we recently introduced Motion-Pointing [653], a technique for selecting targets using elliptical motion instead of pointing. On these subjects, we have collaborated with various laboratories: LIG (a PhD thesis as been co-directed with L. Nigay), COSTECH (Compiègne), ESPCI LOA (Paris), INRIA AVIZ (Orsay)... and with colleagues from other teams at Telecom ParisTech (INFRES/S3, IP, TSI/MM).

We have developed several techniques specifically designed to facilitate mobile interaction, such as SpiraList [765] and SnailList [766], that use multi-scale spiral representations to minimize small-screen real estate. As an attempt to increase interaction bandwidth on common mobile devices, we proposed Tap-Tap, MagStick [805] and MicroRolls [671], which make it possible to interact very efficiently with the thumb. TapTap and MagStick outperform previous work on target acquisition on small devices while MicroRolls introduces a new set of gestures that enriches the input vocabulary of passive tactile surfaces. More recently, we also developed techniques based on 3D gestural interaction [803]. All these studies have been performed in collaboration with Alcatel-Lucent Bell Labs. They are also related to other partners of the UBIMEDIA laboratory, especially the SHS team (Telecom ParisTech SES).

In the Information visualization field, we introduced the concept of Zoomable Treemaps [649], a technique that makes it possible to navigate huge trees like the web base of the Open Directory project, with its 700,000 nodes. Another result in this category is the development of Perspective Drag [656] (in collaboration with INRIA InSitu) which leverages the familiar nonlinear variations of scale inherent in the perspective projection, and which we showed to help for navigating any sorts of large documents.

Finally, we have started casting some new light on Fitts’ law, a famous empirical regularity of experimental psychology. In particular, we have clarified in what sense Fitts’ law constitutes an instance of a speed-accuracy tradeoff [841]. We have also shown that the traditional definition...
of the independent variables involved in the law suffers a high degree of indeterminacy, and suggested a novel way of defining the basic dimensions of the problem [655].

It is important to note that people involved in the HCI activity have developed long-term collaborations with several industrial and academic partners: Alcatel Lucent Bell Labs (and the just launched UBIMEDIA joint research laboratory), LIG (Grenoble), INRIA InSitu and Aviz projects (Orsay), ESPCI LOA, Paris8 and LIP6 (Paris), COSTECH (Compiègne)... Moreover, VIA is an institutional project of Institut TELECOM that regroups researchers from other teams at Telecom ParisTech (INFRES/S3, TSI/MM, IP, SES/SHS) and Telecom SudParis (EPH). Many of them are also members of UBIMEDIA or other common projects.

6.3 References

6.3.1 ACL: Articles in ISI-Indexed Journals

6.3.2 ACTI-A: Articles in Proceedings of Major International Conferences

6.3.3 ACLN: Articles in Other Refereed Journals

6.3.4 INV: Invited Talks

6.3.5 ACTI-B: Articles in Proceedings of Other International Conferences

A. R. Kaced and J. C. Moissinac. Multimedia content authentication for proxy-side adaptation. In IEEE Interna-

H. Ha Duong and I. Demeure. A nomadic wiki for mobile ad hoc networks. In 2009 International Symposium on

H. Ha Duong and I. Demeure. Proactive data replication using semantic information within mobility groups in

August 2007.

I. Hamid and E. Najm. Operational semantics of ada ravenscar. In 13th International Conference on Reliable

I. Hamid, B. Zaïla, E. Najm, and J. Hugues. A generative approach to building a framework for hard real-time

applications. In 31st Annual NASA Goddard Software Engineering Workshop, pages 269–278, Baltimore, USA,

March 2007.

B. Hugueney, G. Hébrail, Y. Lechevallier, and F. Rossi. Simultaneous clustering and segmentation for functional

data. In European Symposium on Artificial Neural Networks (ESANN), pages 281–286, Bruges, Belgium, April

2009.

J. Hugues and O. Gilles. Towards Model-based optimisations of Real-Time systems, an application with the

AADL. In 15th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

(RTCSA 2009), Pekin, Chine, August 2009.

J. Hugues, F. Kordon, and L. Pautet. A framework for DRE middleware, an application to DDS. In Proceedings of

the 9th IEEE International Symposium on Object-oriented Real-time distributed Computing (ISORC’06), pages

224–231, Gyeongju, Korea, April 2006.

J. Hugues, F. Kordon, L. Pautet, and T. Vergnaud. A Factory To Design and Build Tailorable and Verifiable Mid-

dleware. In Monterey Workshop 2005 on Networked Systems: realization of reliable systems on top of unreliable

J. Hugues, L. Pautet, and B. Zaïla. From MDD to Full Industrial Process: Building Distributed Real-Time Em-

France, January 2006.

J. Hugues, L. Pautet, B. Zaïla, P. Dissaux, and M. Perrotin. Using AADL to build critical real-time sys-

tems:Experiments in the IST-ASSERT project. In 4th European Congress ERTS, Toulouse, France, January

2008.

19th IEEE/IFIP International Symposium on Rapid System Prototyping, 2008, pages 10–16, Monterey, CA, USA,

June 2008.

session of the Real-Time Systems Symposium (RTSS’-WiP06), pages 1–4, Rio de Janeiro, Brésil, December

2006.

J. Hugues, B. Zaïla, and L. Pautet. Combining Model processing and Middleware Configuration for Building Dis-

tributed High-Integrity Systems. In 10th IEEE International Symposium on Object-oriented Real-time distributed

Using the AADL and Ocarna. In 18th IEEE/IFIP International Workshop on Rapid System Prototyping (RSP’07),

S. Huot and E. Lecolinet. Spiralist: A Compact Visualization Technique for One-Handed Interaction with Large

S. Huot and E. Lecolinet. Focus-context visualization techniques for displaying large lists with multiple points of

interest on small tactile screens. In INTERACT’06 - Springer Verlag, LNCS series, volume I, pages 219–234, Rio,

A. R. Kaced and J. C. Moissinac. Multimedia content authentication for proxy-side adaptation. In IEEE Interna-

A. R. Kaced and J. C. Moissinac. Protecting adaptive multimedia delivery and adaptation using proxy based

A. R. Kaced and J. C. Moissinac. Sensora: a framework for authentication of adaptive multimedia content and
delivery for heterogeneous networks. In IEEE International Conference on Internet Surveillance and Protection
ICISP, Cap Esterel, Côte d’Azur, France, August 2006.

Z. Kazi-Aoul, I. Demeure, and J. C. Moissinac. Towards a peer-to-peer architecture for the provision of adaptable
multimedia composed documents. In DFMA (Distributed Frame for Multimedia Applications), IEEE conference,

Z. Kazi-Aoul, I. Demeure, and J. C. Moissinac. Psam: A web services oriented architecture for the adaptation of
composed multimedia documents. In Parallel and Distributed Computing and Networks (PDCN), Innsbruck,
Austria, February 2008.

Berlin, Germany, April 2009.

F. Kordon, J. Hugues, and X. Renault. From Model Driven Engineering to Verification Driven Engineering. In 6th
IFIP Workshop on Software Technologies for Future Embedded & Ubiquitous Systems (SEUS 2008), volume
LNCS, pages 381–393, Capri, Italy, October 2008.

C. Krier, M. Verleysen, F. Rossi, and D. François. Supervised variable clustering for classification of nir spectra.
In European Symposium on Artificial Neural Networks (ESANN), pages 263–268, Bruges, Belgium, April 2009.

T. Muhammad, G. Bailly, Y. Guiard, and E. Lecolinet. Tactile assistance for selecting list favorites with a bicalobal absolute and relative representation. In ChiNL09, Leiden, Netherlands (Pays-Bas), June 2009.

F. Rossi and N. Villa. Topologically ordered graph clustering via deterministic annealing. In European Symposium on Artificial Neural Networks (ESANN), pages 529–534, Bruges, Belgium, April 2009.
6.3. References

6.3.6 ACTN: Articles in Proceedings of French Conferences

6.3.6 ACTN: Articles in Proceedings of French Conferences

6.3.8 OS: Books and Book Chapters

Chapter 7

Mathematics of Information, Communications and Computation (MIC2)

Team leader L. Decreusefond (01/09–), O. Hudry (01/06–12/08)

PhD students S. Al Zahr (11/04–11/07), P.Y. Angrand (09/08–), R. Aoun (01/07–), D. Auger (10/07–), L. Belgacem-Denœud (11/03–11/06), A. Bocquet (09/08–), P. Bourgade (01/09), I. Camilier (07/07–), C. Cardenas (01/07–), R. de Souza (10/04–10/08), E. Doumith (05/04–05/07), D. Elkouss (01/08–12/08), E. Ferraz (01/09–), J.P. Flori (09/08–), B. Kindarji (09/07–), A. Leverrier (09/06–), R. Medeiros (09/05–09/08), A. Morea (10/03–10/06), A. Pichot (04/05–04/08), J. Valentin (04/09–), T. Vu (09/08–), M. Youssef (09/08–).

Post-docs, engineers and sabbaticals S. Al Zhar (06/08–), B. Barbe (01/09–06/09), L. Belgacem-Denœud (03/07–03/08), M. Dianati (07/07–06/08), E. Doumith (02/09–), P. Jouguet (03/09–), N. Skorin-Kapov (09/06–06/07).

External collaborators H. Chabanne, N. Puech, G. Zémor.
7.1 Objectives

Our research is devoted to concepts, methods and models coming from mathematics, computer sciences, quantum mechanics. Our works are twofold: On the one hand, we apply abstract and generic mathematical results to the computer real world (biometry, optical networks, quantum networks, mobile networks). On the other hand, we consider new mathematical problems raised by the applications (differential geometry, algebraic geometry, automata, infinite dimensional calculus, quantum information). For instance, classic tools of combinatorial optimization, such as graphs and linear programming, are revisited for their applications to design and control of optical networks. We also strongly believe in the necessity to develop abstract theories like algebraic geometry or infinite dimensional analysis, in order to forge the tools which will be used in a near future to model and analyze more and more complex phenomenons.

7.2 Main Results

The main research results obtained during the period 2005-2009 are presented below for the research areas of the MIC2 team.

7.2.1 Probability, Stochastic Modeling

Projects : Projet structurant : MONGE

• TROMATIC, CNRS Grant (01/06–12/06)
• CADRA, CNRS Grant (01/08–12/08)

Historically, the team was interested in analysis in infinite dimension, mainly Malliavin calculus and nuclear spaces, and its applications to telecommunications networks. Since the arrival of P. Bourgade, our themes widened to random matrices and number theory.

The optimal transportation problem dates back to the eighteenth century. Its modern approach was introduced in the forties by Kantorovich as an optimization problem in a space of probability. A full solution for the quadratic cost was found in the nineties by Y. Brenier. Because of its numerous applications, for instance to functional inequalities, it is sensible to look at a generalization of this problem to infinite dimension spaces. The optimal transportation problem for a singular quadratic cost on the Wiener space was solved in [953, 993]. The results are formally identical.
to those known in finite dimension but the lines of proofs are radically different. Consequences of these works are to be found in [991, 994, 995, 990]. In particular, we found necessary and sufficient conditions for a perturbation of the identity to be invertible in the Wiener space. We also gave some applications to filtering theory.

The mathematical properties of point processes are well known only for a very few number of processes. Unfortunately, in real life, it is seldom true that the real phenomenon can be modeled precisely by one of the known processes. It is thus of the utmost importance to quantify how far we are from the reality when we replace the “natural” process by a mathematically tractable one. It turns out that the optimal transportation problem for point processes gives an approach to this sort of problem. We solved it in [944]. Strangely enough, the methods are similar to those used in the Wiener space. One can now estimate the distance between Poisson point processes and several kind of processes like Cox processes, Markov modulated processes, Gibbs processes. Two articles are submitted about this topic.

As said above, a natural consequence of optimal transportation problem is the existence of functional inequalities like isoperimetric inequalities. Applications of such inequalities led us [1151] to new and robust principles for the dimensioning of mobile networks operated under the OFDMA protocol.

We were also interested in the performance evaluation of some real times systems. In such systems, the evolution after each time depends on the whole past of the system. It is well known in Markov theory, that history can be taken into account by increasing the dimension (in the algebraic sense) of the state space. In the system we studied, this history was put in an infinite dimensional space, namely we worked on the space of tempered distributions. Using abstract results developed by A.S. Üstünel a few years ago, we were the first to find some limit theorems for high traffic regime [945, 946] for the so-called Earliest Deadline First discipline.

Another tool for stochastic modeling is made by random linear operators. Since the meeting between Montgomery and Dison in 1972, it is clear that there should exist deep connexions between number theory and random matrices. In this spirit, in [922], we gave a probabilistic proof of some formulas yielding $\zeta(2n)$. This is based on a representation of $\zeta(2n)$ as the Mellin transform of some Cauchy-related random variables. We also gave a generalization of this result to some L functions related to some Dirichlet characters. In [923], we showed that $\det(Id - u)$ can be decomposed as a product of independent random variables for ν chosen according to the Haar measure on the unitary group. This implies an elementary proof of a central limit theorem conjectured in the eighties. These results were then extended to some Lie groups and some perturbations of the Haar measure, see [924]. It must be noted that these approaches can be applied to make explicit some computations for MIMO systems.

7.2.2 Discrete Mathematics, Communication, Information

Projects: Projet structurant : COOPT

• European grant VIPBOB

Algebraic Geometry, Number Theory and Cryptography

One research direction is the approach to problems of arithmetic nature (transcendence, Diophantine equations) by geometric methods (algebraic geometry, Arakelov geometry [933], Hermitian lattices). But of equal importance is also the application of these same geometric methods to concrete problems in combinatorics, coding theory, cryptography, analog and digital modulations, quantum information theory, etc.
With F. Castro, I. Rubio, O. Moreno, and H.F. Mattson Jr, we gave new proofs and then improvements, of some results about the number of solutions of systems of polynomial equations over finite fields \([1007]\). We then gave applications of these new results to problems in coding theory.

With J.J. Boutros and F. Kharrat (1004), we studied the quantification problem for the state space of a MIMO channel. In particular we compared results obtained from models based on various quantification methods, some of which naive, some others sophisticated, relying on the very differential geometric properties of the natural structure of Hermitian symmetric space carried by the space state of the channel.

Again with J.J. Boutros, we constructed a space-time code for \(2 \times 2\) MIMO channels that is optimal both for maximum likelihood decoding and for iterative decoding (1005). This construction was made possible by the use of objects from various branches of mathematics: matrix groups, quadratic forms, algebraic number theory, generalized quaternions.

In public-key cryptography, we began to explore the possibilities of finding cryptosystem not relying on the hardness of the discrete logarithm or the factorization, and if possible, efficient. That is why we are studying the potentialities of objects stemming from algebraic geometry such as algebraic tori, semi-abelian varieties, cubic hypersurfaces, in existing cryptosystems (especially on elliptic or hyperelliptic curves, e.g., pairings). We also study links with coding theory (e.g. toric codes) and information theory (secret sharing) and the possibility of applying combinatorial game theory to cryptographic protocols (so as to formalize them).

Combinatorics and Optimization

The external co-authors are I. Honkala (University of Turku, Finland), Y. Ben-Haim (University of Tel-Aviv, Israel), S. Gravier, M. Mollard and J. Moncel (researchers in Grenoble), A. Guénoche (CNRS, Marseille).

Once we realize that any technological system will eventually suffer errors or failures, it is necessary to develop tools to handle such events. For instance, in a multiprocessor architecture, we may want locate the malfunctioning processors. The so-called identifying codes in graphs are one of the best possible way to achieve this goal. Hence, we studied the properties of these codes, as well as the ones of the graphs admitting identifying codes, called twin-free graphs. We also studied two other kinds of codes, whose definitions are close to the one of identifying code: the locating-dominating codes and the discriminating codes in bipartite graphs. This is, in particular, the subject of D. Auger's PhD thesis [917, 918, 919]. Different aspects were considered: structural properties, study of special graphs, complexity issues, or search of exact algorithms [927, 928, 929, 932, 933, 941, 942].

Another direction of research deals with problems of distance between partitions, as well as the application of partitioning methods to bioinformatics. These topics were partly the subject of the PhD thesis of L. Dencœud-Belgacem [930, 931, 935, 936]. Note that the “Prix Simon Régnier” was awarded to L. Dencœud-Belgacem by the “Société francophone de classification” for her work in this field in 2007. Last, we would like to mention the continuation of our study of combinatorial properties of tournaments and of combinatorial optimization [934, 937, 961, 962].

Information Theory

The main recent activity in the field is related to the extension of the European project VIPBOB (Virtual Pin Based on Biometrics). The new challenge, from the cryptographic point of view, is that digitalized biometric data cannot be reproduced exactly every time it is extracted from a physical person. This is a situation that can’t be covered by classical authentication schemes that do not distinguish between “almost correct” and “completely wrong”. Therefore, if biometric data is to replace more traditional passwords, existing protocols must be modified in a way that will tolerate slightly erroneous submissions. This is a situation where the theory of error-correcting codes proved to be relevant. A protocol of Juels and Wattenberg was the basis for the European project VIPBOB in which the Telecom ParisTech team MIC\(^2\) took an essential part.
This application of coding theory to biometrical identification is potent. However, a number of questions needed to be addressed. In practice, the distribution of biometric traits is far from uniform and the scheme is liable to leak undesirable partial knowledge to an unauthorized third party. It was thus desirable to have a protocol for which zero information leakage to potential eavesdroppers is guaranteed. As was put forward in the VIPBOB project, the information leakage problem can be interpreted as a wire-tap channel problem. Through this modeling we obtained precise measures of information leakage and proposed more robust schemes in [1008].

Then, we explored the possible applications of this approach to devise a biometric identification technique based on the iris, in the framework of a contract with SAGEM; the idea was to use a product of two simple codes, equipped with a fast decoding algorithm [925].

Bruno Kindarji has begun a PhD CIFRE on biometric identification, co-supervised by H. Chabanne (SAGEM) and our team (Cohen and Zémor).

Automata Theory

The activity in this domain is conducted by J. Sakarovitch, his PhD students (R. de Souza, P.-Y. Angrand) and several external collaborators, mainly S. Lombardy. It may be described under four themes: synthesis, research, non-standard numeration systems, and construction of software for handling finite automata.

The concepts, methods et results of automata theory pervade the whole field of computer science. The English edition [1027], published by Cambridge University Press, of the monograph (in french) published in 2003 aims at showing both the unity of the subject and its wide scope in a pedagogical approach.

In research, the systematic use of coverings revealed a structural approach to automata that proved to be very fruitful. We showed, with M.-P. Béal and S. Lombardy in [1002], that the equivalence of automata with multiplicity can be expressed in terms of conjugacy; a deep result, which can be applied to the theory of automatic structures and to the axiomatisation of \(N\)-rational series. With R. de Souza, we rewrote a new theory for finite valued transducers, based on the notion of lexicographic covering. With S. Akiyama and Ch. Frougny, we showed how the introduction of numeration systems in rational base allows to make progress in the problem of the repartition of the powers of rationals modulo 1 ([913]). Some other works complete the applications of finite automata to non-standard numeration systems ([1003, 916]).

As for the software activity, Vaucanson, a C++ platform for computing with weighted automata and transducers, is written in collaboration with a team from EPITA and is under development. It also gives rise to a cooperation with the National Taiwan University. Along with the platform, we developed an XML format for finite automata. Finally, Vaucanson-G, a \(\LaTeX\) package for drawing automata and graphs, co-written with S. Lombardy, is now publicly available from the CTAN servers.

7.2.3 Quantum Information

Projects: Projet structurant : TRAQUE

- SECOQC, European Grant FP6, Trust & Security, (04/04 – 10/08).
- PROSPIQ, Projet ANR PNANO, (01/07–06/10).
- SEQUE, Projet ANR SeSUR, (01/08 – 12/10).
- COCQ, Projet ANR Domaines Emergents, (01/09 – 10/11).
7.2. Main Results

7. Mathematics of Information, Communications and Computation (MIC2)

Main Collaborators: Groupe de Philippe Grangier (Institut d’Optique), groupe de Nicolas Gisin (GAP Optique Genève), Austrian Research Center (Vienne, Autriche), groupe de Norbert Lütkenhaus (Institute for Quantum Computing, Waterloo, Canada), Institut Mathématique de Bordeaux (Gilles Zémor), Joseph Boutros (Texas AM Univ, Qatar), groupe de Nicolas Cerf (Université Libre de Bruxelles).

Quantum Networks

We developed an architecture and protocols specifically adapted for the distribution of secret keys over large scale networks. They were tested and validated within the European consortium SECOQC: The first live demonstration of a working quantum key distribution (QKD) network took place in Vienna in the framework of the SECOQC Demonstration and International Conference [981, 1011, 1015, 950]. Eight QKD-links were combined in a novel quantum-back-bone network physically deployed within a typical metropolitan area network to connect different company sites from SIEMENS Austria. Typical applications for QKD, to secure data traffic from telephony and video conferencing, were included in the demonstration.

We also studied quantum networks from a fundamental point of view, looking at security within the model of “Trusted Repeater Nodes” and its extension to the case of corrupted nodes [985], a crucial factor in any realistic “telecom” approach of quantum key distribution networks. We established a new methodology for the optimization of topologies for future quantum networks, and obtained novel results improving the design of experimental systems and facilitating economic planning of the deployment of large scale quantum networks [2457].

Quantum Key Distribution and Quantum Information Theory

Work on quantum key distribution has been carried out within the framework of European project SECOQC, and ANR projects SEQURE and PROSPIQ, and has been conducted along two principle axes: the establishment of demonstrations in optical fiber and/or in free space, and the theoretical study of new high performance protocols along with the formal proofs of their security. Leading an international effort in this direction, we studied the role of quantum key distribution in the broader landscape of current cryptography, as discussed in detail in the “SECOQC Crypto White Paper”, edited by R. Alléaume. This White Paper is the outcome on a thorough consultation and discussion among the participants of the European project SECOQC. This paper is a review article that attempts to position Quantum Key Distribution (QKD) in terms of cryptographic applications. A detailed comparison of QKD with the solutions currently in use to solve the key distribution problem, based on classical cryptography, is provided. We also detail how the work on QKD networks lead within SECOQC will allow the deployment of long-distance secure communication infrastructures based on quantum cryptography. The purpose of the White Paper is finally to promote closer collaboration between classical and quantum cryptographers. We believe that very fruitful research, involving both communities, could emerge in the future years and try to sketch what may be the next challenges in this direction.

Experimental aspects of research are led by collaboration with the Institut d’Optique. The arrival of E. Diamanti, previously at the Institut d’Optique, to our team allows us to capitalize on a well respected and known expertise in the field, whether for continuous variables [954, 955, 969], or discrete variables [987, 949]. In particular, E. Diamanti was responsible for the implementation of an all-fiber continuous variables quantum key distribution system for the European project SECOQC [981].

On the theoretical side, our team proposed new techniques for error correction for both discrete [1012] and continuous [966] variables. A. Leverrier co-invented a new continuous variable key distribution protocol, which improves performance of real systems [959]. In addition, the proof of security for these protocols provided new results of fundamental interest to quantum information.

Finally, we progressively developed our theoretical activity in quantum information, most significantly in the direction of quantum codes within the project ANR COCQ. In collaboration with the
Universidade Federal de Campina Grande, Brazil, we extended the notion of zero-error capacity to the quantum framework [978, 1014], giving a necessary and sufficient for non-null capacity, and reformulating the determination of the capacity in graph theoretical terms. The arrival of D. Markham to our team allows us to engage in the study of fundamental problems linking entanglement and quantum computing [915, 1025, 980], for example by the conceptually useful unification of quantum error correction codes, secret sharing and one-way quantum computation notably via the “graph states” and the stabilizer formalism [975, 960, 976].

Industrial Development

The enterprise SeQureNet was created in February 2008. It is a “spin-off” from the research activities initiated within Telecom ParisTech/INFRES in the framework of the European FP6 project SECOQC and is aimed at the industrial development of networks for quantum key distribution. The enterprise was launched based on the success of winning two prizes in the national competition for “concours national de création d’entreprises de technologies innovantes” organized by OSEO and MNRT, first in 2007, and then in 2008 (in the categories “émergence” and “création-développement” respectively). Part of the generated intellectual property generated by our research in quantum information is already linked with industrial development via SeQureNet. A software “SeQure Phone” allowing for secure communication between a smartphone and a server over a quantum network has been registered and the protocol [968] has been filed with the patent office. In addition, the network protocols we specified, having been given the opportunity to develop in the European SECOQC project, are now en route to becoming the European standards which permit the integration of quantum key distribution into standard telecommunications networks. Our team actively participated in work on standardization, run under ETSI, within the “QKD Specification Group” which we co-founded in 2008.

7.2.4 Combinatorial Optimization for Optical Networks Design and Traffic Engineering

Within the Institut Telecom, our research in the domain of optical networks is organized around the ETTON (Ethernet Technologies and Transparent Optical Networks) collaborative project. In terms of tools, both exact techniques (Branch and Bound, ILP formulation) and approximate techniques (heuristics, metaheuristics) are required to address a vast class of problems.

Projects: Projet structurant : ETTON

- BONE: “Building the future Optical Network in Europe”, European Network of Excellence (NoE) on optical communications and networking; (01/08–12/10).
- e-Photon ONE: “Optical Networks in Europe”, European Network of Excellence (NoE) on optical communications and networks; (03/06–02/08).
- Research contract with Orange-labs in Lannion “Access networks: architecture and traffic modeling”; (09/05–05/07).
- Carriocas, sub-project within the National Systematic research project: (10/06–09/09).
Traffic Aggregation in Multilayer Networks

In 2002, we introduced the concept of Scheduled Lightpath Demand (SLD). Unlike a Random Lightpath Demand (RLD), an SLD is dynamic and deterministic. It is characterized by a 5-tuple made of the source and destination nodes, the bandwidth capacity expressed in number of optical channels, the date of activation, and life duration of the connection. We proposed the very first Routing and Wavelength Assignment (RWA) algorithms exploiting time-space correlation between SLDs (PhD of J. Kuri). These algorithms enable to reduce considerably the cost of optical cross-connects (OXC) in the network. Since 2002, numerous papers in international conferences and journals proposed extensions or variations of our original approach. We extended the SLD concept to traffic demands with fractional wavelength capacity (PhD of E. Doumith). Such traffic requests are designated by Scheduled Electrical Demands (SED). By extension, we have also introduced the terms of PED (Permanent Electrical Demand) and RED (Random Electrical Demand). We proposed the first RWA algorithms including shared-path protection under SLD/SED traffic (PhD of M. Koubaa). We proposed an original traffic characterization relying on a decomposition of real traffic traces into a set of PLDs/PEDs, SLDs/SEDs and RLDs/REDs (PhD of E. Doumith). More recently, we focused our activities on multi-layer traffic grooming. Two contexts were considered: the encapsulation of electrical connections (typically MPLS LSPs) into lightpaths (PhD of E. Doumith) and the logical aggregation of lightpaths into wavebands (PhD of J. Kuri) [951], [958]. Our expertise in the field of grooming has motivated the writing of a chapter in a collaborative book published by Springer-USA in 2008 [1021].

Impairment-Aware Routing and Wavelength Assignment (IA-RWA)

Within the National RYTHME project, we developed one of the very first RWA algorithms taking into account Quality of Transmission (QoT) also known as Impairment-Aware RWA (IA-RWA). The principal objective was to consider in the context of PLDs, the main factors degrading QoT, namely chromatic dispersion (CD), optical signal to noise ratio (OSNR), non-linear phase (Φ_{NL}) and modal dispersion (PMD). We proposed a new algorithm called LERP (Lightpath Establishment with Regenerator Placement) aiming to judiciously place electrical regenerators (ER) when bit error rate (BER) goes beyond a certain admissibility threshold [957] (PhD of S. Al Zahr). Minimizing the global amount of regenerators is a CAPEX-oriented objective. Carriers also should like in parallel to favor a concentration of ERs in the network for OPEX purposes [1013]. In the context of the European DICONET project, we developed a new algorithm called COLERP (Cross-Optimization LERP). COLERP aims at a triple objective: minimize rejection ratio, global number of ERs, and number of regeneration sites [999] (PhD of M. Yousef). Our coming studies deal with two topics: hard failures monitor’s placement strategies and soft-failures monitor’s placement strategies. If a few recent papers deal with hard failures, soft-failures related to aging of devices and systems remain a very open field of investigation.

Virtualization and Pricing Strategies in Cloud Computing

Grid Service Providers (GSP) are typically interfaced on one hand with clients generating job requests and on the other hand with resources (computing facilities, storage devices, networking facilities) providers. Considering a fluctuation in resources availability, our aim is to determine on which computers, storage devices and networking facilities a set of jobs can be satisfied at the lowest cost. In the context of the Carriocas national research project, we proposed a first economic model based on an Integer-Linear-Programming formulation aiming at maximizing the gain of the GSP [1000]. Our approach is advantageous compared to an on-the-fly approach both for the clients (lower rejection ratio) and for the GSP (increased gain). We extended this analysis to the concept of sliding window in which a client may wish the processing of his job. The wider this window, the lower the cost for the client, the more efficient resources’ utilization, and the higher the number of accepted jobs. In order to consider realistic network scenarios, we also proposed a meta-heuristics to deal with this same problem [1001] (PhD of R. Aoun). Other
investigations were carried out in Grid Computing dealing with architecture and protocol aspects (PhD of A. Pichot) and on the application of Flow Aware Networking (FAN) developed in Orange Labs for Grid sessions admission control in IP networks \[1006\] (PhD of C. Cardenas). We shall soon collaborate with Essex University under BONE NoE in order to consider the delays required for network resources establishment.

Control Plane for Hybrid Optical-Wireless Access Systems

In collaboration with Prof. Mario Pickavet, we proposed an original analytical model of the IEEE 802.3.ah EPON MAC protocol. This model takes into account the MPCP signalling protocol and the IPACT dynamic bandwidth allocation mechanism \[964\], \[965\]. In the context of a collaboration with Orange-Labs, we proposed a passive WDM metro-access architecture including AWG routers and colorless Optical Network Units. We designed an original control plane applicable to this architecture in order to provide dynamic optical bandwidth capacity to multiple WDM-PONs \[956\]. Our coming studies are extending these studies to the federation of WDM-PONs and Next Generation wireless base-stations thanks to Radio-over-Fiber techniques.

7.3 References

Below is the full list of articles published, since January 2005, in international journals by current members of the team (thus, these also includes a few publications that where not counted in the summary table of page 116). As regard articles in proceedings, only the selected articles which are cited in the text appear below. The full list of publications of the team is available at the following URL

http://www.infres.enst.fr/wpmufr/mic2/publications/

7.3.1 ACL: Articles in ISI-Indexed Journals

7.3. References

7.3.2 ACTI: Selected Articles in Proceedings of International Conferences

7.3.3 OS: Books and Book Chapters

Chapter 8

Networks, Mobility, Security (RMS)

Team leader Daniel Kofman.

Faculty Nadia Boukhatem (MC), Claude Chaudet (MC), Marceau Coupechoux (MC), Philippe Godlewski (P), Daniel Kofman (P), Artur Hecker (MC), Houda Labiod (MC), Jean Leneutre (MC), Philippe Martins (MC), Michel Riguidel (P), Dario Rossi (MC), Jean-Louis Rougier (MC), Ahmed Serhrouchni (MC), Noémie Simoni (P), Pascal Urien (P).

PhD students ACHKAR DIAB Talal (21 months), ADIB Mustapha (3 months), ADRA Nadine (12 months), AFIF Meriem (20 months), AI Chi (11 months), AL MAMOU Abd Al Basset (42 months), ALAOUI SOULIMANI Houda (5 months), ALJNIDI Mohamed (43 months), ARANDA Liliana (20 months), ARYA Azin (16 months), AUGE Jordan (33 months), BEN CHEIKH BATTIK Dorra (6 months), BENOURED DAHO Zakaria (2 months), BERMolen Paola (34 months), BIJNINO Aruna (5 months), BREHON Yannick (9 months), CARDENAS PEREZ César (43 months), CHAMOUN Maroun (6 months), CHEN Lin (37 months), CHI Jing (14 months), DAILLY Nicolas (10 months), DANDJINOU Toundé Mesmin (11 months), DELAMARE Simon (34 months), DIALLO Alpha Amadou (34 months), EL FEGHALY Antoine (9 months), FADLALLAH Ahmad (25 months), FAYCAL Marguerite (43 months), FEKI Ines (33 months), FERRAGUT VARELA Ruben André (9 months), GARCIA DE LA FUENTE Miguel (9 months), GUILLET Thomas (32 months), HADDAD Yoram (33 months), HAN Bing (39 months), HE Ruan (21 months), HORMICK Sana (25 months), HUYNH Hanane (11 months), KACED Ahmed Reda (33 months), KAMAL MAHMOUD Hany (20 months), KELIF Jean-Marie (35 months), KHAWAM Kinda (10 months), KOMAROVA Maryna (9 months), KTARI Salma (33 months), LANGAR Rami (8 months), LARROCA Frederico (34 months), LENGOUMBI MAKOGHA Carle Tricana (26 months), LIU Bin (37 months), LIN Hai (37 months), LIN Thanh Trà (6 months), MAQQOOL Masood (33 months), MIRANI Farhan Hyder (9 months), NGUEGUJA NYAMY Dorice (20 months), NGUYEN Huu Quynh (26 months), ORNELAS Netzahualcoyotl (17 months), OUANOCHE KESSAL Soumia (16 months), PIETRE-CAMBACEDES Ludovic (23 months), RIBEIRO CARDOSO André (21 months), RODIER Bernard (6 months), SAAD Radwane (33 months), SALAZAR GAITAN Oscar (21 months), SANCHEZ SANCHEZ Erwing Ricardo (12 months), SECCI Stefano (38 months), SOKHN Maria (21 months), SONG Meng (34 months), SOUZE DE CASTRO Rodrigo (18 months), TCHEPNDIA Christian (36 months), THIBAUD Cedric (6 months), TOUBIANA Vincent (37 months), TRAN Phuoc Nguyen (31 months), VALENTI Silvio (12 months), VEGLIA Paolo (12 months), WANG Lu Sheng (41 months), WU Yijun (30 months), YIN Chun Yang (38 months).

Post-docs, engineers and sabbaticals ABABNEH Nedal (5 months), CHEN Lin (7 mois), DIALLO Madiagne (2 months), FADLALLAH Ahmad (12 months), HADDAD Sammy (7 months), LIU Bin (3 months), MABIALA MOUNDELE Muriel (5 months), SONG Meng (5 months), TRAN Minh Anh (7 months), YIN Chun Yang (4 months), ALBERTIN Pierre (20 months),
8.1 Scientific Environment, Positioning and Objectives

The NMS team covers a broad, consistent thematic field, as shown in the first part of this introduction. As networks are at the heart of the Télécom ParisTech scientific and technological field, we have chosen to cover a large number of topics that we consider to be strategic for enabling the expected development of networks and services. The second part of the introduction provides a reminder of the high level of involvement of our team in national and international research initiatives and organizations as well as its numerous collaborations with the industrial sector.

Services are becoming personalised, ubiquitous and agnostic in relation to the technologies and networks used to gain access to them. These personalised services adapt themselves dynamically to the context and the location. We hold that major flexibility will be introduced through the concept of having a composition of services where various actors propose components used to dynamically create new services that fulfil specific needs. These developments require major changes in services’ architectures. Our research strategy is focused in architectural modelling, enabling the problem to be understood as a whole, and on innovative fundamental principles of future architectures. In particular, the team validated these principles in collaboration with various network and services operators. Moreover, service overlays, particularly in peer-to-peer (P2P) mode, are continually being deployed in order to support the development of services and particularly the distribution of content. Our contributions in this field relate to the design and analysis of P2P applications, work based on an innovative methodology that we pioneered. The relevant scientific contributions are presented in section 8.2.1.

Services are becoming mobile (a concept which largely goes beyond the mobility of users and terminals that we currently have); we will be able to cross technological frontiers and boundaries between administrative domains (different operators and service providers), and change terminals without the communication we have in progress being affected. All services are becoming mobile, and therefore the capacity needs are exploding. Within this context, the team has focused on two groups of topics: firstly the planning of new-generation wireless networks, cognitive
radio and scheduling at the radio interface (topics considered to be critical for optimal use of the spectrum) and secondly the mechanisms enabling seamless mobility, particularly across technological frontiers and administrative boundaries (an obstacle that limits service offers like the ones described above). Our contributions in this field are presented in section 8.2.2.

Peripheral to infrastructure networks and particularly to the access networks referred to above, we find devices (residential gateways, terminals, etc.) which increasingly have radio interfaces and functionality enabling opportunistic creation of self-organized networks. These networks can fulfill specific needs that change greatly over time. The generic concept of self-organized networks is not new, but its implementation in specific contexts (e.g., vehicle networks) has opened the door to a large number of applications and raised new scientific and technological problems. At the same time, new concepts such as wireless sensor and actuators networks (WSANs), new-generation RFID and the Internet of things, will enable the real and the digital worlds to be brought closer together, thus facilitating new services which will change our lifestyles. This is a wide-ranging topic; on the one hand we have focused on certain algorithms and protocols enabling fundamental issues to be resolved (efficient and fair sharing of resources, time synchronisation) and on the other hand we proposed innovative architectures for wireless sensor networks (including one pioneering contribution usually cited), for vehicle networks and for mesh networks. Our contributions to self-organised networks are presented in section 8.2.3.

The architecture of IP networks (including the Internet) will have to change in order to integrate the concepts outlined above, and in order to integrate new network paradigms facilitating the offering of services like the ones described. In particular, the team focused on inter-domain routing, an issue recognised as being one of the main obstacles to networks development. Indeed, present Internet inter-domain routing neither allows for guaranteeing QoS or deploying efficient traffic engineering approaches. Moreover, advanced services, such as IP Virtual Private Networks, are seldom interconnected due to the complexity of existing solutions. We present our contribution to these topics in section 8.2.4. Moreover, the team is also involved in initiatives dealing with more radical changes in Internet architecture.

Security is an ever-present, fundamental topic involved in all of the themes presented above, and future networks and systems will have to include security right from their design stage onwards. Within a dynamic context like the one described above, the development of numerous usages requires the establishment of solutions enabling users’ trust to be developed whilst at the same time devoting attention to respecting privacy. The central socio-economic role of networks makes studies concerning infrastructure safety a necessity. Our results regarding these topics are outlined in section 8.2.5.

The team is greatly involved in national and international collaborative research projects (financed by the FP7, the ANR and competitiveness clusters). It was the initiator of the PF6’s European Network of Excellence (NoE), Euro-NGI and of its successor in the FP7: Euro-NF. It has chaired this NoE’s Steering Committee since it was created. The Steering Committee is, in particular responsible for co-ordinating all research activities of the NoE. Moreover, by way of an example, during this period the team participated in several European projects (NapaWine, SEINIT, CI2RCC, IRRIS, Seserec, TIGER and Bugyo) and in the RNRT and ANR Actrice, Diaporus, Georacing, R2M, TRAFFIC, IROISE, Resodo, T2TIT, ESTER, and OSCAR projects, among others. The team is involved in the System@tic (trust platform) and CapDigital (wireless high-speed Internet) competitiveness clusters.

The team is also involved in numerous bilateral research contracts with industrials, and particularly with Orange, SFR, Alcatel-Lucent and Thales. It maintains close links with various international laboratories, including Turin Polytechnic, Milan Polytechnic, the University of Waterloo, Imperial College, Hubert Curien Partnerships, and STIC Asia Partnerships. The group participates in numerous projects.

In 2009, one of its members chaired the Experts Committee of the ANR’s VERSO programme. Within the Telecom Institute, it is greatly involved in the Networks of the Future lab, and several of its members are part of its Experts Committee. Moreover, the team regularly responds to
requests for expertise from various French and European institutions. As far as innovation is concerned, members of the team were either the founders of, or are greatly involved in, innovative enterprises dealing with technologies that have resulted directly from research work within the team.

8.2 Main Results

8.2.1 Services Architecture and Applications Services

Faculty Dario Rossi, Noémie Simoni.

The development of new services and usages makes it necessary to rethink how services and content are made available. The major changes required for a dynamic composition of heterogeneous services, provided by multiple actors, in a way that is transparent to the user, may be summarised as follows:

- Shifting from a vertical architecture (in silos) to a horizontal architecture (that is integrated).
- Shifting from a client-server architecture (strong coupling) to a service-oriented architecture (loose coupling).
- Shifting from a centralised architecture to a distributed architecture (P2P).
- Shifting from a static architecture to a dynamic, flexible architecture.

The joint design of networks and applications services is required to ensure the end-to-end continuity of QoS, guaranteeing full integration. Personalisation of the user's workflow, which is now central to the solution, brings about a trans-organisational context where session mobility needs to be managed.

There are several approaches for achieving the simplification, reuse and loose coupling of the various services, above and beyond Web 2.0/3.0, which was the first to emphasise the sharing of knowledge and social networks. The next stage, represented by Service Oriented Architecture (SOA), and Software as a Service (SaaS), is defining a paradigm for the organisation and use of the distributed capacities of services platforms: our initial research orientation is aiming to go beyond the limits of these approaches.

An important aspect of the Darwinian evolution of the Internet has undoubtedly been the introduction of the “peer to peer” (P2P) paradigm. In light of the impact of P2P applications, we were interested in two major issues: analysis of the traffic structure that they generate (in order to facilitate handling them), and their mechanisms for interaction with the network (enabling a global optimisation of resources). We have come up with innovative methods for traffic classification (the usefulness of which extends well beyond the framework of this study) which have enabled us to understand certain operating principles of the main P2P applications as well as their mechanisms for interaction with the network. These results are now recognised by the scientific community in light of their usefulness in joint services/networks design, especially through integrating self-adaptation mechanisms (work in progress within the team).

Main contributions

Development of applications services

Here, our work relates both to the design and analysis of P2P applications. Of the major results, we can cite the analysis of Skype congestion control mechanisms [1054] or its signalling [1246, 1029], as well as the characterisation of its users [1031], or of the black-out which caused an outage of the Skype network lasting three days in a row and which created a firestorm of messages on the Internet [1076]. Other aspects taken into account concern the study devoted to
VoIP service quality \cite{1053}, and the impact of P2P-TV applications on the network \cite{1041, 1184, 1078, 1077}, which depends on their level of knowledge of the underlying.

Analysis of these applications was made possible by the development of reliable, sophisticated techniques for the classification of Internet traffic, based on the recognition of the applications that generated the flows of information. To do this, we proposed an analysis method based on the similarities that exist between the dynamics of human communications and exchanges of digital data carried out by Internet applications \cite{1055, 1079, 1084, 1058, 1085}. Two orientations were considered: the first was the similarities of the verbal aspect of communication with a new class of classification technique: “Stochastic Packet Inspection” (SPI) \cite{1084}, a statistical extension of DPI. It should be noted that the germ of this idea is described in \cite{1055, 1079, 1096}, which is currently considered to be the state of the art for Skype classification. The second orientation relates to the behavioural exchanges of applications, whilst completely ignoring the packet content and only considering the behaviour of the traffic \cite{1058, 1085}: here, the similarity is more with the dynamics involved in human interactions.

Development of service architectures

The NMS team has fully contributed to the integration and joint design of networks and services. It is thanks to a unified approach and an architectural modelling of NGNs (Next Generation Networks) and of this new generation of services that converging, dynamic and flexible solutions for networks and services have been proposed. The main objective is for the whole system to be at the user’s service, unlike other approaches, where the user must bend to the various connections constraints (Network Centric) or processing constraints (Application Centric). One of the main results is the proposing of an information model for managing a user-centric session (a time-based connection with the system). In other words, this is a session by a user wanting to establish his workflow dynamically depending on the services that his environment may offer during all his travels. To achieve this, in \cite{1100, 1239, 1040, 1270, 1185, 1269, 1265} we propose a structuring of this new personalised service landscape, which is trans-organisational and based on the dynamic service composition, subject to QoS constraints within a generalised mobility environment. But a service is neither an application nor a transaction, and still less a system. As we noted above, the SOA and SaaS approaches have enabled development, but they are not sufficient for ensuring the dynamic nature and the integration of the service and networks. This is why we introduced self-management through the management of communities of interest and management of the QoS in terms of each of the service components. The global organisation is based on the ubiquitous nature and sharing of the service components. What is original about this is that it steps outside of the client-server model by proposing the implementation of the user’s service logic (workflow) in the same mobile session, based on the sharing of service components.

8.2.2 Wireless Networks and Mobility

Faculty Nadia Boukhatem, Marceau Coupechoux, Philippe Godlewski, Daniel Kofman, Houda Labiod, Philippe Martins.

Support for the development of the services previously described in this document in particular requires two major developments: firstly, a major increase in the capacity of access networks and, secondly, advanced management of mobility.

Over recent years, cellular radio interfaces have experienced rapid development. Beyond increases in speeds, in particular this has been characterised by new packet mode optimisation mechanisms, the coexistence of several technologies, greater equipment agility in terms of frequencies, and the use of OFDMA for the physical layer. Dimensioning and capacity calculation methods have been greatly modified because of the characteristics of the physical layer, and services and users, are changing. Radio access scheduling and protocols must be adapted to the constraints of new services. Making access transparent to the user requires the development of advanced inter-technologies handover algorithms. Lastly, the promises of radio software are
forcing us to rethink spectrum management methods.

Main contributions

Capacity and dimensioning of wireless networks

The group is interested in the dimensioning and planning of wireless networks. This requires evaluation, firstly, of coverage and, secondly, of the capacities of these networks. These two aspects are linked by the spatial distribution of the Signal-to-Interference+Noise Ratio (SINR). The coverage ratio is in fact defined by the probability of exceeding the SINR. The cellular capacity, on the other hand, is an increasing function of the SINR. Within the context of CDMA networks, and working in collaboration with Orange, we expressed (the results are presented in [1059]) the spatial distribution of the SINR and the probability of exceeding it, taking masking and attenuation effects into account. Within the context of OFDMA networks and in collaboration with Alcatel-Lucent, we compared different frequency reuse schemas (the results are presented in [1175]). In [1150], we propose an approximation of the SINR when the cells are distributed according to a spatial Poisson process.

The group proposed an innovative approach, based on stochastic geometry, for planning metropolitan wireless networks. This approach enables simple engineering rules to be obtained in spite of the complexity of the problem [1072]. The work was carried out in collaboration with the ENS within the context of the Iroise RNRT project.

In collaboration with Alcatel-Lucent and UPMC/LIP6, we developed dimensioning algorithms for WiMAX networks based on the Markov chains theory and taking into account the various types of traffic (best effort, voice, etc.) and different types of radio channels [1052].

Scheduling and radio access protocols

The group is interested in scheduling algorithms and in radio access protocols.

Opportunistic scheduling dynamically considers the variable capacity of the radio channels of the various users sharing the radio resources of a given cell in order to obtain a good compromise between the optimisation of these resources and the fairness between users. We proposed and evaluated a new opportunistic scheduling mechanism which improves the performance of the very popular WFQ scheduler (used in wired links) whilst maintaining fundamental properties like fairness. Some of the scheduler’s properties are demonstrated analytically [1072]. The work was financed by the Iroise RNRT project.

OFDMA scheduling consists on allocating groups of sub-carriers of the band to the cell’s users. We propose an algorithm [1220] that maximises the cell’s capacity whilst at the same time ensuring the users’ individual throughput. To guarantee real-time traffic maximum delays and to maximise non real-time traffic throughput whilst at the same time ensuring proportional fairness between both of them, two algorithms, extensions of WFS (Wireless Fair Service) for OFDMA, are proposed by the team in [1225]. In the field of random access, together with the BUPT (Beijing, China), we proposed a new algorithm for WiMAX in [1057]. The group provided a consulting service to the European Space Agency for standardisation - CCSDS.

Cognitive radio and dynamic access to the spectrum

The frequency spectrum is considered to be poorly used: certain bands are locally and temporally congested while others are under-used. Current software radio techniques will soon enable radio interfaces to be quickly and dynamically reconfigured across broad bands of the spectrum. These technologies greatly modify the management algorithms for the radio resource. The group is giving consideration to these questions and is proposing solutions in the TEROPP (inter-Carnot) and URC (SYSTEMATIC competitiveness cluster) projects, e.g. in [1144].

Mobility management and handover algorithms

The group has developed expertise in the field of multi-technology handovers. Cross-layer optimisation strategies have been proposed for the data handover in multi-technology EGPRS and WLAN networks (in the ANAIS RNRT project) [1148] on the one hand, and WiMAX and
3G LTE (with Orange) on the other hand. We have also proposed solutions based on extensions to the SIP protocol, enabling roaming to be managed at the application level. A new anchoring points selection approach within the IPv6 Mobile architecture, which offers good performances within a broader context compared to existing solutions adapted solely to specific mobility cases, was proposed and evaluated. This work was carried out in collaboration with Orange Labs under the framework of a bilateral project.

Studies on the dynamic selection of interfaces, considering various attributes such as the characteristics of the interfaces, applications’ needs, and user preferences, were carried out. In particular, MADM (Multiple Attribute Decision Making) methods applied to interface selection were evaluated, and a new method which eliminates classification anomalies was proposed. The group is also interested in the issues raised by the multi-home nature of mobile terminals and the possibility of having these terminals communicate simultaneously with two different radio access systems. Within this context, we are working on the impact of multi-homing on mobility management protocols (MIPv6 and MIPv4), and a mechanism which extends the mCoA (multiple Care of Address) solution was proposed. SCTP’s multi-homing functionality was exploited to develop inter-system handover mechanisms. Lastly, we use games theory as a tool for modelling multi-interface terminals.

Analysis of the protocols on the radio interface

The VIGIE software (GSM/GPRS) enabling protocols on the radio interface to be analysed, which was designed and developed in collaboration with Telecom Bretagne, formed the subject of an application to the APP in 2007. The group is now working in collaboration with SFR on new software (called “Metradip”) for 3G/HSDPA systems. In addition to its interest for operators, such software constitutes a very valuable tool for teaching purposes.

8.2.3 Spontaneous Networks and Self-Organisation

Faculty Claude Chaudet, Marceau Coupechoux, Daniel Kofman, Houda Labiod, Jean Leneutre, Jean-Louis Rougier.

Peripheral to infrastructure networks, we are witnessing the generalised use of new network paradigms, often with self-organisation properties. Work in this field was originated by the research on packet radio networks carried out by DARPA from the 1970s onwards. In particular, reference may be made to multi-hop radio networks, for which several application classes have emerged over the last decade.

Recently, several specific applications, such as environmental monitoring and road safety and road traffic management applications have enabled the behaviour of these networks to be evaluated under real or realistic conditions. The experiments conducted have enabled several scientific challenges to be identified and have given impetus to themes such as wireless sensor networks, mesh networks, and vehicular networks.

Numerous scientific and technical issues remain and must be solved so that the deployment of spontaneous networks capable of arousing the interest of a critical mass of users can be deployed. Within this context, we have focused on the one hand on fundamental and generic issues (distributed location, clocks synchronisation, sharing of resources) and, on the other hand, on specific architectures (wireless sensor networks, vehicular networks, and radio mesh networks).

Main contributions

Distributed location and clocks synchronisation

In the context of self-organized networks, the NMS team has proposed several algorithms and protocols enabling the solving of fundamental issues required for ensuring good local functioning on which end-to-end protocols can rely on. In particular, contributions have been made (and are currently being published) on distributed location based on a low number of fixed points in the network. Moreover, a scalable method for clocks synchronisation for ad-hoc nodes has been
Sharing of resources

The performance and overall behaviour of these networks is the result of a set of local behaviours and consequently they are difficult to characterise and influence from a global perspective. Ensuring a fair sharing of resources, for example, requires collaboration between transmitters in order to avoid having one group of terminals monopolising all of the available resources. Such a situation may be the outcome of unintentional behaviour, egotistical or intentional behaviour, or may be the result of an explicit attack on the network. The team is examining these three scenarios. While a purely algorithmic and protocol-based approach based on local measures enables unintentional unfair situations to be responded to [1047], the use of games theory, particularly for defining the power control and resources allocation policy, enables egotistical behaviour to be discouraged [1139, 1034]. Furthermore, this work led to contributions relating to the detection of, and protection against, the attacks referred to in the chapter within this report relating to safety.

The contributions outlined in the preceding paragraphs are generic. They do not presuppose either a particular network architecture, or a particular mobility for the nodes, nor do they presuppose a limit to their energy reserves. At the same time, NMS team has taken an interest in several types of particular distributed multi-hop networks, as follows.

Wireless Sensors Networks

Wireless Sensor Networks are generally low-capacity networks for which saving the energy of the various nodes is a key issue.

Often, their objective is to capture information and transmit it in multi-hop mode to a sink. Due to this architecture, the sensors close to the sink consume more energy; indeed they have to relay more packets. We proposed a heterogeneous sensors architecture (based on sets of sensors with different capacities and batteries), and we optimised it using modelling based on stochastic geometry, which enabled us to find structural properties [1042].

The team also proposed and optimised processes for waking up sensors and putting them into sleep mode based on cross-layer collaboration in order to optimise the distribution of energy expenditure within a network [1250, 1081].

Mesh and hybrid networks

Mesh networks and hybrid networks are based on the existence of a fixed infrastructure around which a multi-hop network is created. Under this framework, the team proposed improvements to the ad hoc OLSR routing protocol within the context [1165], thus enabling the advent of routing circuits to be avoided when the Fisheye extension is used. In addition to routing, mesh networks formed the subject of several studies within the team, aimed at characterising their performance. Various combinatorial problems were studied and led to the proposal of optimisation models [1143].

Vehicle networks

Vehicular networks are characterised by their special mobility model and a distinction between inter-vehicle communication and communication between vehicles and an infrastructure. The speed of movements, as well as trajectory constraints, requires major changes in the addressing and routing policy. In particular, the NMS team proposed a routing protocol based on the trajectory, in which the next hop is chosen autonomously without control packets exchange with the neighbours [1173, 1174].
Main contributions

Network architecture
In order to reduce deployment and management costs, we are witnessing, on the one hand, a reduction in technology layers (for example with solutions like IP over WDM or IP over Ethernet Carrier Class) and, on the other hand, the seeking out of integrated management and control methods, or multi-layer methods, for the various technology layers. Within this context, we worked on the Bus-LSP concept [1064], and we showed how it enables the deployment of cheaper transport architectures that are easier to manage. Solutions for the dimensioning of these networks were proposed [1039]. This work was carried out in collaboration with Alcatel-Lucent.

We have also taken an interest in problems related to the diversity of IP signalling protocols deployed nowadays. Development costs, complexity, and management costs constitute the main issues in this regard. We defined unified signalling capable of supporting different signalling needs. In particular, we developed a generic transport protocol for signalling [1126].

Traffic engineering
IP traffic engineering has experienced considerable development over the last few years. Nevertheless, existing techniques remain difficult to implement because they often require prior knowledge of the traffic, for example the traffic matrix, the characteristics of the flows to be transported, etc. And yet this information is sometimes difficult to measure and is often unpredictable. Consequently our research focused on defining efficient traffic engineering techniques, robust, with respect to unforeseen traffic changes, and which do not require any hypotheses regarding the traffic transported. In particular, we studied dynamic load sharing as a natural tool that fulfils these objectives. We proposed new load balancing methods, based on routing games (Wardrop Equilibrium) enabling to maximize the global utility of all of the transported elastic flows [1068]. We also proposed load-sharing techniques based on cost functions measured through non-parametric regression [1067, 1249]. For example, these techniques enable the average timeframe required for all of the flows transported to be minimised without making any hypothesis about the traffic. In collaboration with Orange Labs, we have also taken an interest in using load sharing jointly with the cross-protect mechanism, enabling a QoS to be offered that is satisfactory for streaming and elastic flows, without any need for explicit identification of traffic classes [1167].

Inter-domain routing
The services offered currently by operators are limited geographically (except for the Internet, which only offers a Best Effort Service), because they are only available within their networks. This situation is due firstly to the difficulties involved in defining a regulatory and economic framework where the operators will have real incentives to co-operate. Following on from that, the main reason is due to the absence of efficient inter-domain engineering mechanism. Under the framework of an ANR project, for connection oriented networks (e.g. MPLS/GMPLS), we proposed a network architecture based on the concept of an operators alliance, [1038]. We defined inter-domain path selection mechanisms subject to multiple constraints; both economic and QoS-related ones [1083, 1257]. For the connectionless case, we used games theory in order to highlight the most effective inter-domain routing strategies. In particular, we demonstrated that it is possible to reduce congestion and reduce deflections on peering links, whilst at the same time protecting operators’ independence (non-collaborative strategies) [1259]. We also developed an SLA/SLS (Service Level Agreement/Specification) dynamic negotiation protocol for the provision of inter-domain QoS services. This protocol was designed to be flexible and configurable in order to overcome, on the one hand, the heterogeneity of solutions and deployed architectures for the
provision of of QoS, and, on the other hand, the diversity of offered services [1092].

8.2.5 Networks Security, Critical Infrastructure, Trust Objects

Faculty Artur Hecker, Houda Labiod, Jean Leneutre, Ahmed Serhrouchni, Pascal Urien.

The NMS group conducts research on the topic of security according to three orientations: networks security, critical infrastructures, and trust objects; these three themes do however address a single objective, which is the definition of secure networks, architectures and services. The security of the pervasive infrastructures which encompass wireless technologies, and ad hoc or mesh self-organised networks, is a major research orientation for removing technological obstacles for ambient radio networks. Likewise, the critical infrastructures study addressing issues such as auditing, data back-ups and automatic reconfiguration, is a key issue for the deployment of reliable information systems, which the emerging economy based on digital information transfers relies upon. Lastly, trust objects (or in other words IT platforms that can withstand attacks) integrated into the digital ecosystem and, more specifically, the Web, are the cornerstone of digital identity (or in other words strong authentication enabling access to diffuse radio services), guaranteeing the traceability of exchanges and limiting the risks of data being pirated.

Main contributions

Network security

The solutions studied for the Internet are aimed at traceability needs and requirements for optimising different resources (bandwidth, storage, processing). For telephony [1088, 1157, 1335, 1284, 1088, 1166, 1162, 117, 1170], we proposed a security solution based on the data channel, and independent of operators' infrastructures. This contribution enables users to check their consumption. Within the context of ad hoc mobile infrastructures and, more broadly speaking, autonomous networks [1036, 1111, 1137, 1139, 1140], our work relates to defining trust models, as well as designing secure mechanisms and protocols adapted to these new stakes. We have defined a new global security architecture dedicated to MANETs networks and to hybrid mesh WLAN networks. In this latter case, we studied security-related problems within the most vulnerable part of such a system, namely the ad hoc subset within the operator context. The outcome of our work was the design of a comprehensive solution, while current solutions are generally only partial. In relation to heterogeneous mobile networks [1203, 1201], we designed a fast authentication protocol for the inter-domain transition, which combines 802.1x and PANA operations. We introduced access control based on trust, which enables access rights to be defined according to your past behaviour, recommendations and the reputations of those supplying recommendations, which offers the possibility of adapting access policies to the dynamic environment and of processing the interactions log on a long-term basis.

Critical infrastructures

[1182, 1180, 1119, 1204, 1244, 1181], started under the framework of the CELTIC BUGYO project, is being extended under the Deserec IST project and the Oscar RNRT project: modelling the vulnerabilities of services within a large system, defining indicators for ensuring security, the architecture of the device capable of repatriating monitoring data in the event of crashes or attacks, and automatic service reconfiguration. Under the frameworks of Bugyo and Deserec, the work is aimed at implementing a system for measuring and maintaining a services safety assurance level (static and dynamic aspects). A tool measuring the department's network safety assurance level was implemented that is capable of estimating not only the safety assurance levels of network components (stations, servers, routers) but also high-level entities like sub-networks and the entire network. Under the framework of Deserec, we designed a robust recovery network (ROSA) dedicated to monitoring and reconfiguring an IS, which measures the robustness of its topology locally and modifies it in order to maximise it. Based on this information, each node selects its neighbours in such a way as to maximise this local robustness. We implemented an application responsible for monitoring and reconfiguring a network. Work was also carried out...
under the framework of the European CI2RCO and IRRRIIS projects on modelling and simulating the protection of critical infrastructures.

Trust objects

Our work \[104\] is aimed at defining safety points based on chip cards within a complex hardware, software and protocol context involving multiple actors. We proposed the first open application for EAP chip cards, compatible with the Javacard and dotnet market standards, and we integrated these modules into the Windows operating system. We introduced an innovative RADIUS authentication server concept based on EAP cards, and defined new security properties that make use of the benefits provided by dialogue between two high-security elements. In particular, we designed an ID protection mechanism in which critical data are only analysed in an unnumbered form by security modules. We have designed dual SSL batteries (partly onboard) for trust elements, which are compatible with current Web applications, and which effectively combat risks of identity theft and phishing. Recently, we proposed a new concept for RFIDs for the objects Internet; HIP tags. These activities resulted in approximately 30 publications in periodicals and at international conferences, three patents, 2 registered types of software, an industrial prize, a prizewinning project in the OSEO Innovation competitions in 2007 and 2009, and a spin-off.

8.3 References

8.3.1 ACL: Articles in ISI-Indexed Journals

8.3. References

8. Networks, Mobility, Security (RMS)

8.3.2 ACTI-A: Articles in Proceedings of Major International Conferences

8. Networks, Mobility, Security (RMS) 8.3. References

8.3.3 ACLN: Articles in Other Refereed Journals

8.3.4 ACTI-B: Articles in Proceedings of Other International Conferences

References

8.3. Networks, Mobility, Security (RMS)
8. Networks, Mobility, Security (RMS) 8.3. References

8. Networks, Mobility, Security (RMS)

8.3. References

8.3. References

[1246] D. Rossi, M. Mellia, and M. Meo. A detailed measurement of skype network traffic. In 7th International Workshop
8. Networks, Mobility, Security (RMS)

8.3. References

8.3. References

8. Networks, Mobility, Security (RMS)

8. Networks, Mobility, Security (RMS) 8.3. References

8.3.5 ASCL: Articles in Non Refereed Journals

8.3.6 ACTN: Articles in Proceedings of National Conferences

8.3. References 8. Networks, Mobility, Security (RMS)

8.3.7 OS: Books and Book Chapters

8.3.8 AP: Other Productions: Reports, Registered Software, Registered Patent, ...
8. Networks, Mobility, Security (RMS)

8.3. References

Part III

Economics and Social Sciences
Chapter 9

Economics and Social Sciences (SES)

Responsable Christian LICOPPE

Permanents AURAY Nicolas (MdC, 09.01-), BACACHE Maya (MdC, 12.07-), BAKER Michael (Dr CNRS, 03.09-), BEAUDOUIN Valérie (Dir. Et., sept. 09.08-), BEAUVALLET Godefroy (Dir. Et., -07), BOUNIE David (MdC, 11.02-), BOURREAU Marc (P, 10.00-), CAHOUR Béatrice (CR CNRS, 03.08-), CORTESE-GROU Nicole (Ing. Et., 03.00-), DAVIDOVICINORA Myriam (MdC, 09.99-), DENIS Jerôme (MdC, 09.05-), DETIENNE Françoise (DR, INRIA, 03.08-), DIMINESCU Dana (Ing. Etude, 09-), DRAETTA Laura (MdC, 02.05-), FERNANDEZ Valérie (MdC, 09.1998-), FOURNOT Olivier (Ing. Et., 12.02-), BEAUDOUIN Valérie (CR CNRS, 03.08-), GARRON Isabelle (MdC, 12.06-), GENTES Annie (MdC, 03.00-), GUILLE Laurent (P, 04.02-), HOUY Thomas (MdC, 01.09-), LANTZ Jean-Sébastien (MdC, -08), LEBART Ludovic (Dr CNRS, -sep. 07, then emeritus at IT), LELOUP Benoît (MdC, 07-), LICOPPE Christian (P, 11.03-), MUNIERTEMIME Brigitte (MdC, 01.98-), PASQUIER Dominique (DR CNRS, 07.08-), POGOREL Gérard (P, 09.98-), RELIEU Marc (MdC, 05.05-), SOUCHIER Emmanuel (P, -07), VISSE Willemien (CR INRIA, 03.08-), WAELBROECK Patrick (MdC, 12.05-)

Doctorants CHENAVAZ Régis (09.05-), CHEVALLIER Benjamin (09.06-), COUTURE Stéphane (03.08-), DIALLO Domba (03.01-), DOUINE Rémi (09.04-), DROUARD Joffrey (09.06-), ERETEO Guillaume (01.08), FAUTRERO Valérie (12.04-03.08), GRECE Christian (07.06-), GUERN (09.08-), HEBERT Anne-Marie (01.09-), HOZBERGER-BRAUN Carol-Ann (09.08-), HORQUIN Tania (04.07-), HOUY Thomas (10.04-08.08), IANEVA Maria (09.08-), JIANG Yun (09.03-01.09), JOOMA Hanene (09.03-), JULLIEN Caroline (01.09-), KARAMTI Chiraz (09.01-03.06), KAROUBI Bruno (10.06-), KHALIL Carine (10.08-), LAN HING TING Karine (10.06-), MANANT Matthieu (09.03-06.07), PAJAK Serge (09.07-), PROST Magali (01.09-), RASYID Asmiati (09.01-06.09), REBAI Lila (11.04-), ROKOTONIININA Lalao Harimanga (01.09-), TEITELBAUM Louis-Jean (10.08-), VERDIER Marianne(09.05-12.08), VIAN Dominique (11.06-), VOILMY Dimitri (05.07-), Zhang Min (10.08).

Post-docs BOURDONNAUD David (09.05-11.06), CENTEMERI Laura (03.08-04.08), DELANOIE Alexandre(09.08-), FIJEAC Julien (01.09-), FAUTRERO Valérie (08.08-), FRANCOIS Sébastien(10.08-), FRIEUR Bertrand (07.07-), HOUY Thomas (09.08-12.08), KARAMTI Chiraz (04.06-08.07), LABARTE Fabien (12.08-), LEBEBREV Laure (03.09-), LEVALLOISBARTH Claire (05.08-), NEGRI Anne-Laure (02.09-), RECUEZ VIRO Laura (11.07-10.08), RIMBERT Gérard (03.07-10.07), VERDIER Marianne (12.08-08.09)

Chercheurs contractuels MUSSO Pierre (12.07-)

Ingénieurs contractuels CORRE Pierre-Yves, DATCHARY Caroline, EANG Bora, GAUDIN Germain, HAMEL Sylvie, HORQUIN Tania, INADA Yoriko, JUTANT Camille, LABELLE Sarah,
9.1. Goals

The department of economics and social sciences (which composes one single “team” for the purposes of this evaluation document) is an interdisciplinary department for teaching and research. At the 1st of July, 2009, it is composed of 30 permanent members in teaching and/or research positions (among which 3 researchers from CNRS and 2 from INRIA), 8 associate researchers, 33 ongoing Ph.D projects, 16 non permanent members and post-doc (among which four visiting professors from abroad for various durations), and 3 persons employed in administrative capacities.

It is original in the French landscape by being highly multi-disciplinary: it involves researchers in economics, management sciences, sociology, information and communication sciences, cognitive psychology and ergonomics, liable to several sections of the CNRS, 29, 34, 36, 37, 40 and 44, as well as CNU section 71 (not represented in CNRS). Its focus is therefore not disciplinary but thematic. It aims to cover the Information and Communication Technology (ICT) “human”-oriented perspectives, with two sets of equally stringent, and sometime cross-cutting exigencies: operating at the cutting edge of each disciplinary field, while also participating to collaborative and innovative research projects (involving cooperation either between social sciences or between social science and more “technology-oriented” departments and industries) which directly benefit from the involvement of multiple disciplines. But in this particular domain, trying to satisfy
both exigencies as much as possible is a key to original, innovative research which may shed new light on the uses of ICTs, for these are usually oriented with respect to multiple normative orders, economic, social, technological, etc.

For management purposes, the department is organized in three research groups, two in Paris and one in Sophia Antipolis. Its research activities are structured around three axes which are deliberately not congruent with the boundaries of the three groups (because they aim towards stimulating various forms of interdisciplinary collaboration). These three research axes each explore significant issues regarding mediated interactions and transactions, but at several scales. At the “macro level” Axis 1 one looks at regulation and innovation-related phenomena in the telecommunication sector. At the “meso level“, Axis 2 studies the production, circulation and reception of media and cultural contents with an eye towards the blurring of the boundaries between producers and consumers, professional and amateurs, etc. At the “micro level“ Axis 3 focuses on mediated interactions and the local management of situations and activities relying on communication technologies and services.

9.2 Main Results

Social sciences are essential to the development of the IT sector for IT-based technologies and services mediate the way we collectively inhabit in “Information Ecologies”. Putting such technologies to work in actual settings cannot be separated from social issues related to various forms of “living together”. The scientific recognition level of the laboratory can be seen in several ways:

- in the number and quality of its publications;
- in its growing attractiveness (several well known researchers from CNRS and INRIA have joined us in the last three years; the number of foreign researchers asking for visitor’s status is also increasing);
- in the growing network of its teaching and research partners (EHESS and MSH Paris, Paris I, X and XI universities, University of Nice Sophia Antipolis, the ENSCI school of Industrial design). In each case this implies co-habilitated master formations, and significant teaching commitments.
- in the striking progression in the participation of the laboratory to collaborative research project (with a good success rate on ANR-deposed projects) and its growing ability to get funding from various sources (state agencies, "collectivités locales" and particularly the Ile de France and PACA regions, ministries – culture, justice- research programs) and stimulate additional teaching and research activity (post-doctoral and doctoral positions) complementary to the one of its permanent members.
- in its efforts to sustain cooperation with the industry. The laboratory is committed to maintain and develop relationships with the industrial research sector, either through direct contractual research, or indirectly through the participation of its researchers to several competency poles (Cap Digital in Ile de France, SCS and IRI in PACA, NFC in Normandy). It also aims at developing “chaires” funded by key firms in the sector. Two were launched in the evaluation period (“Regulation and Innovation”, with Ecole Polytechnique and Orange; on “ICTs and Sustainable Development”, with Orange and Caisse des Dépôts et Consignations), and one more is in its final stages of elaboration (on the “Imaginary of Technology” with Dassault Systems, Ubisoft and L’Oreal). The laboratory is also involved in several joint research initiative with the industry (it participates significantly to the joint research laboratory between Institut telecom with Alcatel, and to the joint ParisTech initiative with Renault around the “Institut de la mobilité Durable” project).
- In its international orientations on top of a specific training for African regulators and operators, members of the Department are greatly involved in cooperative research with Asian
and African regulators and operators about regulatory issues in emerging markets (in more than ten countries). An important level of international cooperation has also developed around the issue of electronic money, and in the frame of the research “chaires” managed by the Department (particularly on “innovation and regulation”).

More detailed and specific scientific results will now be provided in the sections devoted to the three research axes of the department.

9.3 Research Axes

9.3.1 Regulation and Innovation (RINNO), Maya Bacache and Marc Bourreau (animators)

Project participants Faculty members: Maya Bacache, David Bounie, Marc Bourreau, Myriam Davidovici-Nora, Laura Draetta, Dana Diminescu, Valérie Fernandez, Laurent Gille, Benoît Leloup, Gérard Pogorel, Thomas Houy.
Research associates: Philippe Barbet, Abel François, Laura Recuero
Visiting researchers: Paul David (2008-2009), Pinar Dogan (June 05, June 06), Marvin Sirbu (Sept. 06 - June 07)

Yun Jiang (started 2004): The structuration of the value chain for mobile technology in the context of the growth of multimedia technologies: which economic models?
Lilia Rebai (started 2004): Identifying relevant telecom markets in Tunisia.
Régis Chenavaz: Dynamic pricing models (started 2005).
Joeffrey Drouard: Competition and Investment in Telecommunications (started 2006).
Bruno Karoubi: Economics of Payments (started 2006).
Benjamin Chevallier (started fall 2006): The structuration of new market services and the management of regulation costs by mediated communities.
Dominique Vian (Started 2006): From the assessment of invention to its transformation in innovation: cognitive processes.
Serge Pajak (started 2007): Intellectual property and innovation strategies.
Tania Horquin (started 2007): The forms of emergence of the markets for teleservices.
Context and objectives

The dynamics of ICT industries are influenced by a tension between innovation and regulation (see: Gille et al. (2009) [1738]. Indeed, these industries are characterized both by a high pace of innovation (affecting the supply side and the demand side), and strong regulation (through intellectual property, the scrutiny of competition authorities, and sector-specific regulation in telecoms and media markets). On the one hand, due to the endogenous relationship between technological progress and industry structure, regulatory policies clearly affect the speed of technological change, via two different channels (Bourreau and Doğan, 2001[1]). First, price regulations (e.g., the regulation of interconnection charges and retail prices in telecoms, or the regulation of the interchange fee in the payment industry) alter industry profits, hence the incentives to innovate. Secondly, both price and entry regulations (e.g., spectrum licenses, patents, banking licenses…) change the terms of entry, and hence innovation decisions regarding new entry. But on the other hand, to the extent that technological changes alter the organization of the industry, the speed of innovation - particularly in the new markets - should also be reflected in any regulatory intervention. If regulatory authorities cannot respond fast enough to follow the rapid change of the market, many regulatory measures then become either inefficient or obsolete[2].

Consequently, new flexible forms of regulation are called for. Indeed, though a regulation which would not adapt fast enough to changes in technologies or market structures would be inefficient, an unregulated environment would probably also lead to inefficient outcomes, as the current economic crisis illustrates. We therefore need to rethink public policy, by taking into account innovation dynamics and the institutional constraints (Bacache and Maynéris, 2006)[3].

This research project tackles the two dimensions of the relation between innovation and public policy through two different areas of research:

Sub-theme 1: Regulation in Innovative Industries. In this first area of research, we study the design of public policy in innovative industries. In particular, we examine how sector-specific regulation in telecoms should be designed to take into account its effects on innovation strategies.

Sub-theme 2: Innovation in Regulated Industries. In this second area of research, we study innovation strategies in industries where regulatory constraints are binding (intellectual property, constraints on R&D collaboration in Europe and US…). A strong emphasis is given to the payment industry.

Sub-theme 1: Regulation in Innovative Industries

The telecommunications industry is the most dynamic industry among those subject to sector specific regulation[4]. Dynamic industries are characterized by a high speed of innovation. Two types of innovation, namely innovation for new services and innovation for alternative network infrastructures, underlie competition in the telecommunications industry. While innovation for new services is provided mainly by telecommunications operators, equipment suppliers provide most of the innovation for new network technologies. A network innovation in the equipment sector is followed by an adoption process in the telecommunications sector. Operators have to decide whether and when to adopt the new technology. Indeed, an immediate adoption may be costly and risky.

4Other asymmetrically regulated industries include electricity, railway, etc.
5The fast convergence of telecommunications and media has been another source of innovation in services. This evolution question the separation of media and telecom regulators, as Gérard Pogorel argues in [1772] and [1499].

159
One key regulatory issue in the last decade has been how to encourage new entrants to invest in their own infrastructures. This is why, in the broadband market, as Baranès and Bourreau (2005) have shown, it has been highly debated whether service-based competition (where new entrants lease access to the incumbents’ infrastructure to provide services to end consumers – e.g. through unbundling of the local loop) could delay or even deter the development of facility-based competition (where new entrants build their own access infrastructure, using cable, WLL, or more recently, fiber access technologies).

Bourreau and Doğan (2005, 2006) showed that service-based and facility-based entry are indeed substitute strategies for the entrants, and hence, that policies that are designed to support each one of them may exhibit conflicts. They developed their arguments on the basis of two formal dynamic models, where an incumbent and an entrant compete to provide high-bandwidth services. They showed that an incumbent who faces an effective threat of facility-based competition can strategically delay facility-based entry by providing attractive terms of access to its facilities. The delay that is introduced by attractive terms of access is by virtue of a replacement effect, which may also affect the choice of technology to be eventually built by the entrant. A regulatory intervention is therefore called for, but Bourreau and Doğan have proved that the so-called “sunset clauses” which set ex ante a date after which access will no longer be regulated are ineffective.

Wireless access technologies have long been cited as candidate technologies for new access infrastructures. In the last ten years they also experienced a high pace of innovation (with such technologies as Wifi, Wimax, etc.). One strong limitation of these technologies as entry enablers is that they usually require access to spectrum. For this reason, it has become more and more crucial to fine tune the regulation for access to spectrum resources (see [179]). The department conducted a research project on this issue and was also involved in a European research project, SPORT VIEWS. One important output of this research is a new framework with simple decision rules to help public authorities designing their spectrum management public policy.

Pogorel (2007, 2008) began by showing that management regimes for the radio spectrum were defined by a 4-dimensional problem: (1) Are frequencies assigned according to a harmonized plan? (2) Should technologies be normalized? (3) Should the spectrum rights be exclusive, unbundled or collective? (4) Should the fees be set by market mechanisms, administrative procedures or a hybrid form of the two? He then proposed a set of decision criteria for each of these four questions. Nine schemes resulted from the different possible combinations. The taxonomy he obtained illustrates the possible rationale for a variety of schemes larger than the standard trilogy (Command and Control, Market and Commons) proposed by the FCC and Cave’s 2002 reports. It allows decision makers to make choices using all the technical information available on the basis of defined criteria and a rigorous methodology.

The evolution of the telecom sector in the last years has also been marked by the development of wholesale markets where facility-based entrants compete with incumbents to provide wholesale services to service-based entrants. One example is the development of mobile virtual network operators (MVNOs) in the mobile market. In the fixed market, the development of the unbundling of the local and the development of fiber networks in some countries has also given birth to broadband wholesale markets. Bourreau et al. (2007) proposed a formal framework where two vertically-integrated operators compete to serve a pure downstream firm on a wholesale market, while the three firms compete on the retail market. They showed that, without any regulatory intervention, the wholesale market is unlikely to become competitive. Therefore, they proposed some regulatory intervention like a price cap on the wholesale price. This research received attention from regulatory authorities (see Bourreau and Pouyet, 2007).

Most of our research concerns regulatory issues in developed countries. However, as telecom markets in industrialized become more mature, more and more attention is paid to developing countries. Besides training programs and expertise to regulators in these countries (on compu-
tation of interconnection rates, in particular), we also studied how the regulation of the telecom sector should be adapted for developing countries. A particular focus has been made on African countries (see Gille (2008) [1736]).

Our research shows that public policy should take into account the innovation dynamics in the ICT sector. In particular, regulatory authorities should build indexes taking into technological progress. Karamti (2007) [1470] proposed a hedonic index for mobile services for the period 1996-2002, taking into account quality improvements. Bacache (2009) [1779] showed, however, that indicators should be used carefully when taking decisions in terms of public policy, and gave examples where the introduction of an indicator led to unexpected (and inefficient) outcomes.

Though ICT represent a risk for public policy, as they can make existing rules rapidly obsolete, they can also provide opportunities. In particular, in many countries, on-line administration has been developing fast. Bacache, Bounie and François (2008) [1804] studied the use of on-line administrative services in France in 2005. They found that the relative access cost to online administrative services, the cost to find administrative information and the cost of processing administrative information as well as the availability of Internet services played a major role in the trade-off between online and offline administrative channels.

Sub-theme 2: Innovation in Regulated Industries

In the first area of research, we study how public policy should adapt to take into account innovation dynamics. However, public policy also affects the incentives to innovate. This second area of research therefore focuses on innovation strategies, in particular in digital markets, and on the effects of innovation on the industrial organization of specific markets.

The first and immediate effect of digitization has been the transformation of rival goods into non-rival goods (for instance, of CDs into MP3 files). As it is well known, this transformation has destabilized the existing business models in content industries, such as the music industry, because it allows end users to copy and share content goods at almost zero cost. Davidovici-Nora (2005) [1433] and Peitz and Waelbroeck (2006) [1497] propose an overview of the theoretical literature on the economic consequences of end-user copying. They analyze different options to model piracy behaviors, and discuss the applicability of the different modeling strategies to a number of industries such as software, video and computer games, music, and movies.

Though the digitization of content goods and the possibility to copy and share these goods easily and at low cost is a clear benefit for consumers, it also represents a clear threat for companies. However, as Duchêne and Waelbroeck (2007) [1441] and Duchêne, Peitz and Waelbroeck (2006) [1440] argue, a maximum protection with Digital Rights Management technologies is not necessarily the optimum for the firms. Duchêne and Waelbroeck (2007) [1441] propose a model in which they view traditional distribution as an information-push technology in which the firm pays to provide information to consumers and P2P as an information-pull technology where consumers spend resources to acquire information on products they have a potential interest in. They determine copyright owners’ protection strategies according to the level of legal protection, and they study their effects on profits and consumers’ surplus with the two different information transmission technologies.

A second effect of digitization is that it facilitates a modular design of products. The concept of modularity has been defined in a wide range of fields: construction, art, software design, etc. Modularity in products implies that products consist of distinct, relatively independent building blocks, among which the interactions are ruled by standardized interfaces. Modular design in products allows the pairing of common units with different modules to create product variants. Bourreau and Doğan (2007 [1427]) studied modular design strategies in digital markets and showed that the possibility of having common modules embedded in a range of products is likely to affect firms’ product innovation strategies and post-innovation competition, both in traditional and digital markets.

Bourreau and Doğan (2005 [1580]) consider an innovator who holds the exclusive rights to its innovation and faces a single potential entrant. The innovation has a modular nature and the
innovator decides to license an arbitrary partition of it. They show that the factors that alter the sensitivity of the industry profits to the degree of differentiation (for example, the type of competition, cost asymmetries) affect the size of the license. A higher sensitivity implies a smaller license, hence a smaller common component in competing firms’ products. Bourreau and Doğan (2009 [1426]) provide a simple formal framework to analyze cooperation in product development between competitors. Taking into account a direct link between cooperation decisions on product development and process R&D, they show that the degree of cooperation in product development may adversely affect the intensity of cooperation in process R&D. Finally, Bourreau and Doğan (2009 [1582]) extends this setting to an oligopoly and analyze formally the relation between the degree of cooperation in product development and the size of RJVs. They show that the size of the RJV and the degree of cooperation in product development follow a non-monotonic relationship. That is, a high degree of cooperation in product development can either lead to a small or a large RJV.

In this area of research, we are also interested in how intellectual property affects innovation strategies. One reason is that intellectual property rules affect the protection strategies of innovators. Pajak (2009) [1605] showed that, indeed, firms trade-off between different protection methods, in particular patenting and secrecy. Using data from the 2004 Community Innovation Survey, he showed that the use of patents, relative to secrecy, is increasing with the firm’s size. However, this result do not support the hypothesis of a higher relative use of secrecy for all class sizes; in practice, only small firms use secrecy relatively more than patent. Furthermore, he investigated whether secrecy was used to protect small innovations or large ones, and found that the relative use of patent was decreasing with the magnitude of the innovation in a third of the innovative industries (7 industries out of 21).

Finally, in this area of research, a strong emphasis is given to the payment industry. In this industry, technological progress has given birth to new payment instruments, such as the debit or the credit card in the 80s or, more recently, virtual currencies (on the Internet) and mobile payments. The development of new payment instruments does not only affect how consumer use payment instruments to purchase goods and services or to transfer funds (see: Bounie and Bourreau (2007) [1416] and Bounie et François (2007) [1720]), it also transforms the industrial organization of the industry.

Before analyzing the impact of the introduction of a new payment instrument, a preliminary step has been to analyze the determinants of the choice of a payment instrument for consumers. Using an original data set, Bounie and François (2006) [1419], Bounie, François and Kiser (2007) [1578] and Bounie, Bourreau, François and Verdier (2008) [1417] studied the determinants of the adoption and usage of payment instruments and showed that the choice of a payment instrument is influenced more by the characteristics of the payment transaction and by the characteristics of the payment instrument than by individual characteristics (like age or income). Bounie and François (2009) [1421] also showed that the determinants of the choice of a bank branch are mainly related to indirect costs of cash withdrawals, whereas the direct of cash withdrawals have no significant effect.

Using this empirical research as a starting point, Bounie, François and Houy (2008) [1579] proposed a new decision rule to account for the choice of a payment instrument. They showed that their decision rule (the so-called “Cash holding model”) predicts the choice of a payment instrument better than existing rules, like Whitesell’s decision rule (Whitesell, 1989, 1992). Bounie and Houy (2007) (see: [1808] and [1809]) provide axiomatic foundations for the Cash holding rule.

As Bounie and Gaze (2009) [1695] show, innovation in payment systems can take different forms: new billing systems, person-to-person lending, etc. The authors show that interbank systems induce high costs for clearing and settlement of payments that are not adapted to the specificities of internet payments. In a similar vein, Bounie and Gaze (2007) [1694] propose a synthesis of the main developments of internet payments and show that the use of such solutions

are questioning the status of the payment function in the standard theories of banking. The intro-
duction of a new currency can also have the same effect as an innovation in payment systems. Bounie and Soriano (2006) [1423] studied whether electronic money could substitute for Euro in the euro zone. Using a formal framework and numerical simulations, the authors estimated the maximum reduction of the mass of money. Bounie and Houy (2009) [1422] introduced a formal framework to evaluate the efficiency of the current division of euro coins.

One striking effect of innovation in payment systems is to favor person-to-person transfers. One interesting application concerns money transfers of migrants. Bounie, Diminescu and Licoppe (2008) [1693] and Bounie, François and Diminescu [1805] studied the effect of new transfer technologies on money transfers of migrants.

In equilibrium, the choice of a payment instrument results from the interaction between different players of the payment industry. The recent theory of two-sided markets proposes a framework to study interactions in payment markets (1509). Using this theoretical framework, Mari-
anné Verdier (2009) [1609] shows that competition in the market for deposits in a context where banks share their ATM networks, leads to an inefficient substitution between cash and debit card. Verdier (2007) [1608] proposes a formal framework in which banks invest in the quality of the payment system. The author shows that, if consumers are sensitive to the quality of card pay-
mants, then the optimal interchange fee can be lower than the margin of the merchant bank, in contrast with the standard literature. Bourreau and Verdier (2008) [1583] study the incentives of a large retailer to bypass the payment system by building its own payment infrastructure. They show that the payment system can deter the merchant from introducing private cards by lowering the interchange fee.

9.3.2 Industry Evolution and Cultural Creation in the Digital Era (MICEN),
Nicolas Auray and Patrick Waelbroeck (animators)

Project participants 14 full-time researchers
Multi disciplinary team (sociology, economics, statistics, econometrics, information sys-
tems, philosophy and ethics) with 3 economists (Myriam Davidovici-Nora, Michel Gensollen, Patrick Waelbroeck), 1 statistician (Ludovic Lebart), 3 sociologists (Nicolas Auray, Brigitte Munier-Temime, Dominique Pasquier) ; 4 communication and information re-
searchers (Valérie Beaudouin, Olivier Fournout, Isabelle Garron, Pierre Musso).

Ph.D. Projects Rémi Douine (started fall 2004) : non-merchant competition on service markets
Sébastien François (started fall 2008): The involvements of media audiences and the mu-
tations of cultural industries

Research contracts ANR PANIC (2009-2012)
French ministry of culture, DEPS
THD (2008-2010)
ANR Plug
ANR Autograph

Project description
The research project studies the transformation of media content and cultural activities in the
digital era. Although some cultural activities have already experienced disruptive technological
change, today’s fast and easy access to digital content over the internet has revolutionized all
cultural industries. Moreover, productivity gains associated with digital copies and internet com-
munications go beyond the productive system. We can already witness three major changes.
First, the structure of cultural industries traditionally modeled as an oligopoly with a competitive
fringe is challenged by the digital transformation of the value chain. Second, the diffusion and
promotion of cultural products now includes internet retailers, online platforms where consumers
can interactively post comments and product recommendations, and the self promotion of niche
artists. Third, information reception about cultural products has become more active, and led by expert consumers. This process is interactive and self-reinforcing as the frontier between consumers and artists, between amateurs and professionals has become blurred.

Beyond the empirical studies detailed below, the project proposes a multidisciplinary approach to the understanding of new forms of coordination and cooperation between authors, editors, producers, retailers and broadcasters, culture experts and consumers. Three approaches interact in this project; each of them has met international standards of visibility and publications.

- Cultural economics to understand how cultural industries supply, and consumer demand, react to new forms of digital communication;
- A pragmatic approach that analyzes culture as performance, and that seeks to understand how material conditions affect cultural activities and how consumer tastes and amateur work are reflected by different forms of attachment between an individual and an artistic object.
- A sociological approach to cultural audiences that analyzes the collective dimensions of the process by which cultural products and performances are perceived in a community.

The interaction between these three approaches proposes complementary and original analysis of taste formation, invention of forms, cultural variety and attention.

The strength of MICEN lies in a detailed study of the transformation of formats linked to new forms of interaction between production, distribution and reception in the four main cultural industries and its relation to the public good nature of culture, which is relevant for public policies. With this respect, the project also analyzes how public policies, such as subvention, regulation of content and advertising have transformed our perception of culture.

The project builds on PANIC, an ANR project (2009-2012). The axis is led by researchers who have already studied the four main cultural industries (music, movies, book, video games) and therefore offers a perspective on how different supports have adapted to the media convergence.

Sub-theme 1: Cultural Creation and the Digitalization of Production

This part of the project deals with the challenges raised by digital transition of media industries. First, Bourreau, Bounie, Gensollen & Waelbroeck have undertaken an econometric study to assess the extent of economics of scale in cultural in the pre-recorded music industry. Bourreau and Bounie have analyzed the cultural industries as two-sided markets and stressed the specific challenges related to digital culture [1697]. Bourreau has isolated the effect of peer-to-peer networks on the music industry crisis in France [1697]. Musso questions the traditional concept of innovation in the context of the digital revolution. He reflects on technological “imaginaire” associated with new forms of cultural innovations where informal and collective creativity coexist [1786]. Munier offers a historical analysis of the digital revolution. She investigates early substitution between music-hall and theatre attendance on the one hand and prerecorded shows on videotapes, with a special focus on myths and symbols associated with technology [1785].

Several research works deal with intellectual property protection and how the separation of content and media has challenged our understanding of copyright. Bourreau, Gensollen, & Waelbroeck have undertaken a study commissioned by the French Ministère de la culture on the impact of digitalization on the music industry [1428]. They observed different adoption rates of digital productivity tools such as digital retailing, internet recruitment, online websites and forums [810]. Bacache, Bourreau and Gensollen offer a complementary study that seeks to understand how artists perceive opportunities and threats related to digital music [1551]. The vast survey is done in collaboration with the Adami.

In the audiovisual domain, Pasquier explores the transformation of the notion of originality using data on royalty rates [1498]. She also studies the tension between labor specialization and the inequality of audiences on television [1495]. For the videogame industry, Davidovici-Nora studies the dynamics of innovation in massive multiplayers online role-playing games [1434]. Innovations are driven by cooperation among consumers to bring original content to the environment and by the desire of platform owners to control their rights.

164
Sub-theme 2: Collective Promotion and the Transformation of Retailing

New forms of distribution have appeared with the digital transformation of the cultural industries: online retailers, changes in the bargaining power between industry players, consumers communities.

Digital culture has multiplied the way consumers can access and experience content. This transformation together with online interactions has changed cultural practices. Pasquier has led a series of studies on the impact of sociability on taste formation and cultural preferences [1494]. She also analyzes the evolution of cultural transmission with respect to parental authority and peer influence [1767]. Auray and Gensollen describe taste formation in the context of online communities [1687], where consumers tend to experiment more with novelty [1406]. In this context, Auray studies which forms of regulation and governance are best suited to online collaborative filters [1402].

Cultural variety and the study of the long tail of electronic commerce is also an important theme. Bourreau and Gensollen construct several measures to track the evolution of cultural variety in the French music industry using data from GFK (2002 – 2007). Douine reports several measures of online audience and studies the impact of social networks on the promotion of new content on internet platforms. Bounie, Bourreau and Waelbroeck analyze the impact of music downloads on internet peer-to-peer networks on consumption and show that there are two types of internet users: pirates and explorers [1522, 1418, 1498].

Sub-theme 3: New Forms of Digital Consumption and the Emergence of Active Audiences

The research in this section deals with new forms of collective consumption of cultural content and the regulation required for collective or composite works. Using various surveys of media consumption and theatre attendance, Pasquier develops the notion of “performativity” of audience [1766]. Fournout and Garron have studied the issues of appropriation of literary works on the internet [1724]. Garron studies how online travel guides affect the business of the travel agencies [1639]. The team in collaboration with the IRI (Centre Pompidou) studies movies annotation systems associated with the development of fiber optic lines in 500 households.

Auray studies new forms of cultural consumption in online massive multiplayer worlds [1683]. He analyzes different forms of cultural production associated with different strategies of self projection and self promotion [1516]. François studies the way writers re-use the popular media culture to produce online content [1457]. Gentes studies online artist networks and shows how they question our understanding of modernity [1628]. Gentes and Garron study mobile solutions combining cell phones and audioguides on new forms of communication with the public in museums [1621]. Licoppe and Inada analyze games on mobile phones equipped with GPS devices and study issues related to the violation and the protection of personal territories [1489] et [1490]. Lejealle studies player sociability on online mobile phones and the relationship between media consumption and the decision to participate to collective actions [1782].

Sub-theme 4: The Evolution of Creation Formats and the Emergence of Interactive Constructs

The intertwining between production, distribution and reception of cultural goods gets tighter as users are involved in creation (“produsers”), consumers are involved in distribution (recommendation and conversation around cultural works) and producers highly focus on their audience and reputation. This interconnection also transforms the shape of digital and cultural goods.

This theme analyzes the evolution of cultural works in this moving context of active audience, open creation, mixing and rearranging parts. Around these transformations, this research analyzes the future of culture and examines the evolution of the notion of “cultural work”.

Fournout examines how the screen writing in electronic spaces of reception insert into a complex tradition of written dialogue (which he calls “diatext”), of which he studied the past and current forms [1452]. Gentes studies, starting from the example of networked art, how an “intermediality“

is set up [1623, 1531]. Beaudouin studies the transformation of digital writing and the emergence of transient writing formats; she analyzes the transformation of communication practices using new hybrid technical devices mixing oral communication with written speech [1411]. She investigates the transformations of sociability forms in the context of “being always on” and attention scarcity [1690]. Gensollen studies the emergence of new interactional constructs in the area of interactive platforms [1415].

9.3.3 Interaction, Technology, Activity (INTERACT), Françoise Detienne and Christian Licoppe (animators)

Permanent Researchers Michael Baker, Béatrice Cahour, Françoise Détienne, Jérôme Denis, Dana Diminescu, Annie Gentès, Christian Licoppe, Marc Relieu, Willemien Visser

Projects

As principalsPorteurs

• Projet “Urban uses of mobile multimedia services”, with OrangeLabs, funding by Région Île de France (2006-2008)
• Projet ANR (Blanc) SHS EPE, “Ecologies end politics of writing” (2006-2009)
• Projet “Graphic ecologies of public spaces”, funded by Institut des Sciences et de l’Information et de la Communication du CNRS (2009)

As active funded participants

• Joint research laboratory Alcatel-Lucent Bell Labs- Institut Télécom “Ubimedia” (2009-2012)
• ANR SHS (Communication) COMUT “Communication and Multi-activity” (2009-2011)
• ANR STIC (Content and Interaction) CCCP-prosodie “Characterization and classification of communities of practice: participation and roles at individual level, internal organization, digital rights and external institutions” (2009-2011)
• ANR STIC (RIAM) PLUG on pervasive computing in museums(2009-2009)
• ANR STIC (RNTL) Myblog3D on intelligent virtual agents in 3D environments 3D (2007-2010)
• Contract MOTISTAR (Mobility and ICT in chinese metropolises): funded by Institut des Sciences et de l’Information et de la Communication du CNRS 2008-2009
• ANR SHS (Corpus) MOBITIC, construction of a corpus on mobilities and the uses of mobile communication devices(2007-2009)
• Projet GIP Justice (2007-2008) on Videoconference and distributed courtroom hearings
• Project Turbulences (Started 2009) on social networking, migration and mobilities

Ongoing Ph.D. projects Hanene Jomaa (CIFRE with CIGREF, started 2003, ended 2009) : ICT and performance analysis. From interactionism to the institution of performance-oriented routines. (to be held in November 2009)
• Karine Lan Hing Ting : Phone interactions with consumers in outsourced call centers in Mauritius (started 2006).
• Dimitri Volmy : Interactional uses of interactive blackboards in the classroom (started 2007).
• Maria Ianeva (Co-direction with university of Lyon II): Customer relationship in call centers from an activity theory perspective (started 2007).
• Stephane Couture (co-direction with the Université du Québec à Montréal, started 2007) : sociology of code
Guillaume Ereteo (started 2007): Semantic annotation-based methods for detecting the emergence of communities of practice and supporting their development along their lifecycle.

Anne-Marie Hebert (started 2008): Ethnographic study of the design of a mobile game.

Jean-Louis Teitelbaum (started 2008): Social history of computer desktop “affordances”.

Caroline Jullien (CIFRE with OrangeLabs, started 2008): The new forms of mediated presence.

Carine Khalil (Started 2008): User-centered lean design for ICTs and the dynamics of organizing.

Magali Prost (started 2009): Affective dimensions of mediated communications in professional online forums.

Lalao rakotiaina (CIFRE Alcatel, started 2009): Using existing media cultures to design innovative learning practices for the use of advanced ICT services.

This project deals with the fine-grained observation and analysis of the interplay between social interaction, information and communication technologies and activity system in concrete settings. It is an interdisciplinary research program which involves psychology, cognitive ergonomics, sociology, information and communication sciences aimed at understanding emergent cultures in digital “forms-of-life” [1798], inhabiting “informational ecologies”. Beyond the various empirical themes detailed below it is also a locus for a more theory-oriented investigation of the convergence and divergence of different activity-oriented theories and methodologies. The questions discussed here are also part of a more general “practice turn” which is an active concern of current work at the international level in several very active communities (human-computer interaction, computer supported cooperative work, ubiquitous computing, interaction design, mobility studies, conversation analysis, organization sciences, etc.), whose theories we try to adapt and discuss with a sharper focus on the situated use of information and communication technologies [1484] [1504], and the use of video analysis to study multimodal and multiple engagements in complex settings [1508].

Sub-theme 1: Mediated communication and new interactional modalities

A first thread of research in this theme deals with the organization of mediated interactions, and the ways participants accomplish relevant interactional moves and in mediated communication in different settings and the emergence of communicative genres: the construction of emotion in collaborative interactions [1585], instant messaging in professional settings (the emergence of the “quick question” genre), accomplishing informal encounters between colleagues in video-mediated tele-presence environments [1505] [1505], managing commercial “rebounds” and accomplishing “commercial gestures” on the phone in commercial call centers for a telco [1479], caring for suicidal callers on the phone [1481] [1483], discussing a purchase at a distance in advanced collaborative video environments, interactions between phone callers and conversational machines in call center (the issue of “conversational repairs”), interactions between avatars in Second Life (the management of social interaction and “embodied” proximities in the virtual space).

Another (related) set of research deals with how participants coordinate, collaborate and manage multiple involvements in complex activities unfolding in co-present and/or distributed settings in which information and communication technologies figure as prominent resources: finding friends and keeping together in multimedia events, taking turns at the ordinary or interactive blackboard in the classroom, managing ongoing interactions between co-present and distant sites and showing documents onscreen in video-conference and tele-presence environments, managing customers and collaborating with colleagues and managers on large call center platforms in the service industry [1471] [1472] and e-commerce [1701] [1749]. One running project in this thread has followed the development of distributed judicial hearings in France from initial experiments in
Saint-Pierre and Miquelon to its generalization today in every courtroom and prison in France. It has explored the interplay of the technology with the dual accountability regime (with respect to the organization of mundane social interactions and with respect to the law) which characterizes such settings [1488] [1480].

Sub-theme 2: Emerging roles, regulation and governance in online communities

This direction of research aims to understand the dynamics of online communities. A first thread of research aims to understand the various forms of participation in online communities. Based on interactionist psychology and cognitive ergonomics, participation is approached by the notion of role, viewed as a phenomena emerging from interaction. It is analysed along several combined dimensions (social, cognitive, interactive). Analyses along these three primary dimensions allows a second-level analysis, where their combination allows participation profiles of participants to be revealed [1688]. According to this framework, participation in a community based on open source software production has been analysed. A set of participation profiles [1410] [1408] [1409] have been identified as they evolve throughout the interaction, which provides a global vision of the whole collective process and its dynamics.

A complementary research direction concerns the emergence of a new participatory model of democratic process [1682], in particular through the forms of implication of people in collective production of informational public goods [1439] [1404]. The major issues in governance and regulation of online communities have been identified, so as to underline the rules of the new “economy of contribution” which is being established [1403]. This research has focused on the treatment of underhand vandalism, on the institutional mechanisms – like relative veto – invented to struggle against chronophagy of online concertation, in particular the moderation processes which are experienced to avoid the slippage of cooperation in conflict. An investigation of the co-writing graphs and of the effective norms of collaboration in the French Wikipedia has been fulfilled [1405, 1406]. More generically, the changing context of information production and the increasing influence of the strategies implemented by communication agencies or structures have been studied [1685].

Another research concerns the implication of the information technologies for some professionally active people, through the new solidarities emerging from the online communities. It emphasizes the relief function of blogs for some suffering workers. The effusion in blogs is used to compensate the decaying of the places and of the moments of shared listening in the work organization, and the demand of recognition is a substitute for the decline of the collective instances of representation of the staff [1685].

Sub-theme 3: Interaction, space and mobility

This research theme develops an ethnographic perspective on space, communication and mobility. It is highly connected to the development of ubiquitous computing and pervasive communication technologies. How do users manage spatial and communicational, local and distant, multimodal resources to produce various experiences of communication reflexively anchored in definite spatial settings or “on the move”? Most of the work in this theme relies on the gathering of naturally occurring sequences, and it relies on corpora of mobile phone conversations and mobile video calls (the latter being the only one of its kind). It deals with space-related interactional topics such as “talking while walking”, providing directions or guiding a mobile recipient in a mobile phone conversation using mobile communication devices while being mobile [1773], connecting to and using mobile multimedia services on the move [1539] [1514]. A similar approach has been developed in mobile video calls, the focus of which is on the work users do to produce relevant images, and to switch from a “talking heads” interaction format to a “video as data” format in which they frame some feature in their settings. Another line of research deals with the social management of mediated proximity, that is how mutual positional knowledge, and particularly proximity awareness as achieved from a distance in different settings (mobile conversation, location aware communities) projects strong expectations regarding face to face encounters [1486].
9. Economics and Social Sciences (SES) 9.3. Research Axes

The development of locative media offers new opportunities and resources for this kind of research. Researchers in this thread have performed the first ethnography of a location aware community, i.e. the Japanese players of the geo-located game MOGI between 2003 and 2008 [1489] and tried to elucidate some of the more significant concerns and behavioral patterns in the social management of location awareness: the construction of territories in hybrid ecologies [1490], "augmented" social encounters [1751] and transgressive behavior such as "stalking" [1703]. They have also explored the potential of location data for large scale behavioral studies of mobility and communication, with the constitution and analysis of a corpus of locations (through mobile cell positioning) and communication acts (in collaboration with Orange for a test sample of 25 urban dwellers over a year). Findings show how the probabilities to use the phone were highly dependent on places, and various form of interplay between communication and mobility patterns [1487] [1713]. The research program MOBISTAR (ISCC 2008) has explored how chinese cities and their inhabitants interact with ICT-focused socio-technical systems (here "cybercafés"), and how new socio-technical practices produce fleeting or unstable urban forms and reinforce social fragmentation [1655].

The recent evolution of migratory systems combines the issues of space and community, communication and mobility, with the new and complex entanglements between place and online participation which characterize current diasporic phenomena. Their study calls for a new epistemological and methodological approach [1646]. Diaspora-related uses of the web are both a cause and a consequence of emerging Web geographies that questions traditional social science dichotomies such as "center" and "periphery".

Sub-theme 4: Understanding the construction, maintenance and use of complex information ecologies

Distributed cognition has shown how coordination and communication practices rely on environmental resource. Our environments are more and more constructed, governed, and regulated as ecologies embedding cues designed to invite some form of behavior. One research program has looked closely at the construction and maintenance of urban public transport sign systems. Such an ethnographic approach to “graphic ecologies”, accomplished in the frame of the ANR project “Ecologies et Politiques de l’Ecrit” led by one of us, highlight the competition of various sign infrastructures and the scripts they materialize in public spaces [1707], raising the issue of their integration in a coherent whole [1589]. As much as this informational infrastructure strives for perceptual salience, it makes invisible the work of its production and maintenance, and the people who do that work [1590]. All these issues have lead to a new research program about: Graphical Ecologies of Public Spaces (ISCC 2009).

This connects to more general issues about the performativity of artefacts [1435], [1480] whether they be “static signs”, electronic displays, or communication related micro-events. This research program has also looked at the issue of how mediated communicative events start, through “notifications” (which may be linguistic or not) and at the pragmatics of such occurrences: such notifications proliferate and become more “indirect” while users actively shape their notification landscape to adjust what they actually do when they occur, all this raising new theoretical issues about performativity [1482] [1748] [1532].

In the same thread, an ethnography of prescriptions at work has been made. It shows that rules are grounded in mundane activities through heterogeneous ecologies within which artifacts play a important role, but also specific people who stand has intermediaries and strive for a day-to-day balance between the automation of rules and their translation for everyday tasks [1436].

Approaching the use of ICTs through the way information ecologies are designed, maintained and inhabited also rises the question of their increasing complexity and force of agencies. Do they support (and if they actually do, how ?) multiple involvements, and multi-activity [1432] [1478] [1489]. This has led to a significant participation of several researchers in this thread in the 2008 ANR project COMUT exploring joint issues about communication and multi-activity.
Sub-thread 5: Designing technologies, engineering interactions

A first thread of research aims to understand and construct models of the design activity, in particular design of interactive or cooperative systems. One theoretical issue is to characterise design with respect to other cognitive activities. According to an augmented cognitively oriented generic-design hypothesis \[1511,1512\], there are both significant similarities between the design activities implemented in different situations and crucial differences between these and other cognitive activities; yet, characteristics of a design situation (related to the design process, the designers, and the artefact) introduce specificities in the corresponding cognitive activities and structures that are used, and in the resulting designs. One methodological issue concerns the analysis of the design activity. A special effort has been made to elaborate methodological principles for analysing collaborative design [1793]. A pluri-disciplinary approach, based on science of language, psychology of interaction, and cognitive ergonomics (see [1708] for cognitive and interactive approaches) has been developed. Different analysis principles have been developed and compared on the basis of a same corpus of collaborative design (on the CLAPI basis, \texttt{http://clapi.univ-lyon2.fr/} corpus Mosaic). The cognitive ergonomics' analysis has been extended taking into consideration interaction's multi-modality [1584, 1777].

A second, and complementary, thread of research concerns the design and evaluation of interactive technologies with respect to their future use. Several engineering research projects (ANR + FP6) on adhoc wifi, RFID, and 3D applications have been conducted which combines a media studies approach to an engineering design approach so as to better understand the rationale of conception of communicating object [1594, 1587, 1461]. A focus is put on the role of intermediary artefacts as creative mediation in collective design [1460]. This is complemented by case studies in science and technology studies documenting ethnographically the design of mobile location-based services, such as the design and social construction of a location aware game [1750], or the design and implementation of Bluetooth-enhanced ads in underground stations from a sociological and juridical perspective.

Furthermore, a special effort is made to elaborate methods to assess usability and acceptability of technologies: methodologies of "re-situating" interviews for analysing user experience [1702] and understanding potential sources of emotional discomfort [1588]; methodologies to support the construction of trust in systems by projecting users into use [1431]; methodologies to assess groupware technologies on the basis of user-studies [1591], video-based methodology to analyze connexion to mobile multimedia services in context.

9.4 References

9.4.1 ACL: Articles in Indexed Journals

9.4. References

9.4.2 ACLK: Articles in Other Refereed Journals

9.4.3 ACLK: Articles in Non Refereed Journals

[1544] M. Ballé. Lean attitude - lean applications often fail to deliver the expected benefits but could the missing link for successful implementations be attitude? IEEE Manufacturing Engineer, 84(2):14–19, April 2005.

[1547] G. Beauvallet. Si einstein avait eu un mail, il n’aurait jamais reçu le prix Nobel. 01 Informatique, (1806), March 2005.

9. Economics and Social Sciences (SES) 9.4. References

9.4.4 ACTI: Articles in Proceedings of International Conferences

9.4.6 COM: Talks in Conferences Which Do Not Publish Proceedings

[1714] L. Draetta. “On n’est pas des repris de justice!” Pour une sociologie de l’environnementalisme industriel, chap-

9. Economies and Social Sciences (SES)

9.4. References

9.4.8 OV: Popularizing works

9.4.9 DO: Journal or Proceedings Edition

9.4.10 AP: Technical Reports

Part IV

Signal and Image Processing
Signal and Image Processing (TSI)

The research topics covered by the Signal and Image Processing department at TELECOM ParisTech are: the study of image processing in its various formats, digital, optical... for different applications like medical imaging, remote sensing, fine arts..., the study of speech, music and sound.

After its reorganization at the beginning of 2007, the department is now organized into four groups:

- “Statistics and applications” - STA - is a group that is devoted to the applications of statistics and probability to the field of information processing. The research area covers a wide spectrum from the development of new techniques and new algorithms to various applications. The activities of the group comprises the following topics: statistical learning, independent data and complex random systems, methods and algorithms for cosmological data analysis, Markov Chain Monte-Carlo techniques, sequential Monte-Carlo techniques (particle filters), array processing, geolocalization, models estimation.

- “Image Processing and Interpretation” - TII - has, as its main purpose, the development of methodologies and theoretical tools for image processing, scene analysis and 3D objects. This implies global treatment of complex image processing problems, integrating multiple techniques that cover the path from raw data to high-level interpretation. The concerned applications are art items (sculptures, paintings), biomedical images, satellite images, natural scenes.

- “Audio, Acoustics and Waves” - AAO - conducts activities in signal processing having strong connections with the physical phenomenon that is at the source of the signals, whether acoustical or optical. In digital audio signal processing, the activities span the entire acquisition chain, from capture to analysis or transformation, transmission up to its restitution, with the goal of proposing solutions to the main problems centered around the sound, speech or music, in multimedia applications. In optical information processing, the group contribute to new detection schemes and to the characterization of new materials.

- “Multimedia” - MM - is a group that covers the life cycle of multimedia documents in the framework of a complete chain going from authoring tools for on-line and offline production of multimedia contents to multimodal interaction for the final user; this also includes automated processing like enhancement of degraded pictures, verification of the identity of the user, modification of auditive and visual appearance, image segmentation and pattern recognition. The group also works on techniques that allow the analysis, compression and robust transmission of these media in heterogeneous networks. It also works on the dynamic and distributed adaptation of the transmitted data flow (including meta-data and in particular those concerning the digital rights management) with respect to context, transport conditions and terminal type.

One research topic is common to all groups, this is indexation and data mining. Summarizing and extracting informations from multimodal databases requires statistical tool for learning and mining, which are among the activities of the STA group with a particular focus on text indexation.

185
and retrieval. Indexing satellite images, extricating informations from primitives to semantic annotations is the main goal of the “Center of Competence”, a joint lab between CNES, DLR and the TII group. This group also develops the same kind of tools for biomedical images and for 3D objects. The AAO group is concerned by many aspects of music information retrieval: identification of rhythms, main melodies, instruments, styles, moods, tonalities either from plain audio or from mixed audio and video. Video signals are also a core activity in the MM group together with complex documents analysis (mixing printed texts, handwritten texts, pictures, graphics) and with multimodal analysis for biometry (voice, faces, fingerprints).

Our most recent recruitments were aimed towards the reinforcement of two topics: the first one is distributed sensor processing; the second one is 3D images and virtual worlds.

<table>
<thead>
<tr>
<th>Permanent staff [Institut ; CNRS] ; post-docs</th>
<th>[32 ; 11.6] ; 8.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhDs</td>
<td>55.6</td>
</tr>
<tr>
<td>Defended PhDs</td>
<td>90</td>
</tr>
<tr>
<td>Defended HDR</td>
<td>8</td>
</tr>
<tr>
<td>Journal papers</td>
<td>291</td>
</tr>
<tr>
<td>Chapters and books</td>
<td>52</td>
</tr>
<tr>
<td>Conference papers</td>
<td>713</td>
</tr>
<tr>
<td>Patents and software</td>
<td>8</td>
</tr>
<tr>
<td>Contractual income 2005–2009 (june) [Private ; Public ; European] (k€)</td>
<td>[5865; 2747 ; 1782]</td>
</tr>
</tbody>
</table>
Chapter 10

Audio, Acoustical and Optical waves (AAO)

Head G. Richard (P)

Permanent staff R. Badeau (MC), B. David (MC), C. Févotte (CR2-CNRS, from 11/07), R. Frey (P, 40%), Y. Grenier (P), S. Maeda (DR CNRS), A. Maruani (P), D. Matignon (MC, -09/07), N. Moreau (P), S. Essid (IE, from 10/06), J. Prado (MC, on leave 06/07-09/08), I. Vasilescu (CR2-CNRS, -09/05), I. Zaquine (MC, 80%).

PhD students S. Essid (10/02-12/05), R. Badeau (10/01-04/05), D. Bitault (10/02-10/05), A. Aissa El Bey (10/04-06/07), S. Fontana (10/04-07/08), M. Guillaume (10/03-11/06), N. Berthin (10/05-), M. Betser (10/04-06/08), C. Clavel (11/03-03/07), V. Emiya (10/04-10/08), J-L. Durrieu (01/07-), O. Gillet (12/03-06/07), P. Leveau (11/04-11/07), M. Ramona (10/06-), M. Alonso (10/02-11/06), C. Baras (10/02-06/06), A. Moreau (10/03-09/06), Q. He (11/05-10/08), J-L. Smir (01/07-), E. Ravelli (10/05-10/08), C. Joder (11/07-), L. Oudre (10/07-), F. Vallet (11/07-), S. Gulluni (02/08-), R. Hennequin (10/08-), M. Maazaoui (01/09-).

PostDocs, engineers and sabbaticals S. Essid (Postdoc 9 months), C. Hory (Postdoc 16 months), C. Févotte (Postdoc 8 months), M. Christensen (Aalborg Univ. (DK) Sabb. 1 month), A. Ozerov (Postdoc 18 months), M. Lagrange (Postdoc,10/2008-), T. Fillon (Postdoc,10/2008-), B. Mathieu (Engineer,10/2008-), Y. Menesguen (PostDoc 6 months).

External collaborators L. Daudet (Univ. Paris VI), O. Derrien (Univ. of Toulon), E. Vincent (IRISA), L. Devillers (LIMSI-CNRS), T. Sikora (Technical Univ. of Berlin) …

<table>
<thead>
<tr>
<th>Permanent staff [IT ; CNRS] ; post-docs</th>
<th>[7.5 ; 1.5] ; 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhDs</td>
<td>10</td>
</tr>
<tr>
<td>Defended PhDs</td>
<td>18</td>
</tr>
<tr>
<td>Defended HDR</td>
<td>2</td>
</tr>
<tr>
<td>Journal papers [published, in press]</td>
<td>[53 ; 5]</td>
</tr>
<tr>
<td>Chapters and books [published, in press]</td>
<td>[3 ; 7]</td>
</tr>
<tr>
<td>Conference papers</td>
<td>136</td>
</tr>
<tr>
<td>Patents and software</td>
<td>2</td>
</tr>
<tr>
<td>Contractual income 2005–2009 (june) [Private ; Public ; European] (k€)</td>
<td>[560; 755 ; 356]</td>
</tr>
</tbody>
</table>
10.1 Audio Signal Processing (AudioSig Project)

10.1.1 Objectives

The aim of this project is to develop digital audio signal processing methods in order to propose innovative solutions to the main problems linked to audio (speech, music, . . .) in multimedia applications. Our interests encompass the complete processing chain from sound capture and transmission to sound restitution. Work is both conducted on a methodological level to develop new sound representations and models especially for musical signals (Adaptive methods for high resolution sinusoidal components tracking, sparse representations, Non-Negative Matrix factorization, hierarchical models, . . .) and on their application to practical problems (watermarking, compression, EEG signal processing, automatic indexing). Audio indexing and retrieval currently is the central research theme of this project and includes topics such as broadcast streams segmentation into broad classes of audio events (speech/music/silence/singing, . . .), musical signals automatic analysis, decomposition and understanding (polyphonic audio source separation, rhythm extraction, multiple fundamental frequencies estimation, main melody extraction, . . .). A new transverse orientation has also gained more interest with the arrival in November 2007 of a new CNRS permanent researcher on the specific theme of statistical methods for audio signal processing.

On a different level, the group has initiated the development of a multimedia indexing and mining platform (called PLATO) which now involves several other groups. This internal platform, targeted to researchers, aims at being an intelligent media library, at centralizing research software, processing tools and computation resources and at providing demonstrative and communication tools.

The project is also maintaining tight links and collaborations with both academics (Queen Mary University of London, Dublin City University, Technical University of Berlin, University Paris 6 (LAM), IRCAM, INRIA-IRISA, LABRI-CNRS, . . .) and industry (Thalès, FT R&D, RTL, INA, Audionamix, . . .).

10.1.2 Results

Audio and multimedia scenes analysis and indexing

Researchers R. Badeau, B. David, S. Essid, C. Févotte, Y. Grenier, J. Prado, G. Richard;

Highlights:
- Collaborations: With industry (FT R&D, Thales, RTL, INA) and academics (TU Berlin, Queen Mary University, LAM-Paris 6, IRISA, IRCAM, LABRI, . . .)
- Projects: Network of Excellence IST-Kspace (Knowledge Space of Semantic Inference for Automatic Annotation and Retrieval of Multimedia Content), ACI Musicdiscover (Indexing and search in audio databases), ANR-Desam (Decompositions in sound elements and musical applications), IVMN-infom@gic, ANR Sarah (STAndardsation of High-Definition Remastering, OSEO-QUAERO (towards multimedia and multilingual search engines for professional and general public applications);
- Prize: PhD prize "ParisTech 2006" (R. Badeau)
This activity is following several research axes. The first direction, which is on a rather methodo-
logical level, aims at developing generic signal models and representations with a specific focus
on audio signals. Several very interesting results were obtained for the estimation and track-
ing of sinusoidal components of an audio signal (new estimators for amplitude and frequency
modulated components in noise [1836], efficient algorithms for the adaptive estimation and track-
ing of the signal subspace components [1828][1831]). An increased effort was also dedicated to
sparse signal representations, such as based on Matching Pursuit or Non-negative Matrix factori-
sation (NMF)[1846], that allow to decompose a signal using a limited number of atoms or basis
functions. The applicability of these methods to generic problems such as scalable audio sig-
nal compression [1859], audio source separation or music signal indexing was demonstrated by
introducing specific constraints deduced from the audio signal properties (use of instrument spe-
cific atoms for music instrument recognition [1859], use of harmonicity or temporal constraints
for music transcription [1833], use of source production or timbre models for source separation
[1922]...). This methodological effort explores both deterministic and statistical approaches.

The second direction concerns the different facets of audio indexing and audio source separa-
tion which are two intricate problems. Indeed, efficient source separation eases the transcription
of the resulting sources and efficient audio indexing facilitates the source separation. In music
signal transcription, the group is directly interested in the four main problems which are multi-
ple fundamental frequencies estimation (e.g. detection of simultaneous notes in a polyphonic
musical recording [1925][1983]), rhythmical information tracking (tempo and beat estimation
[1824][1845], harmonic information estimation (recognition of the chords sequence) and timbre
recognition (musical instrument recognition in polyphonic audio [1844]). Source separation ap-
proaches were developed for specific music transcription tasks such as drum track transcription
and resynthesis [1850] and main melody estimation (by use of a NMF-based source-filter model
for separating the singing voice from the musical accompaniment [1923]) but also for specific
audio rendering tasks such as stereo signal remastering [1862].

The third research direction is dedicated to the audio streams segmentation into broad classes
of audio events with application to broadcast multimedia streams (speech/music segmentation
[1976], speech emotion recognition [1865][1840] or TV show structuring) and musical streams
(musical instrument recognition [1845][1857], multimodal audio/video semantic alignment [1849]).
Our efforts in this field is now evolving towards the automatic classification- both supervised and
unsupervised- of multi-modal (or multi-stream) data sequences, typically audiovisual streams.
Our emphasis is targeted to the incorporation of prior knowledge on the nature and structure of
the streams processed, typically temporal dependencies and/or inter-stream correlations/depend-
dencies, both at the signal level and the semantic level, possibly using ancillary information at-
tached to the content (available meta-data, tags, notices, etc.) and/or user interaction (relevance
feedback). At the methodological level, a special interest has been directed to kernel-based
methods (Support Vector Machines, sequence kernels, probabilistic distances, kernel change
detection, kernel LDA,...) and more recently to hybrid kernel and Bayesian network based meth-
ods.

Whenever possible, the results obtained are submitted to national or international evaluation
campaigns. In particular in 2008, the group has participated to the national ESTER 2 campaign
(Audio stream segmentation : best algorithm for music/non music detection and 2nd best for
speech/non speech detection), the Sissec campaign (best results in two audio source separation
subtasks) and MIREX (best algorithm for main melody estimation in 2008).

Sound capture and rendering
Researchers B. David, Y. Grenier, J. Prado, G. Richard;
Highlights Joint PhD with University of Parme, Italy; contract with France Télécom on audio
source separation in the automotive domain, CapDigital-ROMEO (a project within pôle de
compétitivité CapDigital, lead by Aldebaran Robotics and aiming at creating a humanoid
robot)
The objective of this theme is to improve sound field analysis and synthesis capabilities by
developing specific digital signal processing methods. In binaural reproduction, a new approach
was introduced to rapidly acquire new Head Related Transfer Functions (HRTF) and to personal-
alize the rendering system to a new listener [1933]. Such a binaural reproduction system, where
the acoustics of a room are simulated as perceived by the listener through his HRTF, was devel-
oped. Formal perception tests were also conducted in collaboration with the university of Parme
to validate the different sound rendering methods proposed [1907].

In sound capture, recent work permitted to propose a novel technic for automatic sound field
analysis from a network of sensors (microphones) [1944]. This approach refers to the classical
multi-microphones beamforming and parametric spectral estimation principles. The sound field
component in each direction is obtained from the maximization of the spatial resolution around
the targeted direction. This filtering is directly expressed under the form of spheroidal functions.
Current work tackles the difficult problem of humanoid robot audition which needs, using a limited
number of sensors, to be robust to movements of the robot and to highly variable environments.

Concurrently, a novel approach for blind audio source separation from a network of sensors
was introduced for the underdetermined case (e.g. less sources than sensors). This method
combines a wavelet-based time frequency analysis with an automatic classification of the data
vectors that represent the positions of each source [1823]. We produced several variants of this
approach, one of them being based on an empirical modal decomposition [1865]. We have shown
that our blind separation techniques could be embedded in a general framework characterized
by the use of second order statistical properties of the signals [1822]. Since our goal was to
apply these techniques in the car environment, we had to take into account the properties of
the acoustic channels between the position of each source and the microphones (each channel
acts as a filter or a convolution between the source signal and the impulse response of the
channel); for this reason, another variant of the separation technique, which takes into account
the convolutions, was elaborated in the time-frequency domain [1821].

Sound sources watermarking and compression

Researchers N. Moreau, G. Richard

Highlights : Media Puppet project, academic collaborations (Univ. of Toulon, INPG Grenoble,
Univ. of Paris 6/LAM)

Originally, the focus in audio watermarking was on the technology performances improve-
ment (in terms of bit rates/ratio of binary errors) by introducing new methods exploiting the fact
that a watermarking system can be viewed as a communication channel with adjacent information
[1833]. Recently, the objective was refocused on robustness issues to take into account typical
use cases (such as those provided by Mediametrie). In particular, specific effort was dedicated
to allow the detection of a hidden signal for degraded recordings (low quality microphones) or
degraded communications (due to reverberation in a set-up where the loudspeakers and micro-
phone are separated by at least 1m50). This appears to be a difficult problem that can only be
partially solved by adaptive equalisation technics.

In audio compression, the work was mostly dedicated to low bit rate audio coding in the
transform domain. On the one hand, specific effort was put to develop optimized quantization
schemes for the MPEG Advanced Audio Coder (AAC) using a statistical subband model [2405].
This approach was later extended to stereo signals for the MS-stereo mode of the AAC coder.
In particular, the quantization error model introduced permits a global approach for coding both
Middle and Side channels in the same process leading to improved efficiency without increase of
complexity [1842]. On the other hand, investigations were conducted to develop highly scalable
transform coders which can seamlessly operate from very low bit rate up to transparency. To
that aim, sparse overcomplete representations are used to decompose the audio signals over a
redundant union of bases (such as Modified Discrete Cosine Transform bases at different scales)
[1863]. It was also shown that the high flexibility of the signal representations used in this coder
10. Audio, Acoustical and Optical waves (AAO) 10.1. Audio Signal Processing (AudioSig Project)

allows to tackle various audio indexing tasks (such as beat tracking or musical genre recognition) directly in the transform domain [1864].

Active noise control and biomedical signals analysis

Researchers J. Prado, Y. Grenier;

Highlights: External collaboration, ACI Abrupt (Active Noise control of perceived background noise in call centers)

In the framework of the ACI ABRUPT project, the activity focused on the development of appropriate methods for active noise control of background noise in call centers. For this purpose, a slightly modified GMDF (Generalised Multi-Delay Filter) algorithm was used where the signal reconstruction by overlap and add was suppressed. Although this modification leads to slightly lower performances, it permits to obtain a lower complexity algorithm with still better noise suppression capabilities than time-domain approaches (such as FXLMS for example) especially in terms of signal processed bandwidth.

The other research direction is dedicated to the analysis of biomedical signals and especially electroencephalogram (EEG) signals recorded on asleep subjects using a single pair of sensors. Our approach to this problem has two technological breakthroughs since it aimed at an automated analysis (and not only visual) and uses a single channel EEG. The efficiency and robustness of the method developed have been measured and experimentally validated [1994], [1835]. The first goal of this method is to reduce the overall complexity (both in processing time and operation) of the standard approaches in order to obtain a hypnogram according to the rules of Rechtschaffen and Kales (R&K 1968) and that are adapted to the new rules of the American Academy of Sleep Medicine (AASM 2007). A hypnogram is a graphical representation of the sleep stages, from light sleep to deep sleep. Hence the method is able to control the drowsiness in real-time which has numerous industrial applications such as risky site monitoring or transport security (preliminary results are reported in [1897]). Another direction of research targets the so call "smart waking up" concept whose principle is to awaken a subject when the phase of sleep is the most favorable (light sleep or dream (REM stage)) to reduce the inertia of sleep. The sleep inertia is a transitional state of disorientation and confusion on awakening and may causes the degradation of mental performance. It was, in particular, shown that it is possible to optimize sleep to get the benefits (the recovery) without the disadvantages (torpor, sleep inertia).

Speech production

Researchers S. Maeda;

Highlights:

Collaborations: Collaboration With Department of Human Information Processing in ATR, Kyoto Japan and Phonetics and Phonology Laboratory (PPL), CNRS-University Paris 3.

Projects: IST-ASPI (Audiovisual to Articulatory Inversion), ANR-ARTIS (Articulatory inversion from audio-visual speech for augmented speech presentation), Experimental and Clinical phonetics with multi-instrumentations

In the context of the European project ASPI, we have investigated the acoustics characteristics of fricative sounds in various languages, which can be exploited in the acoustics-to-articulatory inversion. The combination of the high resolution MRI data recorded at ATR for the 3D vocal-tract shapes during the production of the fricatives and acoustic simulation have revealed that 1) distinctively different two classes of vocal tract configurations are used by French speakers to produce the same fricative consonant [1979]; 2) a smooth change in the vocal-tract shape does not always produce a smooth spectral shape variation of the fricatives. Rather, in some regions the change produces a little spectral change whereas in other regions it causes an important spectral shape change. Interestingly the MRI observed vocal-tract shapes during fricatives tend
to disperse in the stable regions, providing the evidence that the acoustic property of the vocal tract contributes to the specificity of the fricative sounds used in languages \[1961\]; 3) we have developed relatively simple models of fricatives that can produce highly intelligible and naturally sounding fricatives in speech synthesis experiment \[2019\].

In the follow up project, ARTIS, we are improving the acoustic modeling of fricatives and other consonants in order to fully exploit the advance in the MR imaging technique to measure detailed vocal-tract shapes. We expect that such modeling will allow us to gain the comprehensive understanding on the mapping between the vocal-tract shapes and the acoustic patterns of speech. The collaboration with Kiyoshi Honda (ATR) resulted in the invention of two non-invasive instruments: an external lighting and sensing PhotoGlottoGraph (ePGG) and a pneumotachograph with a disposal mask. The former is used to observe the activities of the larynx, abduction/adduction of the vocal folds during consonants and their oscillation during voicing. The latter one is used to measure the airflow passing through the vocal tract. These instruments will be used to evaluate the speech ability of patients in medical environments as well as in phonetic experiments \[1986\]. Patent application for each of these two inventions is in progress with help from the CNRS.

10.2 Optical Signal Processing

Researchers R. Frey, A. Maruani, I. Zaquine;

Highlights Institut TELECOM funding on the subject *Network functions for quantum information*

Ile de France Région funding on the subject *Quantum Interface for storage of long distance propagating photons* (collaboration with "Institut d’Optique Graduate School").

Objectives

In the domain of classical optical signal processing, diffraction gratings are a basic resource that can be used for a number of devices, ranging from filters to holographic memories. Significant advances can be made, as far as diffractive properties are concerned, if a clever combination of material choice, nonlinear effects and configuration can be found, which has been our main concern for many years.

A new research subject on quantum signal processing for quantum communications applications has started for two years, as in this field also, the need is great for new devices based on nonlinear optics.

Results

The investigation of new intracavity gratings configurations using Gaussian beams \[1839\], gain media \[1860\], thin gratings \[1872\] has given rise to very efficient devices for optical signal processing applications:

The experimental results obtained with a YAG micro-laser confirmed the theoretical predictions and the advantage of the intracavity gain medium \[1860\]. The diffraction efficiency of the grating is increased by a factor 5000 and the angular selectivity by a factor 20. The developed models enable predictions on various devices from the infinitely thin grating \[1872\] to the thick grating filling the whole cavity that was experimentally tested.

The 2D refractive index gratings, using the band edge resonance of the Bragg mirror to enhance the diffraction properties of the transverse diffraction grating have also been very successful. With the dual independently tunable optical parametric generator developed in our laboratory, a Bragg diffraction regime was observed together with a huge enhancement of the diffraction efficiency in these crystals, in spite of their micrometric size \[1852\]. The simple analytical modeling developed for this kind of gratings can be most useful for the design of new devices \[1853\].
The first achievement concerning quantum signal processing is the implementation of a continuous polarisation entangled photon pairs source at 810 nm, based on spontaneous parametric down-conversion [1871]. It was setup for teaching purposes but its performances are comparable to the published results for comparable systems.

The next extraordinary challenge for quantum communication networks is the quantum repeater, including a quantum memory, a full Bell-state analysis and also an entanglement purification facility. The first issue is the compatibility between the long distance carrier photons at 1550 nm, with a bandwidth of 1 nm and the storage systems that operate below 900 nm, with a linewidth of only few hundreds of fm.

In this context, two key elements are a narrowband polarisation entangled photon pairs source and the corresponding wavelength changing interface that will preserve the bandwidth and polarisation of the photons. Nonlinear optics is at the heart of all these functions as spontaneous parametric down conversion will be used for the source, together with very complex filtering, and sum-frequency generation for the interface. An optical parametric oscillator will be setup as a specific narrow-band pumping source for the sum-frequency generation.

With the grants of Region Ile de France and Institut Telecom, the experiments on the quantum interface that will enable the storage of a telecom photon in a solid state quantum memory while preserving its polarization have been started [2000]. The investigation of the compatibility of a propagating qubit with the quantum memory has also led us to the project of designing a new narrow-band polarisation entangled photon pairs source. Future work will be conducted in collaboration with the IQ team of Romain Alléaume (INFRES department of Telecom ParisTech), the Laboratoire Aimé Cotton in Orsay and the LPMC of Nice University within the framework of the three years "eQUANET" ANR project (accepted in 2009). Preliminary experiments show that 20000 photon pairs should be available in the 40 MHz expected bandwidth.

10.3 References

10.3.1 ACL: Articles in ISI-Indexed Journals

10.3. References

10.3.2 ACLN: Articles in Other Refereed Journals

10.3.3 ACTI: Articles in Proceedings of International Conferences

10.3. References

timisation (CAO'06), pages 368–373, Cachan, France, April 2006.
10. Audio, Acoustical and Optical waves (AAO) 10.3. References

10.3.4 ACTN: Articles in Proceedings of French Conferences

10.3.5 COM: Talks in Conferences Which Do Not Publish Proceedings

10.3.6 OS: Books and Book Chapters

Chapter 11

Multimedia (MM)

Team leader B. Pesquet-Popescu (P).

Faculty M. Cagnazzo (MC, 02/08–), G. Chollet (DR CNRS), C. Concolato (MC, 10/07 –), C. Faure (CR CNRS), J. LeFeuvre (IE), L. Likforman-Sulem (MC), J.-C. Moisissac (MC), C. Pelachaud (DR CNRS, 01/09 –), M. Sigelle (MC), C. Tillier (06/05–09/07)

PhD students H. Bredin (09/04–10/07), S. S. Lin (09/02–06/07), L. Zouari (01/04–04/07), R. El-Hajj (11/05–07/07), T. Hueber (10/06–), B. Pelland (10/06–), B. Elloumi (12/06 –), M. Bendris (10/08 –), R. Bayeh (12/03–), C. Angeli (), P. Perrot (01/05–), C. Concolato (10/02–07/07), G. Pau (01/03–06/06), M. Trocan (10/04–10/07), C. Tillier (10/02–06/05), G. Feideropoulou (10/01-04/05), A. Robert (11/04–01/08), C. Bergeron (01/04–01/07), G. Laroche (11/05–05/09), N. Tizon (11/05–), O. Crave (10/05–12/08), I. Daribo (10/06–), T. Maugy (10/07–), S. Chebbo (12/06–), C. Yaacoub (04/06–07/09), M. Kaaniche (10/06–), S. Hyneewska (10/08–), Q. Anh Le (07/09 –), J. Huang (10/09 –), C. Greco (09/08 –), R. de Oliveira (01/09 –), A-L Blanle (09/08–), M. Kimiaeii-Asadi (02/02 – 06/05), B. Rodriguez (02/09–), A. R. Kaced (10/05–10/08), Z. K. Aoul (10/05–10/08)

Post-docs, engineers and sabbaticals R. Landais (05/06–12/07), G. Aversano (01/06–09/06), L. Zouari (04/07–11/08), J. Wei (10/07–09/08), Y-Z. Zhang (03/07–03/08), A. Fraysse (10/06–08/08), S. Brangoulo (01/06–09/06), B. Pelland (–09/06), T. André (10/07–05/08), J. Gauthier (06/08–09/09), W. Miled (10/07–09/09), A.M. de Bellaing (10/06–04/07), B. Zalesky (sabbatical 1 month), R. Niewiadomska (01/09 – 12/09), A.-M. Pez (10/08–10/08), K. Prepin (01/09–12/09), E. de Sevin (09/09 – 09/10), M. Ochs (09/09 – 09/09), H. Sarria (sabbatical, 01/08–09/09), E. Barney Smith (sabbatical, 2 weeks), E. Sanchez-Soto (05/09–), J. Razik (02/08–08/09), C. Riedinger (11/08–12/09), P. de Cuetos (06/05), P. Ameheh (11/08–)

External collaborators A. Bennazza (SupCom Tunis), R. de Quieroz (Univ. Brasilia), C. Mokbel (UOB, Liban), C. Kermorvant (A2IA), A. Vinciarelli (IDIAP), J. Jermyn (INRIA Sophia), S. Perreau (ITR, Adelaide), E. Bratsolis (Univ. Athens), J. Farah (USEK, Liban), M. van der Schaar (UCLA, USA), G. Plella (Univ. Pompeu Fabra, Barcelona), C. Guilleminot (INRIA Rennes)
11.1 Objectives

The research in the “Multimedia” (MM) group covers the life cycle of multimedia documents in the framework of a complete chain, going from authoring tools for on-line and off-line production of multimedia contents to multimodal interaction for the final user; this also includes automated processing like enhancement of degraded pictures, verification of the identity of the user, modification of auditory and visual appearance, image segmentation and pattern recognition. The group also works on techniques that allow the analysis, compression and robust transmission of these media in heterogeneous networks. It also works on the dynamic and distributed adaptation of the transmitted data flow (including meta-data and in particular those concerning the digital rights management) with respect to context, transport conditions and terminal type.

11.2 Main Results

The main research results obtained during the period 2005-2009 are presented below for the research areas of the Multimedia team.

11.2.1 Robust Compression and Transmission of Visual Data

Faculty B. Pesquet-Popescu, C. Tillier, M. Cagnazzo

Main events Best Paper Award IEEE Trans. Circuits and Systems for Video Technology 2006 received by B. Pesquet-Popescu. B. Pesquet-Popescu is a member of the IEEE SPS Multimedia Signal Processing (MMSP) Technical Committee, of the IEEE SPS Image, Video and Multidimensional Signal Processing (IVMSP) TC, Associate Editor for IEEE Trans.on Multimedia, Associate Editor for Elsevier Signal Processing, and was a Co-Chair of the MPEG AHG on Exploration in Wavelet Video Coding (04/05–07/06). She is also a member and Treasurer of the EURASIP AdCom and member of the GdR ISIS administrative committee. In 2006 and 2007 she was also a “rapporteur” for the RIAM program and is, since 2005, an expert for ANR.

Scalable and Adaptive Coding

One of our main topics of interest is scalable video coding [2257], allowing a video system to provide a flexible and robust bitstream, able to be adapted to different transport and visualization conditions. We have studied video coding based on spatio-temporal wavelet decompositions, enabling a natural spatial and temporal scalability. These schemes also have the advantage of easily allowing the implementation of unequal error protection [2056].

In this context, we have been among the first to introduce motion-compensated temporal lifting schemes ([2050, 2029]). New temporal decomposition tools have been proposed like, for example, 3-band temporal schemes [2051], optimized update operators, iterative bidirectional prediction structures, low delay temporal schemes etc. In the spatial domain, we have worked on M-band filter banks permitting a fractional scalability [2039], and that can also be adapted to the quantization step and to the content itself. This technique leads to important gains in quality and computational time, and allowed Telecom ParisTech to get a patent and to be in the process of obtaining a second one on the extension of this idea to H.264/AVC and SVC video adaptation. Different other adaptations and optimizations of the AVC/SVC codecs have been implemented in the collaborative project PINGO.

Another application of lifting structures is the construction of content-adaptive filter banks, where the choice between two or several structures is related to a criterion uniquely based on the analysed data. We have proposed [2048, 2057], in collaboration with G. Piella (Univ. Pompeu Fabra), and H. Heijmans (CWI, Amsterdam) an original framework based on semi-norms allowing to provide flexible decision criteria. Recently, we have incorporated rate-distortion criteria in these decompositions. Another approach for designing sparse representations adapted to the video content is based on block-oriented transforms, where we proposed solutions in a standardized framework during the PhD thesis of A. Robert (CIFRE FTRD).

An extension of the previous techniques to multi-view coding and 3DTV compression was performed, in several directions: first, the compression of stereo image pairs and stereo video sequences by joint multiresolution analyses without leakage [2031], and second, the multi-view coding for free-point of view and 3DTV applications [2046]. In this context, we have proposed optimal bitrate allocation in such schemes, as well as pre-, post-processing and compression of depth maps. The disparity estimation in a variational approach with convex constraints is a key point of this theme, which is developed by W. Miled [2038]. It was also extended to dense motion estimation and joint disparity-motion estimation for multi-view coding. Lifting structures for multi-view coding and the application of joint wavelet packets in this framework was done in collaboration with Nuremberg University.

Finally, an important theoretical work, in collaboration with A. Fraysse (now at Univ. Paris-Sud) and J.-C. Pesquet (Univ. Paris-Est), was the study of asymptotic operational rate-distortion curve of Bernoulli-Generalized Gaussian sources, which provide an accurate model for the subbands of different spatio-temporal transforms [2045].

Robust and Joint Source-Channel Coding

In a standardization context of MPEG-4/AVC, we have studied schemes based on “competition” [2034], based on different optimization criteria (PhD thesis of G. Laroche, CIFRE FTRD). Some of the proposed tools have been integrated in the KTA, which is the reference software for a possible future standard (H.265 ?). We have also proposed original solutions for temporal scalability using frame shuffling [2021] (PhD thesis of C. Bergeron, CIFRE with Thalès). In the same collaboration with Thalès, several joint source-channel coding optimizations for H.264/AVC streams have been performed. Video streaming over wireless networks, stream commutation, detection and prevention of congestion, ressource allocation, are the main topics of the work performed by N. Tizon in his CIFRE PhD thesis with SFR [2052].
11.2. Main Results

In the same time, video transmission over error-prone networks may be highly affected by congestion or bottlenecks. A tool allowing to cope with such errors is the *multiple description coding* (MDC), exploiting the existence of different paths from the sender to the receiver. We developed MDC schemes issued from wavelet frames with reduced redundancy in the spatial and/or temporal domain and proposed several solutions exploiting advanced convex optimization techniques. One of them, called “synthesis frame approach”, allowed us to establish interesting connections with the *compressed sensing* framework. The MDC paradigm is also considered in collaborative projects like DIVINE (Diffusion de Vidéo et Image vers des terminaux hétérogènes, à travers des liens hétérogènes), where we performed unequal error protection for multicast links, or DITEMOI (Diffusion et TE léchargement sur lien MO bile Ip), where we work on joint source-channel coding for wireless multi-point to multi-point (Wi-Fi or WiMAX) channels [2041]. In the Sebastian2 project, dedicated to real-time tools for post-production between Paris and San Francisco creation areas, we develop the idea of using MDC for P2P communications and propose new protocols for wired and wireless P2P networks.

Distributed Video Coding

The current development of applications like mobile visiophony raises an increasing interest from the industry for compression techniques with low complexity, and low battery charge, in order to increase the autonomy of mobile terminals. In this context, the *distributed source coding* paradigm provides original solutions for moving the complexity of video compression from the encoder to the decoder or base station [2024]. Moreover, there is a strong increase of sensor network solutions for videosurveillance, facing similar constraints. In our team, we develop distributed video coding (DVC) schemes, some of them in collaborative projects like ANR ESSOR (codagE de SourceS vidéO distRibué), and consider both theoretical and applicative aspects in mono- and multi-view distributed codig, and related multi-terminal concepts. For example, in collaboration with INRIA Rennes, we proposed iterative (turbo-like) decoding of MDC streams with adjacent information [2042]. We have also performed a rate-distortion analysis and error propagation study of mono- and multi-view DVC schemes [2042].

11.2.2 Rich Media, Adaptation and Open Source Software

Faculty C. Concolato, J. LeFeuvre, J.-C. Moissinac

Main events Organization of Distributed Framework for Multimedia Applications 2007, 2nd Best Open Source Software Award in ACM MM 07, Edition of several ISO and W3C standards

Projects ANR MP4MC (01/06–06/07), ANR Radio+(11/08–11/10), Cap Digital PINGO(04/08–04/10), IST FP6 STREP ISIS (09/02–03/05), IST FP6 STREP TIRAMISU (11/03–12/05), IST FP6 STREP DANAE (01/04–06/06), IST FP6 NoE INTERMEDIA (10/06–10/10), ANR Georacing (01/07–03/09), IT JEMTU (01/06–12/08).

Rich Media Representation

The term “Rich Media” [2027] designates the methods, algorithms, tools or technologies required for the processing of the new generation of multimedia content, i.e. content that encompasses natural or synthetic audio-visual material but adds animation and interactive capabilities. Rich Media technologies target a wide range of application domains: from digital TV or radio, to mobile multimedia and the Web 2.0.

The research topic that the team pursued in this area are numerous. Some work has been done towards finding the best representation for such content, as well as designing compression approaches for multimedia scene description languages, with features such as error protection and scalability. Other works focused on improving the visualization of such content [2023], in
Multimedia (MM) 11. Multimedia Adaptation

The adaptation of multimedia content to its context of use (terminal capabilities, network characteristics, user preference) is a very active research topic, with tight link with standardization activities such as MPEG-21 or W3C. The team explores specific problems in the adaptation of multimedia content: adaptation of protected content, adaptation of human-computer interface, and the authoring of adaptable services [2040]. These problems are addressed along different axis either by defining software architectures for such adaptations (in relationship with the ASTRE Team) or by defining methods and languages facilitating the adaptation of multimedia documents.

GPAC Open Source Software

The team maintains an Open Source platform called GPAC [2134], GPAC Project on Advanced Content (http://gpac.sourceforge.net), distributed under an LGPL license. This platform offers various tools for the encoding, the delivery and the playback of multimedia content, ranging from simple audio/video to full-fledge Rich Media. These tools implement state-of-the-art algorithms, methods and protocols from many standards organizations (MPEG, W3C, IETF, ETSI) and are kept in close sync with new industrial deployments. GPAC is used by the academic world (42 citations in journals or international conferences), the industrial world (integrated in several R&D projects) and the internet community (e.g. used for iPod file management). GPAC constitutes the back-bone for the implementation of the team’s work (Rich Media representations and adaptation) and is often demonstrated in conferences or standardization meetings.

11.2.3 Document Imaging and Interaction

Faculty L. Likforman, M. Sigelle, C. Faure

Main events L. Likforman is the General Chair of the Document Recognition and Retrieval (DRR) 2009 and DRR 2010 conferences.

We first showed that the use Dynamic Bayesian Networks for the recognition of either naturally of artificially degraded characters performs significantly better than other current state-of-the-art methods such as Support Vector Machines [2035] (L. Likforman, M. Sigelle). Also, we designed a recognition system for cursive arabic handwriting combining several Hidden Markov Model classifiers using different oriented windows [2028], which proved to be one of the most performant at this moment (L. Likforman, in collaboration with C. Mokbel and R. Al-Hajj, Univ. of Balamand, Lebanon won the ICDAR 2005 competition for Arabic handwritten word recognition). A grant has been provided in 2008 by the A2IA company to the PhD student Anne-Laure Bianne for improving this system. L. Likforman took part in the specification of the TechnoVision RIMES (Written documents recognition and indexing) project goals, as well as in the RIMES evaluation in character and logo recognition (in collaboration with S. Ladjal). Télécom ParisTech was ranked on the first position for logo recognition and second, ex-aequo, for character recognition.

For image restoration with Total Variation based on graph-cuts methods, the PhD of J. Darbon and subsequent work [2025, 2026] have lead to a new methodology for joint restoration of Synthetic Aperture Radar amplitude and phase images for 3D reconstruction of buildings (joint work...
11.2. Main Results

11. Multimedia (MM)

with F. Tupin et L. Denis ENSML). A new grant on this subject (funded by DGA/REI) has been accepted and should start soon (in collaboration with J-F, Aujol (CMLA) and J-M. Nicolas). M. Sigelle has also been working in collaboration with W. Pieczinsky (Télécom SudParis), F. Tupin and D. Benboudjema on triplet Markov Random Fields AIMED TO texture analysis and indexing in the framework of the Info@Magic project.

M. Sigelle started a collaboration with I. Jermyn (INRIA ARIANA) and S. Perreau (UNISA Adelaide Australia) on the topics of (discrete) diffusion processes, which can be applied both to modelling of traffic routing in ad hoc networks and to image restoration [2194, 2360].

The studies of C. Faure on documents and images emphasized the role of communication and the visual modality. Digital and digitised documents are processed to facilitate information access. Layout and logical structures are automatically detected in document images or in semi-structured digital documents. Applications were developed for the RNTL project InfRadio for which web documents were adapted to be read and activated on the small screens of mobile devices [2224]. More recently, document image analysis was performed for the digital library medic@ to assist the archivists in indexing and storing historical medical documents. New methods were proposed to structure the images of the pages and to extract relevant components such as the figure and caption pairs [2096, 2094, 2095]. To cope with ancient fonts difficult to recognise by OCR, word spotting methods were proposed to search for word-images similar to query words [2231, 2128, 2129]. These works for medic@ are made in collaboration with the LIPADE (Univ. Paris V). In GEOservice, a joint project between several research teams of the Institut Télécom (C. Faure was prime), the visual modality was involved in a web service. Images were combined with text to provide multimodal egocentric instructions for guiding a mobile user in a building. As a natural complement of the visual modality, the gestural modality was studied in the context of human-computer interaction where the users drew or wrote to communicate [2093, 2223, 2260, 2234, 2086].

11.2.4 Audio-visual Identity/Imposture and Virtual Worlds

Faculty G. Chollet, C. Pelachaud, M. Sigelle, M. Charbit

Main events G. Chollet and C. Pelachaud, general co-chairs of IVA’07; C. Pelachaud and T. Boubekeur, co-editor special issue on Facial Modeling, IEEE Computer Graphics and Applications, to appear in 2010; C. Pelachaud co-organizer of a Workshop held in conjunction with AAMAS 2009; she is since 2007 secretary of the Humaine association on emotion; she is part of the selection committee of ANR CONTINT (since 2008), ANR Blanc CSD9 Sciences Humaines et sociales (in 2009).

Two main directions of investigation are present in this theme:

Biometry and Speech/Face Synthesis/Recognition/Verification

The speech group was created in 1983 when Gérard Chollet joined Télécom-ParisTech (called ENST at the time). The focus was centered on coding, synthesis and recognition. In the 1990, speaker verification was added, followed by language identification five years ago. At that time, audio-visual speech and speaker recognition became a topic of interest. The Biosecure network of excellence was an opportunity to promote open-source software for major biometric modalities (face, voice, audio-visual speaker, signature, iris, hand shape...) This led to the publication of
11. Multimedia (MM)

11.2. Main Results

the book ([2269]) and to the development of databases, reference systems and benchmarking protocols ([2849, 2259]). The FP6-Securephone project was an opportunity to integrate audio-visual identity verification on a mobile phone. Audio-visual identification also finds applications in video indexing (InfoM@gic project, PhD theses supported by OrangeLabs,...) Face tracking and super-resolution of faces are issues under study in the ANR-KIVAOU project and are evaluated in the context of the NIST-MBGC campaigns. Speech recognition is still a major problem for our team. It is being experimented in projects such as the ANR-MyBlog3D and the FP7-IP-Companionable in the context of Spoken Dialogue Systems. Initial results on Very Low Bit Rate Speech Coding led to a participation of G. Chollet in start-up companies such as Peer2Phone and Shankaa. Our coder still needs to be improved in terms of speaker and language independence. A similar approach is developed in the context of the ANR OUISPER project aiming at the development of a Silent Speech Interface (driven from tongue and lip movements).

Interaction and Embodied Conversational Agent

We have been developing an interactive platform of an Embodied Conversational Agent GRETA (virtual entity endowed with human-like communication capabilities) (work done within the projects ANR RNTL MyBlog-3D and IP-CALLAS) [2062]. Greta is open source platform under GPL licence (http://www.tsi.enst.fr/~pelachau/Greta/; more than 100 downloads in 1 year; it is used in several international projects as well as material for academic purposes). Two major axes are actually undertaken: the first one relates to nonverbal communicative and emotional behaviour model and the second one focuses on model of the interaction between user(s) and virtual agent(s). Models of communicative and emotional behaviours of ECAs are elaborated within the EU project IP-CALLAS and the national projects ANR CECIL, ANR GV-Lex and ANR IMMIMO. Different aspects of expressive behaviours are being modelled. Our aim is to go beyond the expression model of the six prototypical expressions of emotions that have been mainly considered so far. We are extending our model of expressive behaviours to other modalities than faces such as gesture and gaze [2185, 2135]. Expressions of emotions can correspond to blend of emotions (eg superposition of two emotions) (IP-CALLAS) [2262]. The expression of emotion does not correspond solely to a static facial expression but it corresponds to sequential multimodal behaviours (IP-CALLAS) [2152]. Facial behaviours for complex emotions are going to be further defined (ANR CECIL; PhD thesis Jing Huang) from our previous work [2261]; Expressive communicative behaviour for virtual agent and the humanoid robot NAO is being developed within the project ANR GV-Lex (PhD thesis Quoc Anh Le); and finally emotionally-coloured communicative behaviours is being worked out in the project ANR IMMIMO. While in most of our work we based our model on literature and on careful observation of data (IP-CALLAS; PhD thesis Sylwia Hyniewska) [2151], in the project ANR IMMIMO we aim to use learning techniques to motion capture data so as to extract information on the relation between behaviour parameters. Our work on interaction is geared toward elaborating a listener model as well as the emergence of synchronous behaviours between interactants [2256]. Within the STREP SEMAINE we are developing a backchannel model to simulate listener’s behaviour in an interaction [2143]. While the project SEMAINE deals with a dyad situation, a user dialoguing with a virtual agent, and is geared toward emotional dialogs, the project NoE SSPNet focuses on social signals. We are elaborating a model of synchrony between interactants of a conversation, synchrony being a sign of engagement. Within SSPNet we are extended our rule-based model to deal with dynamic model. Behaviours of agents are not only specified at a high-level (eg communicative intention and emotion) but they are also dynamically adapted to the user’s behaviour [2256].
11.3 References

11.3.1 ACL: Articles in ISI-Indexed Journals

11. Multimedia (MM) 11.3. References

11.3.2 ACLN: Articles in Other Refereed Journals

11.3.3 ASCL: Articles in Journals Without Review Committee

11.3.4 INV: Invited Talks

11.3.5 ACTI: Articles in Proceedings of International Conferences

11.3. References

[2085] I. Demeure, C. Faure, E. Lecolinet, J. C. Moissinac, and S. Pook. Mobile computing to facilitate interaction in lectures and meetings. In First Int. Conf. on Distributed Frameworks for Multimedia Applications (DFMA), Besançon, France, February 2005.

11. Multimedia (MM) 11.3. References

11.3. References

11.3. References

11. Multimedia (MM) 11.3. References

11.3.6 ACTN: Articles in Proceedings of French Conferences

11.3. References

11.3.7 COM: Talks in Conferences Which Do Not Publish Proceedings

11.3.8 OS: Books and Book Chapters

11. Multimedia (MM)

11.3. References

11.3.10 AP: Patents, Registered Softwares

11.3. References

11. Multimedia (MM) 11.3. References

m15601, Hannovre, Allemagne, July 2008.

Chapter 12

Statistics and Applications (STA)

Team leader F. Roueff (P).

Faculty K. Abed Meraim (MC, on sabbatical leave at University of Sharjah, 06/07–06/09), G. Blanchet (DE), P. Bianchi (MC, 01/09–), O. Cappé (DR CNRS), J-F. Cardoso (DR CNRS), M. Charbit (P, on sabbatical leave at University of Adelaide, 06/07–12/07), S. Clémenton (MC, 10/07–), G. Fort (CR CNRS), A. Garivier (CR CNRS, 10/07–), J. Jakubowicz (MC, 11/08–), E. Moulines (P), C. Lévy-Leduc (CR CNRS), J. Najim (CR CNRS), F. Roueff (P).

PhD students A. Ben Hadj Alaya (10/05–10/08), S. Barembruch (10/07–), T. Ben Jabeur (10/05–), H. Benoudnine (09/06–07/08, phd started at USTO, Algeria), L. Berriche (09/02–04/06), M. Boulè (09/03–09/07), H. Bousbia-Salah (01/05–05/06, phd started at Ecole Polytechnique d’Alger, Algeria), N. Castaneda, (09/04–07/08), J. Cornebise (09/05–06/09, also at Univ. Paris 6), M. Depecker (10/07–), J-F. Germain (09/05–10/08), F. Guillox (10/05–12/08, also at Univ. Paris 7), Z. Harchaoui (11/05–11/08), M. Karray (09/03–09/07), I. Kacha (01/05–04/07, phd started at Ecole Polytechnique d’Alger, Algeria), M. Kharouf (01/07–), O. Kouamo (09/07–, also at Univ. Yaoundé 1, Cameroon), D. Lahat (09/07–, also at Univ. Tel Aviv, Israel), A. Lung-Yut-Fong (10/08–), N. Mahler (02/08–, also at ENS Cachan), B. Mouhouche (09/02–12/05), N. Sokolovska (11/06–), L. Soudene (05/03–10/07), T. Trigano (10/02–12/05).

Post-docs, sabbaticals B. Benmammar (postdoc 12 months), P. Etoré (postdoc 8 months, also at CERMICS, Ponts), J. Olsson (Postdoc 10 months), M.S. Taqu (Prof. at Boston Univ., 3 months), L. White (Prof. at Univ. of Adelaide, Australie, 6 months), M. Zetlaoui (postdoc, 1 year), V. Reisen (MC, Vitória Univ., Brazil, 8 months), Samir Attallah (Prof. at NUS, Singapore, 2 months).
12.1 Objectives

The STA team’s main research interest is in the development and analysis of statistical methods for information processing, with applications in signal processing, applied statistics, complex systems and digital communications. The team’s main expertise lies in statistical signal processing and mathematical statistics but also in probability, operation research and, more generally in applied mathematics. The team is also involved in research projects targeting more specific applications, usually in the context of broader collaborations, often supported by funds from the Agence Nationale de la Recherche (ANR). In this context, topics that are relevant to the team expertise include digital communications, astronomical data analysis, security and defense applications (localization, intrusion or anomaly detection), and data mining. In the recent period, the team started to extend its expertise towards statistical machine learning, in particular for ranking and sequential learning applications.

The members of the STA team are actively participating to teaching, typically at the master level and in the fields of probability, statistics, signal processing, machine learning and applied mathematics, at Télécom ParisTech but also in several other Grandes Écoles of the ParisTech institute (Ecole des Ponts, Ecole Polytechnique, ENSAE) and universities (M2 Modélisation aléatoire at Paris 7 Denis Diderot, M2 Modélisation Vision Apprentissage at ENS Cachan, M2 Ingénierie Mathématique at Paris 11 Orsay, University Paris-Dauphine).

The STA team has developed long term research collaborations with several academic Parisian partners such as Univ. Paris 7 Denis Diderot (LPMA and ADAMIS), Univ. Paris 10 Nanterre (MODALX), Univ. Paris-Est (IGM), Institut d’Astrophysique de Paris, Univ. Paris-Dauphine (Céréemade), research groups in other ParisTech schools (CMBIO, Mines and CERMICS and CERTIS, Ponts) and with the Ecoles Normales Supérieures Ulm (INRIA projects TREC and WILLOW) and Cachan (CMLA). Such collaborations are essential to the team for achieving long term research programs, and, more generally, for exchanging ideas and views within a stimulating academic environment.

These academic relationships parallel industrial partnerships. The latter have been developed in the framework of national research projects (ANR), bilateral contracts, or the funding of PhdDtheses (through CIFRE conventons). Beside favoring our financial autonomy, such partnerships bring practical applications which are helpful for our opening and to remaining active on new research prospects. In the last years, regular industrial partners include the Commissariat à l’Energie Atomique (CEA), Renault, France Télécom R&D and Direction Générale de l’Armement (DGA).

The team enjoys a high national and international recognition with editorial board members in high quality journals such as Bernoulli, ESAIM P&S (E. Moulines) and the Journal of the Royal Statistical Society, Series B (O. Cappé) as well as regular participation as program comity mem-

Faculty [IT, CNRS] [5.5, 5.3]
- PhD students: 7.2
- Post-docs, sabbaticals: 1.4
- Defended theses: 19
- Defended HDR: 3
- Journal papers [published, to appear]: [92, 13]
- Papers in conference proceedings: 140
- Registered [patents, software]: [1,1]
- Grants [public, private, European] (k€): [822, 497, 7]

Finally, members of the team are regularly invited to give talks in national seminars such as the *séminaire parisien de statistiques*, universities abroad (Hong Kong University of Science and Technology, and National University of Singapore, S. Clémençon; probability seminars in University of Bochum and Stanford Univ., J. Najim; seminar of statistics in Cornell Univ. and Université Catholique de Louvain, F. Roueff; seminar of applied probability in Warwick, G. Fort) as well as in workshops or conferences (Isaac Newton Institute, O. Cappé, E. Moulines; 2006 New Developments in MCMC workshop, 2008 Adap'Ski workshop, 2008 SSC-SFDS conference, 2009 workshop on Scaling methods in Warwick, G. Fort; 2009 Physcomnet, J. Najim; 2006 ValueTools workshop, 2006 New Developments in MCMC workshop, 2007 Eurandom Algorithms in Complex Systems workshop, 2008 European Geosciences Union General Assembly, 2008 Sequential Monte Carlo Methods SAMSI workshop, E. Moulines).

12.2 Main Results

12.2.1 Statistical Learning

Contributors O. Cappé, A. Garivier, S. Clémençon, C. Lévy-Leduc, E. Moulines, F. Roueff.

Main events ANR projects KERNSIG (Learning and kernels for representation and decision in signal processing, 2007–), MGA (Graphical Models and Applications, 2008–), TAMIS (Adaptation, multiple tests, ranking and applications, 2006–2009), BEMOL (Prediction of internet users’ behavior, simulation and collaborative filtering, 2008–); Contracts with France Telecom R&D (two theses) and Renault (two theses).

In the context of the STA team, statistical learning is a new research theme that has been largely developed during the last four years. Our efforts on this aspect have benefited from two recruitments (A. Garivier, S. Clémençon) and from the support of several academic (ANR projects KERNSIG, TAMIS and MGA) and industrial grants. Although recent, the team’s contribution in statistical learning is now recognized, with several team members regularly participating as program comity members to the main conferences of the field (ICML, EMCL, COLT and NIPS). The team also developed strong collaborations on this theme with other teams within the ParisTech alliance (CMBIO, Mines and CERTIS, Ponts) and the INRIA/ENS project WILLOW (F. Bach), with whom we are organizing the popular monthly Paris Tech-Machine Learning reading group, as well as with the CMLA, ENS Cachan group (N. Vayatis).

Since 2006, the team has been active first on kernel methods and more specifically their use for purposes other than supervised classification and, in particular, for signal processing applications (which is the main focus of the KERNSIG project). Our main contributions include a mathematical analysis of kernel-based changepoint detection tests [2559] as well as several extensions to the multiple changepoints and changepoint localization problems.

Graphical models is another topic on which the team is active with works on parameter inference for latent variable models used in natural language processing [2472] (in collaboration with F. Yvon, Univ. Paris-Sud 11) as well as online learning algorithms for mixture and hidden Markov models [2393]. The team also worked on several applications of sparse regression and classification using LASSO type procedures [2562, 2456, 2458].

Ranking has become a very important research theme in the team with a series of works initiated by S. Clémençon in [2399]. The distinctive feature of this approach is to view methods based on the AUC (Area Under Curve) criterion as solving a functional optimization task which
12.2 Main Results

12. Statistics and Applications (STA)

requires adaptive approximation of the optimal ROC (Receiver Operating Characteristic) curve. The computation of confidence bands through resampling for the ROC curve and associated performance criteria has been investigated in [2519] [2539]. Reference [2401] presents the main ranking algorithm, termed tree-rank, and provides a thorough theoretical analysis of its performance. In the context of the ANR project BEMOL, the team also started some preliminary works on related tasks such as collaborative filtering.

More recently, with the arrival of A. Garivier, the team started working on themes related to resource allocation and reinforcement learning, in particular in the context of the PhD thesis of S. Filippi (funded by France Telecom R&D).

12.2.2 Statistical Methods for Astronomy

Contributors O. Cappé, J-F. Cardoso, G. Fort.

Projects ANR projects COSMOSTAT (Statistical methods for reconstruction and analysis of the cosmic microwave background) and ECOSTAT (Exploration of the cosmic model by statistical methods).

There is a growing interest in statistically and numerically efficient methods for the processing of the complex massive data sets delivered by modern astronomical observatories and surveys. Our team contribute to this domain along several axis, with a strong focus on the Planck space mission of the European Spatial Agency. This mission, which will deliver measurements of the Cosmic Microwave Background (CMB) of unprecedented resolution and sensitivity, requires data processing of outstanding quality. The team has been contributing several challenges in this area.

In the context of the Planck mission, which will deliver multi-frequency sky maps, the first task is to develop component separation methods for extracting the best possible CMB map from these measurements. We contribute a powerful blind separation method which performed very well in the Planck separation challenge [2432] and a fast and robust non-blind method [2404] based on spherical needlets.

CMB maps are spherical maps. Usual space-frequency methods such as wavelet analysis cannot be applied in this context. The ANR project COSMOSTAT has been dedicated to develop multi-scale methods on the sphere. We proposed and studied a promising new tool for this purpose, the needlets, a spherical frame for optimal filtering [2404] and spectral estimation on the sphere [2426, 2415].

Ultimately, CMB data are exploited in a Bayesian framework for the inference of the cosmological parameters (age of the Universe, Hubble constant, etc). The complexity of the models requires a specific approach based on Monte Carlo methods (ANR project ECOSTAT) on which the team enjoys a high level of expertise. In [2456], we have developed an adaptive importance sampling scheme targeted to the specificities of cosmological data.

CMB data enter in cosmological inference via the likelihood of their angular spectrum, which raises several issues in terms of the dependence structure. Again this specificity calls for new methods in statistical analysis on the sphere. We developed exact and approximate likelihoods function for the observation of the CMB sky with missing data [2379] via interpolations methods on the sphere.

The formation of the large scale structures of the Universe by gravitational collapse can be analyzed via the skeleton of the matter density field. Analytical skeleton models require knowing the joint distribution of the field and of all its derivative tensors. This problem is related to the theoretical description of spherical invariants of isotropic fields. We obtained closed form expressions of it via a theory of spherical invariants for isotropic fields [2446].

12.2.3 Statistical Methods for Signal Processing

Our interest lies in applications of mathematical and statistical tools to performance evaluation and optimization of the physical layer of wireless communications systems. Such approaches have been particularly fruitful in many areas of interest in the last decade.

The first topic of interest is the performance analysis of Multiple Input Multiple Output (MIMO) communications. MIMO systems are widely acknowledged as a mean for increasing the spectral efficiency of wireless communication systems. In order to design efficient MIMO communications, a crucial issue is to evaluate the performance of MIMO transmissions in terms of capacity or outage probability. Random matrix theory is a powerful tool which allows to evaluate such performance indicators \[2427, 2428\]. Whereas the pioneer works in this field usually assume simplistic communication models, our activity consists in developing new tools for random matrices in order to encompass a wider class of communication models, including realistic propagation channel models and involved transmit/receive architectures.

On the other hand, geo-localization and tracking of base stations and mobile stations of GSM network have been considered (in the context of the DEMORO project, and N. Castaneda's thesis). This study used both GSM signals with a multiple sensor array and traffic informations and took into account multipath propagation and presence of outliers. Different approaches have been considered: Expectation-Maximization (EM) algorithm and recursive EM for DOA estimation applications but also Monte Carlo methods (or particle filtering) in the context of Bearing Only Tracking \[2532, 2531\].

A final field of interest for non-cooperative communications is blind signal processing. In this context, it is assumed that the signal coming from an unknown transmitter has been intercepted. The received signal is corrupted by an unknown propagation channel. The aim is to demodulate the received signal in order to recover the transmitted data and to estimate the value of the technical parameters used by the transmitter. In order to achieve attractive performance in terms of Bit Error Rate, our aim is to develop blind demodulation approaches using approximate Maximum Likelihood methods. One of the main stake is to propose methods which are suitable to modulations with high spectral efficiency, that is, in the case where the size of the alphabet used by the transmitter is large (Aintercom project, I2E contract).

12.2.4 Monte Carlo Methods

Contributors O. Cappé, S. Clémençon, G. Fort, E. Moulines.

Projects/Main events ANR project ADAP'MC (Adaptive Monte Carlo Methods); ANR project BigMC (Issues in large scale Monte Carlo); Organization of the international workshop *New directions in Monte Carlo Methods* in Fleurance, 2007.

The team has acquired a high reputation in the domain of Monte Carlo methods by working on sequential Monte Carlo methods or particles filtering, Markov chain Monte Carlo methods as well as so-called Population Monte Carlo. Its activity has a strong emphasis on methodological and theoretical developments in Monte Carlo methods.

When applying **Sequential Monte Carlo** methods (SMC), a well-known problem is the degeneracy of the approximations introduced by the resampling steps. We obtained results on optimal sampling allocation \[2455\]. We also developed methods for statistical inference in Hidden Markov Models, which exploits the forgetting properties of the conditional hidden chains \[2445, 2408, 2412\] [coll. with Univ. of Lund, Sweden; and Univ. of Jerusalem, Israël].

The efficiency of the **Markov chain Monte Carlo** (MCMC) methods relies on the tuning of design parameters. New algorithms are based on self-tuning of the parameters on the fly without relying on a priori expert parameter tuning, thus yielding to adaptive MCMC algorithms. We
developed techniques to identify the optimal values of these design parameters [2420]. We obtained results on the asymptotic behavior of these adaptive procedures [2370] [coll. with Univ. of Illinois, US; and Univ. of Bristol, UK].

Population Monte Carlo methods are designed as generic self-adaptive importance sampling algorithms. The goal is thus to calibrate the best fitting proposal. We developed an adaptive method for an automatic computation of the optimal proposal among a class of parameterized importance functions [2391].

Developing proper theoretical tools is an important issue for Monte Carlo methods: studying the simulation problems by using theoretical tools used in the **theory of Markov chains** and particle approximations allows to identify the key convergence bottlenecks and to propose the appropriate methodological approaches to solve them. We obtained results in the Markov chain theory [2409, 2407, 2630, 2413], in limit theorems for weighted samples [2411] and in output analysis for Markov models [2397] using bootstrap methods.

12.2.5 Time Series

Contributors M. Charbit, S. Clémençon, C. Lévy-Leduc, E. Moulines, F. Roueff.

Projects ANR projects OSCAR (Overlay network security : characterization, analysis and recovery) and SARAH (Standardization of high-definition audio remastering); Contracts with CEA (one thesis) and CSA; Participation to the European IP project SECOQC.

Statistical inference for time series and, more generally, for stochastic processes is a wide area. The research activities of the team in this domain covers long standing problems in statistical signal processing and new directions in spatial statistics. These topics are often motivated by applications that are also of interest to the team.

A first topic is concerned with **time frequency analysis** of time series based on a study of the asymptotic statistics in a semi-parametric or non-parametric framework. Our expertise in **long range dependence** has been increased, in particular by a thorough analysis of semi-parametric Wavelet methods [2442, 2443, 2450, 2449], coll. Boston Univ.). Specific domains of application have been considered, such as financial time-series [2414, 2416] and teletraffic data [2417, 2470]. Other subjects in time frequency analysis have been considered such as frequency estimation for irregularly sampled series [2434] in a non-parametric framework and missing-value estimation for an AR process applied to DNA microarray data [2396], coll. Univ. of Sydney).

A second topic of interest for the team is **change detection** by statistical methods and their applications. We have been working on anomaly detection in Internet teletraffic data (ANR-RNRT project OSCAR, [2435]) based on non-parametric statistical methods. An online algorithm [2632] has been proposed and implemented in a platform dedicated to anomaly detection in the Internet. On the methodological side, we proposed new change detection methods based on LASSO for automatically selecting the number of changes and kernel methods for change detection using unspecified features [2562, 2559].

Our activities include theoretical studies of specific stochastic processes arising in applied probability and/or having a strong impact on specific applications. We have been interested in **spatial point processes** for modelling natural images using geometrical models (coll. with TII team [2673, 2651] and quantum key distribution networks [2457], SECOQC project, coll. with MIC2 team). With a particular emphasis on the time evolution of spatial point processes, we also considered stochastic epidemic models [2462, 2381]. The **pileup models** appear naturally in several measurements context such as spectrometry and fluorescence. We proposed statistical methods which take into account the pileup phenomenon rather than avoiding it leading to new algorithms for processing such measurements [2454, 2633]. A coll. with Univ. of Lille and Michigan State Univ. yielded new results on the path properties of \(\alpha \)-stable fields [2374, 2458]. We also studied the **extremes** (tail properties) of Markov chains [2380, 2382], which are of interest in risk management.

12.3 References

12.3.1 ACL: Articles in ISI-Indexed Journals

12. Statistics and Applications (STA) 12.3. References
12.3. References

12. Statistics and Applications (STA)

12.3.2 ACLN: Articles in Other Refereed Journals

12.3.3 INV: Invited Talks

E. Moulines. Adaptive methods for sequential importance sampling with application to state space models. In...
12. Statistics and Applications (STA)

12.3. References

12.3. References

12.3. References

12.3.5 ACTN: Articles in Proceedings of French Conferences

12.3.6 COM: Talks in Conferences Which Do Not Publish Proceedings

12.3.7 OS: Books and Book Chapters

12.3.8 AP: Patents, Registered Softwares

Chapter 13

Image Processing and Interpretation (TII)

The Image Processing and Interpretation Group (TII) of the TSI department includes research projects dealing with images and 3D objects, and the Center of Competences in information extraction and image understanding for earth observation (CoC).

Team leader F. Schmitt (P) until October 2008, then I. Bloch (P).

Supporting permanent staff (shared with other groups): D. Asselineau, S.C. Barrière, B. Nabati.

PhD students Defended: D. Cherifi (03/05), S. Ladjal (03/05), T. Tung (06/05), F. Duguet (06/05), S. Homayouni (12/05), D. Soler (03/06), D. Girardeau-Montaut (05/06), F. Bretar (06/06), F. Rossant (10/06), C. Valade (12/06), F. Cellier (01/07), G. Peters (06/07), A. Moreno (09/07), J.-F. Goudou (10/07), L. Gueguen (10/07), J. Gerhardt (10/07), C. B. Akgul (11/07), B. Zhang (11/07), L. Bin (12/07), A. Bhattacharya (12/07), C. Millet (01/08), H. Khotanlou (02/08), T. Hurtut (03/08), I. Kyrgyzov (05/08), J. Delliere (06/08), N. Bonnier (09/08), M. Costache (09/08), A. Kermi (10/08), P. Lopez Quiroz (11/08), A. Baillard (12/08), R. El-Berbari (01/00), X. Perrotton (01/09), A. Ghaleb (02/09), M. Liérou (03/09), O. Nempont (04/09), H. Chaabouni (06/09).

Current: E. Aldea (10/06), C. Angeli (01/07), J. Anquez (02/06), S. Audière (10/08), J. Baussé (12/06), P. Birjandi (01/08), H. Bizot (10/08), P. Blanchard (10/08), E. Bughin (10/07), J. Caron (10/08), J. Chen (doctoral stay, 1 year), N. Chenouard (10/06), D. Craciun (10/06), C. Deledalle (10/08), V. Duval (09/08), G. Fouquier (10/06), G. Ferraoli (doctoral stay, 1 year), B. Galerne (10/07), I. Ghorbel (11/08), D. Hadidi (11/08), G. Hochard (11/07), C. Lemen (10/05), G. Lehureau (10/06), D. Lesage (10/05), C. Mallet (09/07), M. Marim (12/07), D. Martinez (10/06), F. Mosca (10/07), T. Napoléon (10/06), G. Palma (02/07), B. Petitpas (10/08), J. Rabin (10/06), S. Redko (05/06), A. Shabou (10/07), A. Simac (10/06),

1Francis Schmitt received his engineering diploma from the Ecole Centrale in Lyon, France, in 1973 and in 1979 was awarded a PhD from the University of Paris VI (Pierre et Marie Curie). From 1973 up to his sudden death in October 2008 he was a member of the faculty at Télécom ParisTech (Ecole Nationale Supérieure des Télécommunications, last holding the rank of full professor in the Image and Signal Processing Department in which he headed the Image Processing Group. His main interests were in computer vision, 3D modeling, image and 3D object indexing, computational geometry, multispectral imagery and colorimetry. He authored or co-authored nearly 150 publications in these fields.
13.1 Objectives

The objective of the group is to develop methodologies and theoretical tools for image, scene and 3D object processing and interpretation. The main approach consists in solving globally complex problems, based on rigorous theoretical bases, and integrating multiple and complementary techniques, for deriving interpretations from data. Applications focus on medical imaging, aerial and satellite imaging, natural image analysis. Contributions of the group can therefore be found at theoretical level (knowledge and information representation and modeling, at various levels and in 2D as well as 3D, processing, interpretation and reasoning on spatial data), at algorithmical level (in particular to implement the developed models for large and complex data sets), and at applicative level. The group is now well recognized, in both academic, institutional and industrial domains. It has numerous collaborations with other universities, and is supported by grants and contracts. The different research activities are closely linked together, which is one of the strong features of the group.

Over the last four years, the team has benefited from the appointment of three CNRS researchers and one associate professor, strengthening research axes in indexing and mathematics for image processing and computer vision, and in computer graphics. The good reputation of the group and its visibility, in France as well as at international level, are confirmed by the number of publications, but also by the number of collaborations, mentioned below for each research axis, and by its attractiveness for CNRS candidates, post-docs and PhDs.

The scientific animation of the team includes a general seminar and several specific ones (medical imaging, compressed sensing, radar imaging, CoC seminar...). PhD candidates are invited to present their work at the end of the first year of their PhD, so as to gather comments from the whole team and initiate discussions among them, thus favoring cross-fertilization of ideas. We also pay attention to the accompanying process of the PhD theses, beside the direct scientific supervision, including a help to prepare their future.
The team is also strongly involved in teaching, both at undergraduate level and master level, at Télécom ParisTech and in partner universities. It is responsible for several master programs in image processing and its applications to medical imaging and satellite imaging, thus ensuring a strong link between teaching and research.

13.2 Main Results

The main research results obtained during the period 2006-2009 are presented below for the research areas of the TII team, both from a theoretical and methodological point of view and from an application perspective.

13.2.1 Knowledge Representation and Spatial Reasoning

Faculty I. Bloch, M. Campedel, H. Maître.

Main events RFIA 2008 (program chair) and edition of a special issue of the I3 journal, with selected papers.

Projects Collaborations: J. Atif (Univ. Antilles-Guyane), R. Cesar (Univ Sao Paulo, Brazil), C. Hudelot (ECP), J. Ingliada (CNES), J. Lang (IRIT and LAMSADÉ), N. Milisavljevic (RMA, Brussels), R. Pino-Perez and C. Uzcategui (Univ Los Andes, Merida, Venezuela), F. Rossant (ISEP), L. Laborelli (INA), S. Dubuisson (LIP6).

Spatial reasoning in images requires to develop tools for representing spatial information, both for objects and their spatial relations, and for reasoning on this type of information. Uncertainty and imprecision management, as well as fusion of heterogeneous information are central in our work. As the continuation of previous work, we proposed models for representing spatial relations based on fuzzy sets theory \[2643, 2648, 2646\]. Recently, we proposed new definitions of fuzzy connectivity, based on the notion of hyper-connectivity, and dealing properly with the fuzzy sets semantics and with continuity issues \[2692\]. The associated algorithms are based on tree representations, that make filtering and other processing tractable. We also addressed the modeling of complex relations such as “parallel” and “across”, again using fuzzy mathematical morphology. A new orientation of our work deals with the modeling of bipolar spatial information, in order to represent both positive and negative information. We proposed a novel approach, based on mathematical morphology on the complete lattice of bipolar fuzzy sets to represent and manipulate such information \[3035\].

Besides knowledge representation aspects, we addressed the reasoning component of spatial reasoning from different points of view. We developed an ontology of spatial relations, which was used to enrich a part of the FMA\[2\](medical ontology) concerning brain structures. Fuzzy models of spatial relations define the semantics of ontology concepts and their representations in the spatial domain contribute to reduce the semantic gap. This provides a promising way for using the enriched ontology to guide the recognition of image structures \[2677\]. For each particular application, the semantics of the spatial relations (in particular the shape and parameters of the membership functions) are learned on a database of examples. Other work on ontologies, in the domain of satellite imaging, are carried out in DAFOE project (see Section 13.2.5).

These models have also been integrated in graphs representing image structures (objects and spatial relations between them). Reasoning schemes in these graphs have been designed, in order to find optimal paths providing an ordered sequence of objects to be recognized, each object being processed based on the previously processed objects in the sequence and on spatial relations with respect to them. The optimality is defined in terms of spatial relations and saliency computed from the actual data \[2843\]. As a novel contribution, we also integrated these models in constraint networks, and expressed the recognition process as a constraint satisfaction problem,

\[\text{http://sig.biostr.washington.edu/projects/fm/}\]
for which we derived specific propagators for each spatial relation in order to reduce the domains of the solutions \cite{2921}. Finally, fuzzy spatial relations are integrated in particle filters for tracking objects in video sequences (collaboration with the LIP6). This new contribution shows a better behavior than classical particle filters in case of abrupt changes in the trajectory.

Our work on fuzzy mathematical morphology has led to the development of new transformations, for defining fuzzy influence zones and skeleton by influence zones, with applications to interpolation between fuzzy sets \cite{2645}. These transformations have also been developed in a logical framework (in collaboration with R. Pino-Perez, C. Uzcategui and J. Lang), with applications to mediation and negotiations \cite{2771}.

Finally, our work on information fusion deals with fusion of spatial relations, fusion of defect detectors for digital film restoration (with INA) \cite{2700} and fusion of fuzzy musical rules, which led to higher recognition rates in various musical scores than commercial softwares (with ISEP) \cite{2699}. We also have a long collaboration with the RMA in Brussels for fusion in the domain of anti-personnel mine detection for which we proposed original methods based on belief functions and possibility theory \cite{2686}.

13.2.2 Machine Learning and Image Retrieval

Faculty
The whole group is involved in this research axis.

Projects

In 2006-2007, a new research direction, spreading across various themes in the TSI department, has emerged. In the TII group, it concerns indexing of multimedia documents. By indexing, we mean the analysis of images or documents contents, in order to facilitate their massive exploration. Indexing is strongly linked to the mining operation an end-user may need. Research in this domain benefits from methodological advanced developments (modeling, adaptive learning depending on the type of images), in strong connection with STA team, and from a better knowledge management and exploitation (fuzzy reasoning, visual or domain ontologies). Indexing of 3D models was also studied, based on either 2D views or purely 3D information, using kernel approaches for estimating joint density distributions \cite{2635, 2636}, and using Reeb graphs \cite{2703}. For 3D object recognition in biological vision, we found that view-specific and 3D-model based representations are used by human observers \cite{3046, 2695}. Finally, mining strategies for large image databases are developed, based on relevance feedback.

Spatial relations have been exploited in this context for recognizing regions of an image and providing a linguistic description of its content (with CEA-LIST). Classification and image mining are also addressed using marginalized graph kernels, and have contributed to the Infom@gic project.

A software platform, PLATO, is being developed with the aim of organizing, centralizing and handling multimedia data (images, sounds, videos, but also processing tools and processing results), in collaboration with AAO team.

The goal of the UrbanView project (partners LIP6, EADS, THALES, etc.) is to design machine learning techniques for multi-camera object (car, person,...) tracking, retrieval and traffic surveillance. Two different scenarios were considered, synchronous and asynchronous, depending on the fact that objects and tracks are matched using overlapping or non overlapping cameras. In this work, we introduced a framework for multi-view object matching and tracking based on kernel canonical correlation analysis. Our method is purely statistical and encodes intrinsic object appearances while being view-point invariant.

Further collaborations, mainly with Ponts ParisTech, include kernel design for object-based image retrieval. The goal is to incorporate many properties (invariance, context, etc.) in order to achieve object matching and retrieval. Theoretical properties, about the positive definiteness of these kernels and their convergence to a fixed point, were proved together with experiment validation on widely used databases including Corel and Flickr \cite{2947}.
3D retrieval has recently emerged as an important boost for 2D search techniques, by its several complementary aspects, for instance, enriching views in 2D image datasets, overcoming occlusion and serving in many real world applications such as photography, art, archeology and geo-localization. In this work, we introduced a complete “2D photography to 3D object” retrieval framework which, given a (collection of) picture(s) or sketch(es) of the same scene or object, allows us to retrieve the underlying similar objects in a database of 3D models. The contributions of the method include (i) a generative approach for alignment which is able to find canonical views consistently through scenes/objects and (ii) the application of an efficient but effective matching method used for ranking. The results are reported through the SHREC benchmarking consortium and evaluated/compared by a third-party, showing clearly the good performance of the proposed framework with respect to the other participants [2917].

The AVEIR ANR project is about combined text and image retrieval joining LIP6, LSIS and LIG; its goal is to design machine learning techniques in order to learn the relationships between text and images and perform inference (i.e., image annotation). The members of the consortium are actively collaborating and participating in different evaluations and challenges including ImageClef 2008 and 2009; they submitted a common run ranked 2nd among 25 international experienced teams working on the same topic.

Another research topic is to use manifold learning techniques (graph Laplacian and diffusion maps) for relevance feedback based image retrieval. A new graph Laplacian technique was introduced which makes it possible to robustly learn the embedding of a manifold enclosing an image database, via diffusion map [2949, 2944]. The approach is three folds, it allows us (i) to integrate all the unlabeled images in the decision process (ii) to robustly capture the topology of the image set and (iii) to perform the search process inside the manifold. This technique shows a clear and a consistent gain with respect to state of the art relevance feedback approaches on standard databases. The graph Laplacian technique was also used for dimensionality reduction and applied to large scale image database “visualization”.

Finally, we recently addressed the problem of image queries in large databases from user sketches (binary strokes). We proposed a new descriptor [2838] for fast large scale search and integrated the so-defined search engine within a variational image compositing tool [2839].

In this part of our activities, a core feature concerns kernel-based statistical methods which allow taking into account invariance and contextual properties for object matching and recognition in images and video sequences. The main goal is to integrate additional information about geometry, textual relations and invariance properties in the kernel definition. Theoretical properties of kernels have then to be proved in order to use them for machine learning and dimensionality reduction. Taking into account the transductive aspect is important, via the introduction of prior information in a weakly supervised manner and will lead to increased performances in recognition and interpretation tasks. Multiple applications can be anticipated, such as scene recognition, interactive search and navigation in multimedia generic and specific databases, within ongoing projects such as ANR AVEIR.

13.2.3 2D and 3D Mathematical Modeling

Faculty A. Almansa, T. Boubekeur, J. Delon, Y. Gousseau, S. Ladjal, H. Maître, F. Roueff, F. Schmitt.

Projects European project MUSCLE, ANR Otarie, ANR Freedom, ANR CeCil, ANR NatSim. Collaborations with L. Alvarez (U. Gran Canaria, Spain), J.-F. Aujol (ENS-Cachan), J.-M. Morel (ENS-Cachan), L. Vese (UCLA), V. Caselles (UPF, Barcelona), S. Durand (U. Paris Descartes), M. Lindenbaum (Technion, Israël), P. Musé (U. de la República, Uruguay), A. Sobolevskii (Poncelet Lab., Moscou), T. Buades and A. Desolneux (U. Paris Descartes), S. Masnou (Paris 6), Mila Nikolova (ENS-Cachan), I. Lyuboshenko (PhaseView), M. Alexa (CG Lab, TU Berlin).

Main events International Color Consortium (ICC), digital printing days (March 2009).
Texture and Natural Images Modeling
This research theme deals with the stochastic modeling of natural images. First, generative models taking into account scaling phenomena in natural images have been developed. These models (dead leaves, shot-noise, transparent models) are grounded in the theory of marked point processes, whose marks are geometrical structures \[^{[2651]}\]. In particular, we have shown that some models enable the simultaneous representation of geometry and scaling properties in natural images \[^{[2673]}\]. More recently, we applied such models to image and texture synthesis. A second research direction is concerned with the mathematical analysis of variational methods for image restoration, and in particular the influence of such methods on the geometry and textures within images. In particular, we have shown that the popular TV-L1 model is equivalent to some morphological filtering \[^{[3061]}\]. Another contribution is concerned with the variational decomposition of color images.

Mathematical Methods for Image Analysis and Computer Vision
These last years, we have developed or applied various mathematical tools for the analysis indexing or matching of images. Among these tools, let us first mention optimal transportation equations. These equations enable the definition of metrics between weighted features and yield elegant ways to compare images. Another methodological aspect of our researches deals with a contrario methods, developed by Desolneux et al. to automatically fix detection thresholds for image analysis. In particular, we applied these methods to the problem of image matching. Among the other tools that we have investigated and applied, let us mention topographic maps, scale spaces, and deformable models.

We first proposed solutions to the decision problem for shape matching \[^{[2690]}\]. We also have developed a complete chain for the matching of images from local descriptors (such as SIFTs). This procedure encompasses the descriptors themselves, a transportation metric adapted to circular histograms to compare them, an unsupervised matching criterion and a validation, RANSAC-like step \[^{[3070]}\][^{[2936]}][^{[2937]}\]. Another research direction concerns the indexing of satellite images, invariant to resolution changes \[^{[2685]}\][^{[2684]}\] or relying on morphological tools \[^{[2683]}\]. More recently, we have proposed an original method for the indexing of texture, respecting a wide range of geometrical and radiometric changes \[^{[3073]}\]. This method can be seen as an extension of the classical granulometry from mathematical morphology. We also took interest in the indexing and matching of museal artworks, first through the unsupervised comparison of the color composition of images \[^{[2678]}\], and then through the automatic analysis of artistic hand drawings \[^{[2873]}\]. In the domain of artwork, original contributions on multispectral imaging have been developed for high quality image acquisition \[^{[2696]}\]. A mathematical framework for spatial and color gamut mapping has also been proposed, leading to adaptive algorithms with real applications for color printing \[^{[2898]}\][^{[2775]}][^{[3058]}\]. In the domain of aerial image matching, we have shown under which conditions a matching is licit, with a precision of a tenth of a pixel. This enables one to develop stereoscopic vision systems with very small b/h \[^{[3042]}\][^{[2662]}][^{[2941]}\].

Restoration of Old Movies
As part of a research project (FREEDOM JCJC ANR project), we have proposed several contributions in the field of movie and videos restoration, in collaboration with researchers from the CMLA (ENS Cachan) and J-L Lions Lab (Paris 6 University). In these contributions, various tools have been used (statistical tests, variational approaches, copy-paste methods, patch-based methods, Fourier analysis) and both theoretical and applied points have been tackled, as for instance: the automatic combination of patch-based methods and geometrical interpolation for image inpainting \[^{[3060]}\]; the variational interpretation of copy-paste methods \[^{[3055]}\]; the automatic detection of occulting defects (dust, scratches) and the restoration of local radiometric problems \[^{[2659]}\], for which it has been shown that a precise motion estimation was not necessary, etc. Some of the algorithms developed by the team should soon be made available as plugins for standard movie processing softwares.

At the same time, we also took interest in superresolution and irregular sampling problems. A first direction deals with subspace methods. We continue researches previously developed several years ago at the TSI department and include regularity constraints to circumvent the intricate
problem of source separation in the image superresolution context [2851]. A second direction uses total variation for restoration and superresolution in the case of irregular sampling [2667].

Finally, our work on phase reconstruction for optical waves was pursued, for incoherent cameras and several axial views (in collaboration with PhaseView and I. Lyuboshenko).

3D Computer Graphics The group has a long history in 3D image and object acquisition, modeling, processing and interpretation. A new focus of our research activities concerns computer graphics, with the arrival in fall 2008 of Tamy Boubekeur. We have mainly focused on efficient and scalable methods for geometric modeling and realtime rendering.

We have introduced TopStoc [2652], a fast mesh simplification algorithm. The two main components are stochastic vertex selection and re-indexing of triangles. The probability for vertex selection depends on a local feature estimator, which prefers areas of high curvatures but still ensures sufficient sampling in flat parts. Re-indexing the triangles is done by breadth-first traversal starting from the selected vertices and then identifying triangles incident upon three regions. Both steps are linear in the number of triangles, require minimal data, and are very fast, while still preserving geometrical and topological features. Additional optional processing steps improve sampling properties and/or guarantee homotopy equivalence with the input. These properties provide an alternative to vertex clustering especially for CAD/CAM models in the areas of previewing or network graphics.

Ambient occlusion captures a subset of global illumination effects, by computing for each point of the surface the amount of incoming light from all directions and considering potential occlusion by neighboring geometry. We have introduced an approach to ambient occlusion [2938] combining object and image space techniques in a deferred shading context. It is composed of three key steps: an on-the-fly voxelization of the scene, an occlusion sampling based on this voxelization and a bilateral filtering of this sampling in screen space. The result are smoothly varying ambient terms in occluded areas at interactive frame rates without any pre-computation. In particular, all computations are performed dynamically on the GPU while eliminating the problem of screen-space methods, namely ignoring geometry that is not rasterized into the Z-buffer.

As for perspectives, scalable geometric optimizations such as our simplification algorithm, offer a nice framework for large scale problems involved in Cloud Visual Computing. We will study deeper how such methods can be used in a realtime context, to allow high resolution dynamic geometries with all-frequencies content in interactive applications. On the other side of the computer graphics pipeline, we have built our ambient occlusion algorithm on an hybrid object-image space basis. This opens a way toward a more general hybrid rendering engine capable of achieving complex illumination effects such as color bleeding, subsurface scattering or even global indirect reflections, while using volumetric representations as a medium between object and image spaces. This also emphasizes the current convergence between computer graphics (object space) and computer vision (image space) methods.

13.2.4 Medical Imaging

Staff E. Angelini, I. Bloch, T. Boubekeur, J. Delon.

Main events IEEE ISBI 2008 (program chair, finance chair, organization).

Projects collaborations within ANR MARIO, INCA, Fondation Santé et Radiofréquences FEMONUM, GET, MINIARA (pôle de compétitivité MEDICEN) projects, J. Rolland and A. Santhanam (Univ. South Florida), A. Laine (Univ. Columbia, NY), J. Darbon (UCLA), Y. PetegNie, D. Hasboun and H. Duffau (CHU Pitié-Salpêtrière), IFR 49, E. Mandonnet (CHU Lariboisière), B. Devaux (Ste Anne hospital), C. Adamsbaum (Hôpital Saint Vincent de Paul), E. Mousseaux (HEGP), M. Paques and S. Tick (XV-XX Hospital), C. Prunier (CHU Tours), A. Herment and F. Frouin (INSERM, LIF), A. Osorio (LIMSI), M. Teichmann (INSERM), P. Moireau and D. Chapelle (INRIA/MACS), Jean-Christophe Olivo-Marin (Institut Pasteur), F. Rossant (ISEP), O. Gérard (Philips, GE), S. Muller (General Electric), J.F. Stevenet and S.
13.2. Main Results

Hammer (Segami), J. Wiart (FT R&D), Gareth Funka-Lea (Siemens), H. Kafrouni, C. Diaz, and A. Guimond (Dosisoft), R. Ferrand (CPO), Volcano, Fovéa, V. Miette et L. Sandrin (Echosens).

In order to address difficult problems in medical imaging related to the huge size of the data, the complexity of knowledge and information to be processed, the inter-individual variability and the potential presence of pathology, we develop approaches in which knowledge representation plays a central role. Our research focuses mainly on segmentation, recognition and longitudinal analysis of pathological images, in particular for oncology and tumoral pathologies. While the analysis of normal images for several years has led to a very good understanding of the image content in several imaging modalities, the extension to pathological case is difficult and methods relying only on shape and appearance often reach their limits. Our proposal for modeling anatomical knowledge is to make an intensive use of spatial relations (see Section 13.2.1), formalized using fuzzy mathematical morphology, ontologies and graph-based representations. Their integration in deformable models and the analysis of their stability among individuals and in case of pathologies led to robust and accurate segmentation and recognition results [2657, 2689].

Detection of tumors in MRI data has been addressed using a combination of fuzzy methods and deformable models, and was evaluated on a large data base [2679]. Recognition of the normal structures could then be addressed using the same method as for normal cases, since most spatial relations remain stable in pathological cases. We introduced more flexibility in the spatial constraints, for the relations that are prone to strong changes due to the presence of the tumors [2748]. Another approach for the segmentation of multi-modal images has been proposed, based on an extension of the multi-phase level sets model to the multi-channel case. As for the longitudinal follow-up of tumors, a new method for normalizing MRI images and a statistical analysis of difference maps have been developed, which allow designing a framework for automatic quantification of tumoral growth.

All these results have been incorporated in a graph representing both generic knowledge and information extracted from images, with the aim of enriching digital patient records [2694]. The graph representation is also exploited in a web application dedicated to medical teaching, developed in collaboration with D. Hasboun.

Our work on pathologies does not only focus on brain imaging. In thoracic oncology, we have improved our previous non-linear registration methods with a new formalism for constraining the deformations of the pathologies during the registration, while preserving a continuous deformation field (project with Segami) [2653]. Moreover, a breathing model developed at the University of Central Florida was integrated in the registration, thus guaranteeing physiological consistent deformations [2688]. A new project was initiated with Dosisoft (within the “Pôle de compétitivité” MEDICEN) on the segmentation of CT and PET images for radiotherapy applications.

In mammography, our collaboration with General Electric has led to one of the first methods for micro-calcification and mass detection on data obtained with new 3D digital mammography techniques. Recently, new methods for denoising such images and for detecting convergence areas using an a contrario method have been proposed.

In the context of a collaboration with Columbia University (New York, USA), several projects were carried out focusing on the processing of 3D real-time ultrasound data for the characterization of cardiac function (one NIH project, collaborations with Philips Healthcare and Siemens). Dedicated speckle-tracking algorithms and real-time deformable models formulated with active graph functions [2833], in prolate spheroidal coordinates, have lead to novel methods for extraction of myocardial surfaces and tracking of myocardial points. Extensive clinical studies on dog experiments [2636] have been performed to precisely assess the accuracy of local myocardial deformation quantification on ultrasound data. In addition, we also have an on-going collaboration with INSERM LIF group, focusing on the segmentation and quantification of cine and delayed-enhancement MR images, leading to quantitative results on myocardial infarct transmurality and on the estimation of regional mean transition times and radial velocities [2666]. In vascular imaging, a collaboration with Siemens Corporate Research (Princeton, USA) led to the development of several novel methods for the tracking and segmentation of coronaries in high
13. Image Processing and Interpretation (TII) 13.2. Main Results

Resolution CT images, using morphological image filtering and tracking with minimal paths and particle filters. Very accurate results have been obtained on an publicly available data base. A collaborative project with Columbia University and Volcano had focused on the exploitation of multiscale texture-based brushlet analysis for the decomposition of intra-vascular ultrasound (IVUS) data and the extraction of coronary arteries lumen borders.

Regarding the modeling of the human body, which concerned mainly adult and children head until now [2707], a new direction was taken and focuses on fetus modeling, based on MRI and US data (in collaboration with Saint Vincent de Paul Hospital and France Telecom R&D). A variational segmentation method has been developed for 3D US data, taking into account the statistical distributions of maternal and fetal tissues. In MRI, the segmentation is based on anatomical knowledge, driving a graph-cut segmentation. Meshed models are then derived from the segmentation using recent geometry processing methods derived from mesh-based computer graphics techniques and embedded in a synthetic woman body. Preliminary results on dosimetry simulations show that the local and the whole body specific absorption rates are lower in the fetus than in the mother and that they depend on position and morphology but not on gestational age. A common lab with France Telecom R&D (Orange Labs) is currently being launched on this topic.

Recently, a collaboration with ISEP and the XV-XX Hospital was initiated on the analysis of OCT and adaptive optics images of the retina, which led to the development of an automated method for segmenting all layers of the retina. The proposed method was a basis for a preliminary quantitative study of variation of the morphology of foveal and perifoveal layers within a population of healthy subjects.

Finally, a new research axis has been initiated recently, in collaboration with Institut Pasteur, on biological imaging, for tracking and compressed sensing applications. Original multiple hypotheses tracking methods have been proposed, by joint estimation of kinetic and image models [2805, 2806], and CS-based denoising and acquisition protocols have been designed for improved image quality with reduced acquisition times, in the context of fluorescence imaging [2903].

13.2.5 CoC

Faculty M. Campedel, M. Datcu, H. Maître, S. Rital, M. Roux, T. Tanzi.

The joint CNES-DLR-Télécom ParisTech competence center (CoC) was created in June 2005. Its research activities focus on information extraction and image content understanding, for both satellite and optical images (Télécom ParisTech), and SAR images (DLR). It regularly involves about five permanent researchers and 10 PhD candidates. Both theoretical [2684, 2685, 2674] and applied researches are carried out and deal with image indexing and their usage. The images are characterized by their large size, with an important semantical variety of scenes, and their huge number (the Pleiade satellites will send 450 images per day with a 70cm/pixel resolution in 2010!). It becomes urgent to develop (semi)-automatic methods for rapidly accessing the contents of these images. Our current research directions allow us to describe the image content in terms of colorimetry, geometry, texture, and semantics, by using learning methods or pattern detection from which semantical objects are derived (river or road networks, buildings). The learning can be performed either interactively and adapted to the user (photo-interpreter) using relevance feedback, or using statistical inference methods. Finally, the CoC is involved in close collaborations with EADS and Thales, within the Infom@gic project, and with INSERM and Mondeca within the ANR DAFOE project. The latter aims at developing better knowledge representations (ontologies) for satellite images and their applications to allow reasoning on these representations, using in particular the approaches described in Section [13.2.1]. The objective is to benefit from both the "bottom-up" learning approach and the "top-down" expert reasoning one, with applications to interactive satellite image annotation.
A new research axis concerns risk assessment and management [3055, 3056], promoting the excellence of the research accomplished in the group by applying it to the management of disasters [3021]. These works concern the mapping of damages caused by disaster. The EXITER project was accomplished in collaboration with CNES as part of the international charter of risks [3064]. The EXITER project relies on the experience of the group in image analysis, knowledge extraction, classification and spatial reasoning.

13.2.6 Aerial and Satellite Imaging

Faculty A. Almansa, J.-M. Nicolas, M. Roux, F. Tupin.

In aerial imaging, we extended our previous work to the processing of 3D point sets, acquired using laser techniques. Our contributions concern the soft non-parametric registration between such data and a numerical surface model obtained from photogrammetric images, in order to compensate for attitude movements of the sensor. Another contribution deals with change detection between two point sets or a point set and a polygonal model. These works are now integrated within the TerraNumerica project (CapDigital), which aims at modeling complete urban scenes via the fusion of aerial images and data acquired at ground level. Moreover, detection of objects in aerial and satellite images is addressed using learning methods based on Adaboost. Missing learning data were successfully compensated by generating examples through image synthesis. This work is carried out in collaboration with EADS.

Concerning Synthetic Aperture Radar imagery (SAR imagery), three main axes are developed. The first one is concerned with differential interferometry and ground movement monitoring, the second one deals with high resolution SAR imagery and optical and radar data fusion, and the third one with SAR data regularization.

In SAR differential interferometry, our works focus on two applicative and methodological fields. The first axis deals with subsidence study in Mexico in collaboration with the geology laboratory of ENS [2682]. The second axis is the glacier monitoring in the framework of MEGATOR project (ANR 2004-2007), which has lead to the development of a new SAR processor (SYTER) which is well adapted to high mountains [2693]. These two axes are now fused in a new project which started in 2008 for 4 years: EFIDIR (ANR MDCO). This project groups together 7 teams with methodologists and thematicians. All space agencies will provide SAR data in the framework of this project, specially of Argentiere glacier.

High resolution SAR imagery and the fusion of SAR and optical data is an important research axis, with increased interest due to the recent launch of metric SAR sensors in 2007 and 2008. A methodology of automatic registration has been developed, as well as a joint classification with SVM. In the frame of a CIFRE PhD with Thales, a processing chain for the detection of building and estimation of their height has been proposed. Interferometric aspects and 3D reconstruction have been studied in collaboration with ONERA and in a CNES project, and polarimetric aspects during the doctoral stay of Y. Wang (2008). The developments on SAR statistics and specially the Fisher distributions have been integrated in the active grid developed by Fresnel Institut [2670]. SAR urban areas have also been studied through a simulator of wave propagation.
The last axis deals with SAR data regularization. It is a recent research axis based on the development of two families of approaches: Markovian methods coupled with graph-cut optimization and non-local means. General contributions have been brought: first a fast graph-cut based algorithm for optimization of vectorial data have been developed [2664]; secondly, a probabilistic patch-based method has been proposed, which is able to deal with any kind of noise. These works have been applied to the regularization of amplitude data and interferometric data [2663], specially in the frame of a CNES project and a collaboration of Naples University [2669].

Other specific themes of SAR imagery have been developed. On change detection a collaboration has started with CEA in 2008. In the frame of a collaboration with Télécom Sud Paris in 2007, a classification coupling Fisher distributions and triplet Markov fields has been proposed. Improvements of previous works on road detection have been done in the frame of a collaboration with University of Pavie [2691] [2651]. A PhD on SAR data compression in relation with DGA has been led. Micro-Doppler have also been studied in a collaboration with ONERA [2672].

In general, the team has developed an expertise on TerraSAR-X data through its participation to different projects, and specially on urban area processing [2671]. Moreover, its competence in coherent imagery (in particular on temporal approach [3069]) is used for sonar imagery (project with Telecom Bretagne) and in ultrasound imagery (PhD with SuperSonic Imagine).

13.3 References

13.3.1 ACL: Articles in ISI-Indexed Journals

13.3. References

13. Image Processing and Interpretation (TII) 13.3. References

13.3. References

13.3.2 ACLN: Articles in Other Refereed Journals

13.3.3 INV: Invited Talks

13.3.4 ACTI: Articles in Proceedings of International Conferences

250
13.3. References

13.3. References

[2789] F. Cellier and E. Colin. Building height estimation using fine analysis of altimetric mixtures in layover areas on

[2820] M. Datcu, M. Soccorsi, D. Solimini, and F. Del Frate. Rate distortion theory method for eo data assessment and

13.3. References

13. Image Processing and Interpretation (TII)

13.3. References

13.3. References

T. J. Tanzt. ITS, the issues: sharing and using information. In The 5th International Conference on ITS Telecommunications, "le Quartz" Congress Center, Brest - FRANCE, June 2005.

C. Tison, F. Tupin, and H. Maître. A Markovian scheme for joint retrieval of classification and height map from urban interferometric SAR images. In IEEE Int. Conf. on Image Processing (ICIP'05), Genova (Italy), September 2005.

T. Tung and F. Schmitt. Shrec'08 entry: Shape retrieval of noisy watertight models using amr. In IEEE International Conference on Shape Modeling and Applications - SMI'08, Stony Brook University, NY, USA, June 2008.

F. Tupin. Fusion of interferometric and optical data for 3D reconstruction. In IGARSS'06, Denver, USA, August 2006.

F. Tupin and F. Galland. 3D information extraction by score optimization between SAR and optical data. In EUSAR 2006, Dresde, Allemagne, May 2006.

13.3.5 ACTN: Articles in Proceedings of French Conferences

[3010] A. Kermi, I. Bloch, and M. Tayeb-Laskri. Recalage non rigide utilisant des déformations de forme libre (ffd) pour...

13.3.6 COM: Talks in Conferences Which Do Not Publish Proceedings

13.3.7 OS: Books and Book Chapters

261

13.3.8 AP-P: Patents

13.3.9 AP-R: Selected Technical Reports and Preprints

263