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Abstract

Image interpretation methods use primarily the visual features of low-level or high-level
interest elements. However, spatial information concerning the relative positioning of
these elements is equally beneficial, as it has been shown previously in segmentation and
structure recognition. Therefore, an interest for the integration of spatial information in
the learning framework has emerged recently. The fact that spatial information is often
perceived and expressed in a manner which is close to natural language, along with the
fact that the absence of a spatial interaction is also relevant, hint at the usefulness of fuzzy
spatial information for image representation. Fuzzy representations actually permit to
assess at the same time the imprecision degree of a relation (e.g., “close to” or “to the left
of”) and the gradual transition between the satisfiability and the non-satisfiability of a
relation. Among the solutions used to adapt image data to algorithm inputs, we adopt
a representation structure which encodes explicitly image parts and spatial interactions
in a graphical model.

The objective of this work is to explore techniques of spatial information representa-
tion and their integration in the learning process, within the context of image classifiers
that make use of graph kernels. We motivate our choice of labeled graphs for repre-
senting images, in the context of learning with SVM classifiers. Graph kernels have
been studied intensively in computational chemistry and the study of biologic systems,
and an adaptation for image related graphs is necessary, since image structures and
properties of the information encoded in the labeling are fundamentally different. We
illustrate the integration of spatial information within the image graphical model by
considering fuzzy adjacency measures between interest elements (regions), and we de-
fine a family of graph representations determined by different thresholds applied to
these spatial measures. Finally, we employ multiple kernel learning methods in order to
build up classifiers that can take into account different graphical representations of the
same image at once. The results show that spatial information complements the visual
features of distinctive elements in images and that adapting the discriminative kernel
functions for the fuzzy spatial representations is beneficial in terms of performance.
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Résumé long en francais

Introduction

Le sujet principal de cette thése est I’apprentissage de données structurées pour l'inter-
prétation d’images, avec la prise en compte des interactions spatiales qui ont lieu entre
les éléments détectés dans les images.

Contexte d’application

L’'intérét pour ce sujet dans le domaine du traitement d’images porte sur le fait que
les méthodes de représentation de données et d’apprentissage classiques ne prennent
pas naturellement en compte les images. La plupart des méthodes de classification
s’appuient en premier lieu sur les attributs des objets d’intérét dans les images. Cepen-
dant, les informations spatiales liées aux relations entre ces objets sont également utiles,
comme cela a été montré en segmentation et reconnaissance de structures dans les
images, et leur intégration dans des méthodes d’apprentissage et de classification com-
mence a apparaitre et évoluer. Le fait que cesinformations soient souvent exprimées sous
forme linguistique, et que "absence d"une relation puisse constituer également une in-
formation utile pour la classification, suggere 1"utilité des relations spatiales floues pour
la modélisation d’images. En effet les modélisations floues permettent de représenter a
la fois I'imprécision de la relation (par exemple proche ou a gauche) et le passage graduel
de la satisfaction a la non satisfaction de cette relation.

Un deuxieme point d’intérét concernant l'intégration du raisonnement spatial est
le fait que l'information spatiale implique la manipulation de concepts qui dépassent
un niveau visuel rudimentaire. Les méthodes utilisant I'information spatiale doivent
ainsi faire face a la divergence entre la perception humaine et la vision artificielle de bas
niveau, un phénomeéne généralement appelé le fossé sémantique.

Finalement, les approches structurées en interprétation d’images imposent1'utilisation
de données complexes sous la forme d’arbres ou de graphes, et le probleme du compro-
mis entre la richesse de la représentation et les performances en termes de complexité
computationnelle est toujours d’actualité.



Travaux et contributions

La thése explore des méthodes proposées en apprentissage supervisé pour apprendre a
partir de données structurées, en particulier des graphes d’attributs flous relationnels.
Les nceuds représentent par exemple des objets que ’on cherche a segmenter dans des
images ou a classifier, et les arcs modélisent une ou plusieurs relations spatiales (adja-
cence, distance, direction relative, topologie, ...). Dans ce contexte, et en particulier pour
les applications en interprétation d’images et en raisonnement spatial, de nombreuses
sources d'imprécision doivent étre prises en compte : sur les objets, a cause de leurs
limites imprécises et des éventuelles difficultés a les segmenter, sur les relations (typ-
iquement la relation “proche de” est intrinsequement vague et dépend du contexte et de
I’échelle des objets), et sur les connaissances manipulées, souvent exprimées sous forme
linguistique. Ces structures modélisent par exemple les informations issues de 1’analyse
d’une image médicale, comme la nature des composantes (structures anatomiques,
pathologies, etc.), les propriétés de ces composantes, les relations spatiales, les degrés
de confiance en toutes ces informations.

Si de nombreux travaux ont porté sur la modélisation des connaissances floues et
sur les structures de graphes, il n’existe pas de formalisme établi pour l'apprentissage
de données a la fois structurées et floues. C’est la que se situe la contribution essentielle
de la these.

Les machines a vecteurs support (SVM) sont des méthodes récentes d’apprentissage
supervisé qui sont pertinentes pour cette problématique. Le travail de recherche porte
sur I’adaptation de cette méthode performante de classification a la structure des entrées,
a l'aide des mesures de similarité entre les graphes, appelées des fonctions noyau,
qui garantissent, par leurs propriétés spécifiques, la convergence et la tractabilité de
l'algorithme de classification.

Le schéma général de la méthode proposée est illustré sur la figure 6.1. Une étape
de pré-traitement est nécessaire, afin d’identifier des zones d’intérét dans 1'image et de
calculer des attributs numériques associés aux caractéristiques visuelles locales, telles
que la couleur ou la texture. Ce pré-traitement peut étre réalisé :

e de facon completement automatique par un algorithme de segmentation (hiérar-
chique),

e de facon supervisée par un utilisateur qui facilite le choix de parametres d'un
algorithme de segmentation pour un certain type d’images,

e par une segmentation manuelle.

La structure du graphe de modélisation est enrichie et des attributs structurels
représentant des relations spatiales telles que 1’adjacence sont ajoutés. Ces relations
sont modélisés sous forme floue. Si de tels modeles ont été assez largement utilisés pour
la reconnaissance de structures dans les images, ils ne ’'ont pas encore été en apprentis-
sage, ce qui constitue donc une des originalités de notre approche. Des fonctions noyau
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bien adaptées sont définies pour chaque type d’attribut, et ensuite des algorithmes con-
nus en littérature sous le nom de Multiple Kernel Learning(MKL) sont employés pour que
la machine SVM utilisée fasse un usage simultané optimal de toutes les informations
visuelles et spatiales encodées dans la structure du graphe. Dans les paragraphes suiv-
ants, j'essaierai de décrire et motiver brievement les choix essentiels qui ont été faits
pour la réalisation de ce schéma d’interprétation d’images.

En ce qui concerne les attributs visuels extraits, on prend en compte des caractéris-
tiques de couleur, forme et texture qui sont utilisées dans la plupart des méthodes
d’interprétation d’images et qui sont tres souvent aussi déterminantes pour 1'étape de
pré-traitement, et de détection des zones d’intérét. Ensuite, I’ajout d’arcs comportant
plus qu'une information implicite d’adjacence entre les zones d’intérét nous permet donc
non seulement de mieux décrire les informations structurelles, mais aussi d’améliorer
la robustesse de la représentation. Le graphe généré ne sera donc plus un graphe
d’adjacence classique.

Dans les travaux effectués, nous proposons donc une autre caractéristique, topologique,
qui estime un degré d’adjacence entre deux régions. Parmi les méthodes possibles, nous
estimons le degré d’adjacence entre deux régions en mesurant la corrélation entre la por-
tion de I'espace “proche” de la premiére région dite de référence et la deuxiéme. Cette
mesure est maximale lorsque la région de référence est imbriquée dans la région cible et
elle est nulle si les deux régions sont trop éloignées. Une valeur moyenne implique que
deux régions se trouvent a proximité au moins dans une sous-partie de leur voisinage
immédiat dans I'image. Les représentations floues sont particulierement appropriées
pour modéliser I'imprécision de plusieurs relations spatiales telles que “proche”. De
cette maniere, toute estimation floue d’une relation spatiale peut étre intégrée facilement
au modeéle graphique.

Une difficulté a surmonter dans le traitement d'un modéle graphique avec un éti-
quetage complexe vient du fait qu’a la base, la fonction noyau pour les graphes prend
en compte une paire (attribut de région; relation spatiale) a la fois, alors qu'une bonne
discrimination est nécessairement obtenue a partir de 1’ensemble des informations en-
codées dans le graphe. L'intérét de I'appel aux méthodes d’apprentissage multiple est
d’obtenir une seule fonction noyau et donc un seul classifieur a partir de caractéris-
tiques hétérogenes. Nous avons intégré plusieurs méthodes récentes d’optimisation
convexe pour l'apprentissage multiple, et nous avons entamé un travail pour adapter
mieux l’algorithme d’apprentissage multiple au probléme particulier de 'apprentissage
a partir des images.

Apprentissage statistique et données structurées

Dans le cadre de l'apprentissage artificiel, les méthodes statistiques supervisées ont
jusqu’a présent donné lieu a des algorithmes permettant de traiter des données d’entrée
sous forme de vecteurs ou de séquences et de prédire des sorties sous la forme de valeurs
réelles ou de catégories. Aujourd’hui, de nombreuses données ont une représentation
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complexe sous la forme d’arbres, de graphes ou de données relationnelles, particuliére-
ment dans les sciences du vivant mais aussi dans le traitement des images, les modéles
de raisonnement, etc. De méme, on voit apparaitre de nouvelles taches d’apprentissage
qui nécessitent d’extraire, a partir de données, des relations ou des dépendances struc-
turelles. Ces besoins permettent d’envisager l’apparition de méthodes d’apprentissage
pour des taches plus complexes et souvent liées a I’analyse de données de grand volume,
issues de l'informatique médicale, de la biologie, du langage naturel, etc.

Dans le cadre de ce travail, notre attention porte particulierement sur les algorithmes
capables de gérer 'apprentissage sur ces modeles qui ont été créés et optimisés dans le
contexte des applications bioinformatiques. Une adaptation pour I'apprentissage des
graphes issus des images est nécessaire, car les propriétés des informations codées dans
la structure graphique représentant une image sont fondamentalement différentes de
celles utilisées en bioinformatique.

En effet, il y a une incompatibilité intrinseque entre l'entrée des méthodes d’apprentissage
classiques et les données structurées issues des images. Plutdt que d’essayer de mod-
ifier les algorithmes classiques, il est possible de chercher dans la direction opposée et
d’adapter les données afin de modifier la complexité structurelle tout en préservant les
caractéristiques qui permettent d’affecter les données a différentes classes. C’est le type
d’approches développées en bio-informatique pour la classification des molécules par
exemple.

Dans une représentation des données complexes par des graphes, les nceuds représen-
tent par exemple des atomes (Tsuda et al, 2002; Kashima et al, 2003) ou des structures
atomiques simples (Mahé et al, 2006), des protéines (Borgwardt and Kriegel, 2007), des
objets que 1’on cherche a segmenter dans des images ou a classifier (Aldea et al, 2007;
Harchaoui and Bach, 2007), et les arétes modélisent des interactions spécifiques, des re-
lations d’ordonnancement et de dépendence, des relations spatiales (adjacence, distance,
localisation relative, topologie, ...). Dans ce contexte, et en particulier pour les appli-
cations en interprétation d’images et en raisonnement spatial, de nombreuses sources
d’imprécision doivent étre prises en compte : sur les objets, a cause de leurs limites
imprécises et des éventuelles difficultés a les segmenter, sur les relations et sur les con-
naissances manipulées, souvent exprimées sous forme linguistique. L'étiquetage des
graphes nous permet de synthétiser les connaissances sur la nature et les propriétés des
composantes du graphe, mais aussi le degré de confiance en toutes ces informations.

Le deuxiéme chapitre du manuscrit représente une courte partie introductive au
concept fondamental de I’apprentissage statistique (2.1), et plus précisément a la théorie
des séparateurs a vaste marge (2.2.3). Une partie essentielle du travail effectué se
situe autour des fonctions noyau (2.21, 2.3) utilisées dans la théorie des SVM pour
projeter les donneés a classifier dans des espaces de Hilbert H, habituellement de grandes
dimensions, ou une classification linéaire est possible:

min {(w,w)+C Z & 1)
i=1

wel,beR,EERM
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Vi(w, Ox)y+b)>1-¢&;, &>0, i=1,...,n

Les noyaux de graphes Dans le cadre le plus général, les données d’entrée sont
représentées par des graphes orientés, dont la structure interne est définie par :

e un ensemble de nceuds étiquetés V = {xy, ..., x}
e un ensemble d’arétes étiquetées &

e une fonction d’étiquetage de nceuds v: V — §,

¢ une fonction d’étiquetage d’arétese: & — S,

Le choix des fonctions d’étiquetage est étroitement lié aux propriétés des entités qui
sont modélisées par les graphes. Dans une premiere étape, on peut considérer que
I'ensemble d’étiquetage de nceuds est fini, et qu’il n'y a pas d’étiquetage d’arétes.

La similarité entre graphes est définie par une méthode a noyaux et permet de
construire un classifieur dans un espace de caractérisiques H. Cette similarité entre
deux graphes G et G’ est évaluée par une fonction noyau de graphes de type noyau
marginalisé (2.7) qui s’appuie sur les occurrences des sous-structures identiques des
graphes. Les sous-structures considérées sont des marches aléatoires h = (x4, ..., x,) de
longueur || = n, o1 (x;, xi41) € E. L'idée de 'approche (Kashima et al, 2003) est de définir
une distribution de probabilité sur 'ensemble de marches aléatoires possibles (2.36) et
d’estimer la similarité de graphes par la somme des similarités de tous les marches
aléatoires possibles dans les deux graphes, pondérée par la probabilité d’apparition de
ces marches :

KG,G) =) Y pGp(IG) @)

h Ih=h

Parrapporta d’autres contextes dans lesquels ce type de méthode a été utilisé (Mahé et al,
2004), eninterprétation d'images I'espace d’étiquetage devient continu et multi-dimensionnel,
et constitue une part prédominante de l'information. Par conséquent, la fonction de sim-
ilarité pour des attributs a valeurs continues doit étre moins discriminante que le noyau
de Dirac classiquement utilisé en bio-informatique. En conséquence nous utilisons des

noyaux gaussiens de variance o pour évaluer la similarité k, / (a1,a,) entre deux valeurs
a1 et a; d’un attribut numérique a :

3)

R
K (a1,a2) = exp (_—Ila12 032” )

ou bien d’autres fonctions noyau adaptées aux différents attributs, mais dont1’estimation
numérique est continue.

Afin de pouvoir intégrer facilement des fonctions noyau d’attributs plus complexes,
I’amélioration majeure que 1'on propose par rapport au modele qui prend en compte
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la probabilité jointe de & et h’ seulement si i = h’ est d’intégrer les fonctions noyau
d’attributs visuels et relationnels dans un noyau de convolution (2.4), et d'intégrer
'estimation du noyau de convolution au modele probabiliste sous-jacent aux structures
des graphes.

Etant donnés deux graphes G et G’ a comparer, 1’équation 2.39 permet d’évaluer la
similarité k, (1, h’) entre deux marches aléatoires i = {xy,...,x,} dans Geth’ = {x],..., x}

dans G’, en combinant les similarités k, et k, des valeurs d’un attribut de noeuds v et
respectivement les valeurs d"un attribut d’arétes e le long de h et h":

n
Koo, 1) = ko(03, 0) | | e v 0 o0, 02) 4)
i=2
Enfin, lenoyau entre G et G’ est calculé en sommant les similarités de tous les chemins
aléatoires h et h’ possibles, pondérées par leurs probabilités d’apparition :

Kool G, G) = ) ) kuellt, W )p(HIG)p(H'IG) (5)
h W

Du point de vue numérique, la solution que 1’on propose afin d’éviter une augmen-
tation en complexité due a la prise en compte de la fonction k,.(h, ') est de pénaliser
les probabilités jointes d’apparition des marches h’'h’ par I'estimation de similarité de
marches :

m5(x, x') = pe(0ps () X
(6)

(1, X))o, X5)) = pf (xalxr)py” (1) x X

ou I, I'T; décrivent une structure auxiliaire, appelée graphe produit (2.35), qui permet
de calculer K, (G, G’) de maniére analytique. Cette fonction est ensuite utilisée dans un
séparateur a vaste marge (SVM) pour construire un classifieur d’images. K, définit une
matrice de similarité entre les paires de graphes a comparer.

Du point de vue algorithmique, cette approche pour l'intégration d'un étiquetage
complexe dans le calcul de noyaux de graphes présente I’avantage majeur de ne pas
augmenter l'ordre de complexité de la méthode de base (Tsuda et al, 2002) car la prise
en compte de l'étiquetage se fait en amont de l'estimation analytique du noyau de
graphes(2.46). En conséquence, la complexité de la méthode reste en O((|'V||V 1)?). Cette
complexité est liée a I'inversion de la matrice Il; qui décrit les probabilités de transition
simultanées pour deux paires de nceuds adjacents dans les graphes G, G’. Les propriétés
structurelles des modeles graphiques d’images sont différentes de celles rencontrées en
bioinformatique (surtout en ce qui concerne le degré de connexité). Cette différence et
le fait d’utiliser un étiquetage continu et des fonctions noyau d’attributs dont le support
n’est pas compact font que la matrice I'l; présente moins de valeurs nulles. Néanmoins,
nous avons montré (4.6.3) qu’on peut utiliser des schémas d’approximation numérique
pour estimer le noyau de graphe avec une précision donnée, avec un temps de calcul de
quelques ordres de grandeur inférieur aux temps demandés par I’approche analytique.
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Modeéles structurés et représentation d’images La suite de notre travail porte sur
le rapport entre les modeles de représentation d’images, le fossé sémantique et les
méthodes possibles pour relier les concepts aux descripteurs visuels.

Dans le cas particulier des images, différentes approches ont été proposées pour
la représentation. Historiquement, la premiére approche traite les images comme des
objets indivisibles et exploite des caractéristiques globales telles que 1’histogramme des
couleurs (Chapelle et al, 1999). Aujourd’hui, les représentations globales sont rem-
placées par des ensembles d’attributs et descripteurs bien localisés, tels que les points
de saillance, les caractéristiques associées aux régions, les caractéristiques spatiales, les
descripteurs locaux de forme, etc. Cela est une conséquence directe du fait que les
caractéristiques globales ne sont pas suffisamment bien adaptées pour dépasser le fossé
sémantique, alors que les caractéristiques locales permettent plus facilement d’associer
les concepts sémantiques aux parties des images.

En conséquence, une deuxiéeme stratégie considére les images comme des “sacs”
d’objets indépendants et s’appuie sur une vectorisation du contenu de l'image (Sivic and Zisserman,
2003; Dance et al, 2004; Sivic et al, 2005). Enfin, une derniere catégorie de méthodes
s’appuient sur une représentation de'image comme un ensemble structuré d’objets (Fei-Fei et al,
2003; Carbonetto et al, 2004; Bar Hillel et al, 2005; Carbonetto et al,2008; Bar Hillel and Weinshall,
2008), faisant apparaitre explicitement les constituants de 1'image et leurs relations.

Ce type de représentation fondée sur des sous-parties est caractérisé par un compro-
mis entre ’exploitation de caractéristiques visuelles tres localisées et abondantes dans
un “sac de mots visuels” sans tenir compte des interactions spatiales, et le modele de
constellation (Weber et al, 2000; Fergus et al, 2003; Lazebnik et al, 2004). Les modéles
fondés exclusivement sur les sacs de mots doivent traiter le probléme d’inclusion pen-
dant la partie d’apprentissage de caractéristiques qui n’appartiennent pas aux objets
d’intérét, en I'absence d’informations spatiales. Les modeles de constellations, qui sont
plus proches de la facon humaine de construire des représentations avec des contraintes
géométriques mutuelles entre les parties des objets, sont en général complexes du point
de vue computationnel. L’approche proposée dans le cadre de notre travail entre dans
cette catégorie qui unit les représentations granulaires, sémantiquement pauvres, et les
représentations de haut niveau du point de vue sémantique.

L'extraction du graphe Notre méthode d’interprétation d’images s’appuie sur des
représentations sous la forme de modéles graphiques. Nous avons choisi d’utiliser
comme sous-parties de 'image a analyser des régions issues d"une segmentation manuelle
ou bien automatique, ce qui fait qu’on obtient dans une premiere étape des graphes
d’adjacence de régions, en considérant comme relation spatiale 1’adjacence stricte entre
régions.

Les graphes d’adjacence de régions sont utilisés depuis longtemps en traitement
d’images et surtout depuis le développement des algorithmes de segmentation, mais
principalement pour la reconnaissance de formes par mise en correspondance. Les diffi-
cultés majeures liées al"utilisation de graphes d’adjacence de régions pour l’apprentissage
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(a) Image initiale (b) Segmentation directe (c) Régions fusionnées

Figure 1: Segmentation d"une mammographie

automatique sont dues principalement a la complexité computationnelle et a la variabil-
ité structurelle des graphes en fonction du pré-traitement. La solution proposée pour la
premiére source de difficulté est I'utilisation de la fonction noyau de graphes présentée
antérieurement. Dans la section 4.5 on présente plus en détail les choix possibles pour
ce qui peut constituer une région dans l’approche par régions et les descripteurs visuels
qui sont couramment utilisés pour extraire 1'information associée a une région. En 4.6.1
on présente une solution simple pour I’extraction automatique de régions de type fusion
hiérarchique qui a néanmoins I'avantage de ne pas ajouter une complexité substantielle
par rapport a I’étape de sur-segmentation par ligne de partage des eaux, et qui s’adapte
automatiquement a la dynamique de 1'image (figure 1).

Apprentissage sur les graphes d’adjacence de régions Une premiere validation pour
cette approche catégorisation par apprentissage discriminatif sur les graphes d’adjacence
de régions a été effectuée sur une base d’images constituée de mammographies (vue
sagittale) et de radiographies de la téte, dont le protocole d’acquisition intra-classe n’est
pas identique. La méthode est évidemment applicable aux images quelconques, avec la
mention que la difficulté variable de 1’étape de pré-traitement par segmentation et donc
d’extraction de graphes peut imposer l’adaptation de I'algorithme de segmentation non
supervisée présenté auparavant. Dans le graphe, les régions correspondent donc aux
neceuds, et les arétes encodent la relation d’adjacence stricte. En plus de l'information
spatiale encodée par la structure du graphe, nous intégrons dans l'étiquetage des nceuds
I'information intrinséque correspondant aux propriétés visuelles des régions.

La similarité entre les graphes est estimée donc a l'aide d’une fonction noyau de
graphes employée dans un classifieur SVM. Dans la section 3.2, nous avons montré
comment le calcul de similarité de graphes se réduit a la définition de fonctions noyau
pour les étiquettes qui annotent les nceuds et éventuellement les arétes. Pour des valeurs
scalaires, les noyaux gaussiens représentent un choix naturel parmi d’autres fonctions
noyau (2.3,4.6.2), en général stationnaires. En ce qui concerne les histogrammes, des dis-
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tances adaptées existent dans la littérature (Levina and Bickel, 2001; Arivazhagan et al,
2006) et la “kernelisation” (4.12) nous permet d’obtenir des fonctions noyau véritables a
partir de ces distances.

Pour l'instant, les arétes ne sont pas prises en compte au-dela de leur importance
structurelle implicite ; on considére donc que l'étiquetage spatial est uniforme et on
exploite surtout I'étiquetage visuel des nceuds. Pour cette premiére application, nous
avons particuliérement analysé deux descripteurs qui s’adaptent bien a la dynamique
de I'image: la surface relative et le niveau de gris relatif. Dans une premiere étape, nous
avons comparé les performances des noyaux gaussiens et triangulaires. Les résultats
(table 4.1) valident notre approche et montrent que le noyau gaussien reste plus robuste
que le noyau triangulaire, malgré un colit computationnel légerement plus élevé.

Catégorisation et plusieurs descripteurs La formulation typique du noyau marginal-
isé (section 3.2) impose l'utilisation d’une paire (K,, K,) dans la construction de la fonc-
tion. Le résultat immédiat est qu’on s’appuie sur un descripteur de nceuds et un
descripteur spatial, et la similarité de graphes repose en conséquence sur ces deux at-
tributs. Dans le cas général d'un ensemble de descripteurs F = {fy,..., f,} associé a un
constituant du graphe, la fonction noyau peut étre modifiée afin de prendre en compte
plusieurs ou tous les éléments de F. La facon la plus directe d’accomplir cette tache est
de construire une combinaison linéaire de noyaux de base:

IF|

Kr =) AiK; )
i=1

ou les facteurs s A; > 0 ont la propriété ), A; = 1. Dans ce cas, la somme pondérée de
fonctions définies positives garde cette propriété essentielle pour I’optimisation réalisée
par l'algorithme SVM.

Dans une deuxiéme étape, nous avons construit une combinaison linéaire fondée
sur les deux attributs s, et gray,,, afin d’estimer la performance de catégorisation
par rapport aux facteurs des deux fonctions noyau de base. Dans les expériences,
I'importance d’un des attributs est augmentée progressivement de 0 a 1, au détriment
del’autre. Le résultat illustré en figure 4.10 montre que les performances sont améliorées
pour la fonction noyau principale, méme avec seulement deux attributs visuels et un
étiquetage spatial minimal, assuré par l'information d’adjacence stricte.

Conclusions Dans cette partie du travail, on introduit les principaux problemes ren-
contrés en interprétation d’images a partir du contenu, et les approches fondamentales
utilisées afin de dépasser ces difficultés. Nous avons motivé le choix de 1'utilisation d"un
modele graphique d’adjacence de régions comme un bon point de départ pour le com-
promis entre les modeles “sac-de-mots” et les modéles de constellations. Nous avons
présenté une version du noyau marginalisé de graphes qui est une extension naturelle
du celui utilisé en bioinformatique et qui permet I'interprétation de graphes comportant
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un étiquetage plus riche. Nous avons employé cette fonction noyau pour une tache
d’apprentissage d’images, dont le pré-traitement a été effectué par un algorithme de
segmentation et fusion hiérarchique générique et non supervisé. Les résultats obtenus
valident cette approche d’apprentissage et soulignent également 'intérét de la sélection
et combinaison automatique d’attributs pertinents, ainsi que l'intérét pour I'intégration
d’une information spatiale plus riche.

Relations spatiales dans le contexte d’apprentissage de graphes

Le contexte spatial a été intégré avec succes en bioinformatique, pour la représenta-
tion par graphes de données complexes. Avec peu d’exceptions (Mahé et al, 2006), les
relations spatiales utilisées sont de type binaire et modélisent de facon tres exacte la
présence ou l'absence d"une interaction entre les constituants de la structure globale.
Dans ce cadre particulier, la construction du graphe complémentaire G de la représenta-
tion (Borgwardt and Kriegel, 2007), qui code les absences d’interactions, et 1'utilisation
de cette information supplémentaire pour améliorer la fonction noyau du classifieur
sont non-ambigués et facilement réalisables (section 5.1.2):

K'(G,G) = K(G,G') + K(G, &) (8)

En ce qui concerne l'extraction de l'information spatiale a partir des images, la
situation devient plus complexe. Les interactions spatiales ont une variabilité liée a
lI'interprétation sémantique humaine qui se situe bien au-dela du cas binaire mentionné
ci-dessus. De plus, I'intégration de l'information spatiale floue et des attributs de régions
s’avere aussi plus complexe que dans les situations traitées par I’équation (8). Toutefois,
ces relations spatiales apportent une grande richesse dans la description des images.
Cela a été largement montré dans des problémes de segmentation et reconnaissance de
structures dans les images. Ici nous montrons comment utiliser ces informations en
apprentissage et classification.

Tout d’abord, les interactions spatiales présentent une variabilité sémantique qui
va au-dela du modeéle binaire utilisé auparavant. Cette situation est vraie pour les
interactions spatiales complexes comme “entouré par”, “le long de” etc., de méme que
pour les relations spatiales les plus simples comme “a c6té de” ou “proche de”. En plus,
une représentation binaire n’est pas adaptée pour le type d’entrée typique fourni par les
étapes de pré-traitement comme la segmentation en régions. En effet, lorsque I’adjacence
ne dépend que de quelques pixels, le graphe obtenu pourra étre différent en fonction de la
méthode de segmentation utilisée. L'ajout d’arétes comportant plus qu'une information
implicite d’adjacence nous permet donc non seulement de mieux décrire les informations
structurelles, mais aussi d’améliorer la robustesse de la représentation.

En ce qui concerne la représentation d’images et les relations spatiales floues (sections
5.2,5.3), nous avons choisi de prendre en compte les relations topologiques entre deux
objets, qui sont fondées sur les notions d’intersection, intérieur, extérieur (Dubois and Prade,
1980; Bloch et al, 1997; Hudelot et al, 2008).
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Figure 2: Défaut de robustesse de 1’adjacence : différents résultats de segmentation
probables pour quatre régions. (a) Toutes les régions sont adjacentes deux a deux. (b)
Les régions 1 et 4 ne sont plus adjacentes. (c) Les régions 2 et 3 ont fusionné, les régions
1 et 4 ne sont plus adjacentes.

Dans la suite de notre travail, on propose 1'utilisation d’autres relations spatiales
donnant une information structurelle. Comme application, on prendra en compte la
notion de distance, ainsi que celle de position directionnelle relative. Plus précisément,
pour notre application, nous utiliserons une relation spatiale topologique représentée
par un degré d’adjacence étendu. Notons que le cadre méthodologique proposé permet
I'integration d’autres relations spatiales également.

Distance entre régions. La distance entre deux régions R; et R, est calculée comme le
minimum des distances euclidiennes entre deux points p; € R et g; € Ry:

d(R1,Ry) = min  (deuctidean(Pis q;)) )

piERl,qj'GRz

La distance, ainsi que l'orientation ne donnent pas toujours une information perti-
nente et robuste; par exemple, la distance entre deux régions est identique pour une
adjacence stricte d"un seul pixel et pour une région qui est completement entourée par
la deuxieme. En conséquence, nous proposons la prise en compte d'une caractéristique
topologique qui estime la longueur de I’adjacence entre deux régions.

Mesures d’adjacence fondées sur une comparaison floue. Nous estimons le degré
d’adjacence entre deux régions en mesurant la corrélation entre la portion de I'espace
“proche” (Bloch, 2005) de la premiere région dite de référence et la deuxiéme. Cette
mesure est maximale lorsque la région de référence est imbriquée dans la région cible.
Elle est nulle si les deux régions sont trop éloignées. Une valeur moyenne implique
que deux régions sont adjacentes pour au moins la moitié du contour de la région de
référence.

Les représentations floues sont appropriées pour modéliser 'imprécision intrinseque
de plusieurs relations telles que “proche”. Ici, nous considérons la formulation proposée
dans Bloch (2005) : étant donné un objet de référence, la portion del’espace dans laquelle
la relation a cet objet est satisfaite est définie comme un ensemble flou spatial, dont la
fonction d’appartenance en chaque point donne le degré de satisfaction de la relation
en ce point. Cette représentation dans ’espace de 1'image est propice a sa combinaison
avec d’autres informations de type image.
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La relation spatiale “proche” peut étre déduite d"un intervalle flou de forme trapé-
zoidale f sur R*. Un sous-ensemble flou (iycer,) de I'espace de I'image S est alors
construit en combinant f avec une carte de distance dgr, a l'objet de référence R; :
Vx €S, Uprocher,)(X) = f(dg,(x)), ol dg,(x) = inf g, d(x,y). Dans la figure 3 on présente
un ensemble flou (a), une image d’entrée possible (b) et une segmentation (c) et la carte
de distance pour une region (d).

d) e)

Figure 3: (a) Un sous-ensemble flou pour la relation de distance. (b) Image d’entrée.
(c) Un résultat de segmentation, avec quatre régions distinctes (d) Carte de distance par
rapport a la région correspondant a l'aile gauche. (e) Estimation par un sous-ensemble
flou de la relation “proche de 1'aile gauche" (la couleur rouge correspond aux valeurs
élevées). (f) Estimation par un sous-ensemble flou de la relation “proche de 'aile droite".

Parmi les mesures d’estimation possibles, on considére comme critére une M-mesure
de satisfiabilité (Bouchon-Meunier et al, 1996) définie comme:
erS min([vlneur(Rl)(x)r UR, (x))
erS luHEW(RO(x)

Satk(near(Rl), Ry) = (10)
ou S représente le domaine spatial.

Cette mesure floue estime la précision de la position de 1'objet dans la région ot la
relation est satisfaite. La mesure est maximale si le deuxiéme objet couvre entierement
le noyau de pyearr,)- On rappelle que la taille de I'ensemble flou initial est adaptative et

peut étre modifiée par rapport aux caractéristiques de 1'image. Sil’objet R, est binaire,
ZXERZ .unear(Rl)(x)

cette mesure se réduit a WI

et donc représente la partie de eur,) qui est
couverte par l'objet R,.
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Il y a des cas ot une estimation légerement différente peut également convenir.
Si l'objet R, est relativement petit, la mesure floue est faible méme si 1'objet R, est
entierement compris dans le noyau de (e r,)- En conséquence, on propose de modifier
I’estimation de la maniére suivante:

erS min(ynear(Rl)(X)/ ‘uRz (X))

Sat’(near(R:), Ry) = Y ces MR, (%)

(11)

ZXERZ .um’ar(Rl ) (x)

Toujours si I'objet R, est binaire, la mesure se réduit a
Lies .“Rz(x)

, qui représente
cette fois la partie de 1’objet R, contenue dans e (r,)-

Mesure d’adjacence fondée sur la ressemblance floue En plus de la mesure de satis-
tiabilité, on choisit de prendre en compte également une mesure symétrique, M-mesure
de ressemblance (Bouchon-Meunier et al, 1996) définie comme :

erS min(luﬂeﬂf(&)(x)l HR, (x))

Restear(Ry), fa) = Yves MaX(thnear(ry) (X), iR, (¥))

Cette mesure représente le rapport entre la cardinalité de l'intersection de L ear(r,) €t
URr,, et la cardinalité de leur union. Elle est maximale si 1’objet et la relation sont iden-
tiques: elle consideére le positionnement de l’objet ainsi que la précision de 1'ensemble
flou.

Dans la figure 3(e) et la figure 3(f), nous avons illustré les sous-ensembles flous
correspondant aux deux ailes. Avec la premiére mesure de satisfiabilité présentée, on
obtient une estimation de 0,1 pour “aile droite proche de l'aile gauche" et de 0,109
pour “aile gauche proche de l'aile droite". L'exemple montre aussi l'intérét de ces
estimations d’adjacence floue pour les régions qui sont déconnectées par rapport a la
relation d’adjacence stricte.

Position relative directionnelle. Nousavons choisiici de représenter cette information
en utilisant des histogrammes d’angles (Miyajima and Ralescu, 1994). Cela nous permet
de représenter toutes les directions possibles entre deux régions. Si R; et R, sont deux
ensembles de points Ry = {p1, ..., pu} et R, = {q1, ..., 4.}, la position relative directionnelle
entre les régions R; et R, est estimée a partir de la position de chaque point g; de R, par
rapport a chaque point p; de R;. L'histogramme d’angles Hg,r, est défini en 2D par :

—
Hriz,(0) = [{(pi,q;) € Ry X Ro/ 2 (1, i) = 6)

- - —>
ou / (i,piq;) représente I'angle entre un vecteur de référence i et le vecteur p;q;.
L’extension a trois dimensions est une fonction de deux angles. Un exemple est illustré
tigure 4.

Afin d’obtenir une valeur réelle, nous calculons le centre de gravité de1’histogramme.
Le calcul de I'histogramme d’angles étant cotiteux en termes de temps de calculs, nous
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Figure 4: Histogramme d’angles entre les régions 1 et 2. Le centre de gravité est
représenté par une ligne verticale.

pouvons étre amenés a travailler avec des images réduites, ce qui affecte peu le calcul
du centre de gravité.

Danslereste du travail, on considere que R représente une de ces mesures d’adjacence
floues, mais on souligne que R peut étre substituée par toute autre estimation de
I'interaction spatiale entre les sous-parties d’une image, comme par exemple “paral-
lele a” ou “le long de” (Vanegas et al, 2009; Takemura et al, 2005), si ces relations sont
bien adaptées pour le contenu de I'image concernée.

Information spatiale floue et modeles discriminatifs

L’apprentissage discriminatif, et également celui concernant les graphes, s’appuie forte-
ment sur les estimations de similarité entre les objets d’entrée, de telle maniere que la
similarité entre deux graphes augmente si les graphes présentent de nombreuses struc-
tures similaires. Dans l’étiquetage spatial flou, la similarité fréquente entre des étiquettes
qui correspondent a des estimations faibles masque la contribution des estimations fortes
qui encodent l'information spatiale essentielle. Comme résultat, la fonction noyau de
graphe sur-estime la mesure de similarité globale et diminue sa capacité de discrimina-
tion (section 5.5).

Une solution a ce probleme est d’enlever des arétes en seuillant les valeurs des rela-
tions spatiales, pour qu'une aréte apparaisse seulement si ’estimation de la relation est
supérieure a un certain seuil 0. Cette opération fait apparaitre une structure graphique
qui dépend de 0 et qu’on appelle par la suite O-graphe:

Définition (0-graphe). Considérons une partition en régions d'une image I et une relation
spatiale R. Par V(I) on note I"ensemble des nceuds correspondant aux régions de I. Un 0-graphe
Gy est défini par:

Go = {V(I); (v1,02) € VA(D)IR(v1,v2) > O} (12)

ot R(v1,vy) est la relation spatiale générique entre les régions (nceuds) v, et vy.
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De cette maniére, on peut associer a chaque paire (I,R) un ensemble infini de
représentations graphiques G = {Gglgso. En réalité, la taille de cet ensemble est finie et

4 IVOI-AVOI-1)
bornée par ——————.

Projection de G, dans G Puisque G, n’appartient pas nécessairement a I'ensemble G
de 0-graphes, et étant donné I'importance perceptuelle du graphe de segmentation, une
question pertinente serait : “Quelle est la projection la plus pertinente et robuste G du
graphe de segmentation G, dans la famille G?”. Une distance structurelle qui est adaptée
pour estimer la disparité entre G, etles graphes de G estla distance d’édition (Riesen et al,
2007) :

Définition (Distance d’édition de graphes). Considérons G = (V,E) la source et G’ =
(V', &) le graphe destination. La distance d'édition entre G et G’ est définie par:

6(G,G) = min Z¢(v)

LREl(G,G)

oit'ensemble de chemins d’édition T'(G, G’) contient toutes les séquences finies possibles d’opérations
élémentaires qui transforment G en G'.

Dans la suite de notre travail, nous avons proposé un ensemble d’opérations élémen-
taires et de cofits associés qui nous permettent de calculer avec un effort computationnel
réduit (section 5.5.2) la projection de G, dans G pour une image et une relation spatiale
données:

8(Ga Go) = card{(vi;v2) € V*(G,)l(v1,02) € E(G,) A R(v1, ) < 6}
+ card{(v1;v2) € VH(Go)l(v1,v2) & E(Ga) A R(v1,v2) > 6} (13)

Expériences

Labase d’images IBSR' contient des données cliniques réelles et est couramment utilisée
en tant que base d’images par résonance magnétique (IRM) de cerveaux sains en trois
dimensions. Elle contient les segmentations de 18 cerveaux, réalisées manuellement par
un expert, et chacune est disponible selon trois plans de coupe (ou vues) différents :
axial, coronal et sagittal. Chaque élément de la base de données est un ensemble de
coupes qui couvre le cerveau dans son ensemble.

Cette base de données est principalement utilisée comme un moyen d’évaluer les
performances d’algorithmes de segmentation, mais la qualité des segmentations pro-
posées et le fait qu’elle soit disponible gratuitement la rend utile pour nos expériences.
La plupart des attributs proposés réussissent a classifier les images de deux vues dif-
férentes avec 100% de réussite. En conséquence, nous devons construire une base plus

nternet Brain Segmentation Repository, disponible sur http://www.cma.mgh.harvard.edu/ibsr/
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difficile a classifier, et nous avons donc tenté de classifier des images provenant de la
méme vue. Chaque élément de la base d"une vue va fournir trois coupes successives
pour la premiere classe, puis trois autres coupes successives pour la seconde. Le tableau
1 recense les indices des coupes utilisées dans chacune des trois vues pour définir les
classes. Concernant la construction et l’étiquetage du graphe, les nceuds représentent les
régions segmentées manuellement et les arétes modélisent les relations spatiales entre
les régions. Pour I'étiquetage des nceuds, nous utilisons des attributs visuels normalisés
(niveau de gris, surface, compacité de la région),alors que les relations spatiales fondées
sur les mesures d’adjacence floues introduites auparavant fournissent 1'étiquetage des
arétes, respectivement. Nous effectuons des validations croisées sur les données ainsi
construites(n = 10), et chaque expérience d’apprentissage est répétée m fois (m = 10); les
taux de performance présentés représentent chaque fois la moyenne de ces m exécutions.

(©)
(k) @

Figure 5: Exemples d’images provenant de labase IBSR. Les niveaux de gris représentent

M )

des étiquettes. A gauche, en haut et en bas : deux coupes provenant d’une vue sagittale
duméme volume IRM 3D et appartenant a chacune des classes. Aucentre : vue coronale.
a droite : vue axiale.

Vue ‘ Nb coupes ‘ Classe 1 ‘ Classe 2
A 255 121,122,123 | 126, 127,128
C 128 58,59, 60 64, 65, 66
S 255 121,122,123 | 126, 127,128

Table 1: Recensement des coupes composant les bases de données des volumes 3D pour chaque
vue : axiale (A), sagittale (S) et coronale (C).
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Catégorisation et structures d’adjacence stricte G, Pour un attribut de régions et une
relation spatiale donnés, on construit le graphe d’adjacence stricte G, avec l'inclusion
de l'information spatiale numérique dans 1'étiquetage d’arétes, et nous utilisons des
noyaux gaussiens pour les attributs dans le cadre d"une approche de type grid-search
(figures 5.6, 5.7 et 5.8).

La nouveauté de cette approche est que le graphe d’adjacence stricte inclut dans son
étiquetage les estimations floues de 1’adjacence de régions. Toutefois, certaines régions
qui sont adjacentes strictement présentent une valeur faible de 1’adjacence floue, alors
que des régions déconnectées peuvent trés bien présenter une valeur élevée de R.

Par la suite, nous analysons 'impact de l'ajout d’information structurelle qui n’est
pas liée a l'adjacence stricte de régions. La difficulté majeure de cette opération est
liée au choix de I'élément O qui nous permet de sélectionner a partir de I'ensemble G
une représentation pour une image. Notre proposition est d"utiliser la distribution des
estimations observées sur la base d’apprentissage (table 5.2) et d’estimer pour 1’ensemble
de la base le seuil qui minimise la distance structurelle d’édition entre les graphes
d’adjacence stricte et leurs 0-graphes correspondants.

Pour la base utilisée, le seuil optimal de la mesure Sat’ est 6 = 0,934. Cette valeur
élevée montre que dans la plupart des cas les régions strictement adjacentes apportent
des valeurs qui dépassent ce seuil, ce qu'on peut également percevoir a partir de la
proportion élevée de valeurs maximales (figure 5.12. Les deux autres mesures ont un
profil différent, en pénalisant trés rapidement 'absence d'une forte adjacence (figure
5.13 and 5.14). Pour ces deux cas, les estimations de R associées a 1’adjacence stricte
sont dispersées dans un intervalle de valeurs plus faibles, et donc les seuils optimaux
sont translatés également vers l'intervalle de valeurs faibles: 6 = 0,101 pour Satk, et
0 = 0,091 pour Res.

L’ensemble des résultats des expériences effectuées pour les trois mesures d"adjacence
floue, et pour les différents modeles considérés (graphes d’adjacence stricte, graphes
d’adjacence floue) se retrouve dans les tableaux 5.3, 5.4 et 5.5. Tout d’abord, l'intérét
d’ajouter un étiquetage flou méme sur la structure du graphe d’adjacence stricte est
clairement montré dans tous les situations par le taux de catégorisation de la quatrieme
colonne par rapporta celui dela troisiéme. Ensuite, unrésultat quiressort de la compara-
isons entre les trois mesures d’adjacence est que les deux dernieres sont plus adaptées
pour un apprentissage discriminatif, puisque les estimations élevées sont bien étalées,
et la discrimination entre ces valeurs intéressantes peut se faire plus finement. Finale-
ment, cette derniére partie des résultats montre que I’on peut dépasser la représentation
structurelle fournie par le graphe d’adjacence stricte et passer aux représentations struc-
turelles floues, tout en gardant un taux de classification élevé. En pratique, 'avantage
majeur de cette derniere approche oti on passe a une structure graphique fondée unique-
ment sur les mesures d’adjacence floue est qu’on peut utiliser un espace de recherche
des différents parametres des fonctions noyau plus réduit (un grid-search plus rapide)
pour atteindre le méme ordre de performance.
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Conclusion Dans cette partie de notre travail nous avons estimé les avantages four-
nis par les représentations d’images par graphes, ainsi qu’en prenant en compte des
descripteurs flous pour I'information spatiale. Les modéles graphiques permettent une
intégration souple des descripteurs visuels associés aux différentes parties des images
et des interactions entre ces parties. Nous avons montré que l'information spatiale
est pertinente pour 1'apprentissage et que 'intégration d’informations spatiales pose le
probleme de masquer I'information spatiale pertinente. Une solution qu’on propose afin
de filtrer I'information non essentielle est d’enlever une partie des arétes en s’appuyant
sur des seuils adaptés aux propriétés des relations considérées. Les résultats montrent
que l'information spatiale floue est bénéfique pour l'apprentissage d’images dans un
contexte SVM et que la stratégie de seuillage proposée peut filtrer I'information spatiale
non discriminative.

Fusion d’attributs

Nous présentons maintenant comment différents attributs sont combinés dans le noyau
de graphes. La méthode de fusion décrite est générale, et sera appliquée dans la suite
aux trois descripteurs de structure introduits dans la partie précédente ainsi qu’a des
attributs de régions.

L'intérét de la fusion est de fournir un seul noyau pour la classification a partir de
caractéristiques hétérogenes, telles que les attributs considérés. A partir d"un ensemble
d’apprentissage et des graphes associés, la premiere étape est de construire les matrices
des noyaux de base {K,,, ..., K,,} correspondant a chaque attribut 4;. Chacune d’entre
elles, calculée selon I'équation 5, ne représente qu'une vue partielle des données. La
classification d’images fondée sur une seule vue n’est en général pas performante car
une bonne discrimination ne peut pas étre obtenue a partir d"un seul attribut. La fusion
des informations apportées par chaque noyau est alors nécessaire. La maniere la plus
simple de combiner les noyaux est d’en faire une combinaison linéaire (équation 7) qui
permet une compensation entre différents points de vue sur les données, et améliore
ainsi la souplesse de la classification.

Une méthode d’obtention du vecteur de poids optimal A a été proposée dans Lanckriet et al
(2004a). Elle considere le cone convexe P des matrices symétriques et définies positives:

P={XeR"|X=X"X>0}
Sur ce cone, le probleme dual du SVM est optimisé globalement :

- T, T
Ae{&{&pg&gg@& e—a D(y) K D(y)a (14)

sous la contrainte :

n
C>a=0, trace(K) =¢c, K= MKy, aTy =0,
i y
i=1
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ou m désigne la taille de la base d’apprentissage, e € R” le vecteur dont les éléments
sont tous égaux a 1, et D(y) € R™ X R" la matrice dont les éléments sont nuls sauf
sur la diagonale ot ils prennent les étiquettes (+1 ou -1) des exemples d’apprentissage
(DW)ii = yi)-

Dans ce probleme d’optimisation, C représente le parameétre définissant la marge
du SVM et ¢ > 0 définit la trace de la matrice résultante. L'intérét de cette méthode
est qu’elle minimise la fonction de cotit du classifieur en termes a la fois de frontieres
entre classes et des parameétres A;. Le résultat est un ensemble de poids et une fonction
discriminante séparant les classes, combinant I'information de plusieurs noyaux.

L’inconvénient de cette formulation est que le passage a 1’échelle est difficile a cause
du fait que dans le systeme primal correspondant la régularisation est faite pour une
norme mixte (I-I;), a la place de la norme classique ;. Plus récemment, une méthode
qui resout le probleme d’apprentissage multiple dans un systeme d’optimisation faisant
intervenir une régularisation par norme I, a été proposée (Rakotomamonjy et al, 2007):

. 1
min, ) I +ch;51-, (15)

Ak froSisb p

?/i[ka(Xi)+bJZl—gi,z/\kzllgizo,/\kzo
k k

ol fi € 7 est le RKHS associé a la fonction K.

Pour chaque noyau d’attribut visuel, nous construisons un noyau de graphe qui
permet de mesurer la similarité entre graphes a partir de ce seul attribut. Certaines
caractéristiques sont plus discriminantes que d’autres pour certaines données. La fu-
sion permet alors de construire une fonction de décision exploitant 'hétérogénéité des
attributs et qui pondere 'importance de chacun en fonction de sa pertinence pour la
classification, via les parametres estimés A;. Cette fusion permet d’améliorer les per-
formances de la classification dans le cas ott aucun attribut ne permet seul une bonne
classification (ce qui est généralement le cas).

Expériences Les avantages de cette derniére étape d’apprentissage sont illustrés ex-
périmentalement dans les tableaux 6.1, 6.2 and 6.3 qui présentent les performances pour
l'algorithme d’apprentissage multiple pour les trois vues de la base de données.

Dans la plupart des cas, les résultats montrent I’amélioration de la performance par
rapport aux taux de catégorisation initiaux, et donc l'intérét d’utiliser cette méthode
non supervisée de sélection d’attributs pour 'apprentissage appliqué aux images. Dans
la projection sagittale, les fonctions noyau sélectionnées par 1’apprentissage multiple
ont de bonnes performances, et leur combinaison améliore encore ces performances. Un
comportement fréquent est la sélection de fonctions noyau différentes qui s’appuient sur
le méme attribut visuel, ce qui représente une amélioration fondamentale par rapport
aux approches grid-search classiques, ott un seul choix des parametres des fonctions
noyau nous est imposé. Le noyau multiple ne peut pas garantir dans tous les cas une
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minimisation stricte de I’erreur par rapport aux composantes (par exemple tableau 6.1)
mais son intérét vient du fait qu’en pratique on peut sélectionner un sous-ensemble de
descripteurs pertinents et qu’on arrive a obtenir une bonne performance collective si les
informations qu’ils apportent sont pertinentes et complémentaires.

Conclusion et perspectives

Le but du travail présenté dans ce document est de proposer un cadre général et
modulaire pour l'interprétation d’images fondé sur des représentations structurées et
l'intégration d’informations spatiales floues. Méme si nous avons choisi d’illustrer notre
méthode en utilisant des applications médicales, la méthode n’est pas fondamentale-
ment liée & un type spécifique d’images d’entrée. L’aspect modulaire de notre méthode
réside dans la polyvalence du modéle graphique sous-jacent, qui assure I'indépendance
entre les points d’intérét que nous avons choisis de représenter en tant que sommets, et
les relations spatiales que nous choisissons pour les associer aux arétes.

Dans le cadre de cette solution pour la représentation d’images, nous avons com-
mencé notre travail en présentant un noyau graphique marginalisé qui étend celui utilisé
en biologie computationnelle, et qui permet 'interprétation des modeles graphiques ex-
traits a partir d’images. Nous avons appliqué cette approche pour une tache simple de
catégorisation, dont la partie d’extraction est fondée sur une méthode de segmentation
générique. Les résultats obtenus valident notre approche et soulignent 1'intérét de pren-
dre en compte des information spatiales plus riches que 1’adjacence stricte, ainsi que de
construire un classifieur hétérogéne a partir de caractéristiques extraites.

Ensuite, nous avons proposé l'utilisation d’un ensemble de descripteurs spatiaux
flous qui sont liés aux relations topologiques entre les régions et nous avons étudié les
avantages offerts par les représentations qui utilisent ce type d'information supplémen-
taire. Nous avons montré que la compréhension de la répartition de I'information de ces
descripteurs est importante pour une meilleure intégration avec le reste du modele et
que l'ajout d’information spatiale, qui implique des changements dans la structure des
représentations, peut influencer dans une large mesure la performance de I'algorithme
d’apprentissage. Nous avons également présenté une approche qui peut étre utilisée
pour ces type de modeles graphiques, afin de sélectionner automatiquement et de fu-
sionner, parmi un ensemble de caractéristiques visuelles et spatiales, I'information qui
donne la meilleure performance discriminative dans un contexte spécifique.

La direction adoptée par ces travaux estjustifiée parl’écart existant entre 'importance
de l'information spatiale dans l'interprétation d’images, et sa faible présence dans les
modeles proposés dans la littérature. La méthode que nous proposons est modulaire
et adaptable, et méme si les traitements sont moins rapides que dans les méthodes
typiques “sacs de mots”, le cotit que 'on dépense dans I’augmentation de la complexité
structurelle n’est pas prohibitif. En outre, un avantage potentiel de cette méthode est que
les calculs critiques de similarité demandés par le classificateur peuvent étre exécutés
en paralléle, ce qui la rend adaptée a des environnements de calcul distribué.
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Dans le contexte de I'apprentissage structurel pour l'interprétation des images, une
lacune majeure des machines a vecteurs de support, liée a la compréhension du mo-
dele discriminatif appris, est en partie atténuée par 'apprentissage multiple de noyaux
différents. L'utilisation de la sortie MKL nous permet de mieux comprendre les fonc-
tions qui sont efficaces et les corrélations entre les différentes vues des données qui sont
discriminatoires.

La difficulté principale que nous avons clairement identifiée pour notre méthode
est ’obligation de fournir une entrée visuelle structurée qui soit appropriée pour une
interprétation de haut niveau. Le défaut de le faire a deux conséquences négatives. Tout
d’abord, en présence d’erreurs de pré-traitement, les structures graphiques d’entrée sont
généralement plus grandes que nécessaire (ex. sursegmentation), avec une conséquence
négative sur les temps de calcul. Deuxiemement, si les noceuds des graphe ne sont pas
véritablement associés aux points clés des images, notre méthode a une utilité limitée.

Perspectives De nombreuses perspectives sont mises en évidence par notre travail,
puisque chaque partie de notre cadre d’apprentissage peut étre améliorée et étendue
de facon indépendante. Il existe cependant quelques directions majeures qui sont sans
doute tres intéressantes a explorer.

Une perspective prometteuse est liée aux caractéristiques des points d'intérét qui sont
associés aux noeuds. La nature des points d’intérét est théoriquement contrainte par les
limites de la méthode de calcul (une complexité polynomiale relativement élevée par
rapportaunombre de nceuds). Cependant, la complexité sémantique des points d'intérét
détermine directement le niveau sémantique de la méthode d’apprentissage. Dans le
cas des régions, le niveau sémantique est plus élevé que dans le cas des approches “sacs
de mots”, mais le principal inconvénient est que la qualité de la partie de pré-traitement
(dans ce cas, la segmentation d'image) doit étre élevée aussi. D’autre descripteurs fondés
sur les régions, notamment ceux liés aux mécanismes de pré-attention, sont moins
complexes sémantiquement et robustes par rapport au pré-traitement. Ces descripteurs
ont déja été employés pour la modélisation, mais le principal défi serait probablement
de déterminer ceux qui sont les mieux adaptés pour I'apprentissage discriminatif, tout
en gardant la taille du modéle graphique assez petite pour que les temps de calcul
soient raisonnables. Dans ce cas, une perspective supplémentaire est représentée par
des relations spatiales floues adaptées a d’autres types de points d’intérét.

Une autre perspective intéressante est liée a la formalisation du gain d’information
pour les relations spatiales floues. Pour les mesures d’adjacence floue, nous avons mon-
tré que l'information d’adjacence peut prendre des valeurs plus ou moins informatives,
et la distribution de ces valeurs utiles est corrélée a la signification de chaque relation
spatiale. La prise en compte de la distribution pour les modéles graphiques qui représen-
tent des données spécifiques permet a I'algorithme d’apprentissage de s’appuyer plus
sur le concept sémantique qui est derriere la relation spatiale.

Certes, un cadre de raisonnement en utilisant des points clés fondés sur les régions qui
sont liés par des relations spatiales complexes présente un grand potentiel d’inférence
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avec des concepts sémantiques, mais il est naturellement sensible a la qualité structurelle
des données d’entrée. Une perspective prometteuse est d’associer cette méthode avec
un traitement de bas niveau dans le but de “fermer la boucle” et de permettre aux deux
parties d’effectuer itérativement les taches de traitement et d’interprétation de fagon
mutuellement bénéfique.
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Chapter 1

Introduction

In machine learning, supervised statistical methods have been related to the develop-
ment and the progress of reliable algorithms that cope very well with numerical inputs
such as N-dimensional arrays, and perform various predictive tasks, such as classifica-
tion or regression.

Improved usability, technological breakthroughs and other various factors have
metamorphosed computers and digital devices, and reinforced their presence in our
everyday activities and in most, if not all, of the scientific domains. Often, we become
aware that our data processing algorithms are overwhelmed and do not cope with new
types of information, issued from these activities or domains. Complex inputs that
we can not convert into the usual array representations emerge from natural sciences
(biology, chemistry), social sciences (linguistics, psychology, sociology), health sciences,
engineering, etc., in the form of trees, graphs or hypergraphs. The fundamental property
that distinguishes these representations is the presence of structure, in the form of parts
and relations between/among parts.

The objective of this work is to extend novel methods that have been recently pro-
posed in supervised learning for structured data represented as graphs, and to take into
account fuzzy relations. Typically, graph vertices represent basic entities which present
specific features, and graph edges encode relations between these basic entities. These
relations might point to a physical interaction in a chemical representation, or to a de-
pendency in a compilation diagram. Reasoning in a fuzzy framework means that we can
associate a degree of confidence to a specific relation or feature. This formalism is espe-
cially beneficial for representations related to domains where uncertainty or vagueness
has to be taken into account: signal processing, natural language processing, robotics,
etc. Even though a lot of research has been devoted to finding appropriate represen-
tations of knowledge under uncertainty assumptions, there is no defined formalism
for learning structured data representations which incorporate fuzzy information. The
main contribution of this work is to propose an approach for including fuzzy relations
into structured data learning.
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Figure 1.1: A pair of images that we use in order to illustrate some fundamental issues
in image processing.

A motivating example One of the domains which has benefited most from the fuzzy
formalism has been image processing. In graphical models, vertices represent visual
entities and edges encode spatial relations between entities such as adjacency, distance,
relative positioning, etc. Spatial imprecision between entities is generated by the linguis-
tic vagueness of the spatial concepts, by the morphological variability of the underlying
structures being represented, and also by the shortcomings imposed by the preprocess-
ing algorithms that extract the visual entities from the image. The fuzzy formalism is
adapted for addressing these imprecisions and is known to improve the robustness of
visual representations.

We mention some open problems in image processing using as illustration the pair
of images in Figure 1.1:

1. Where are the objects located in these images?

2. Does each image represent a single object, an arbitrary scene devoid of any meaning, or a
semantic concept?

3. If appropriate, do the images represent the same class of objects/the same semantic concept?
4. If appropriate, do the images represent the same object (class instance)?

5. If appropriate, what is the most accurate class model that may be built using these two
objects?
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All these problems are more or less related, and any learning algorithm attempting
to approach them would greatly benefit from an adapted representation of spatial in-
formation depicting the image content. Even for special types of visual data, such as
medical or satellite images, that may benefit easier from prior knowledge in the form
of atlases, reference models or ontologies for example, interpretation algorithms must
cope with imprecision and uncertainty. Structure, as well as part features, represents a
valuable source of information that may be employed with very effective results.

Our interest focuses on discriminative learning for image categorization. This particu-
lar task consists in labeling an input image into one of some predefined categories, and
has proved to be a difficult task in computer vision. It addresses directly the last three
problems depicted above. Image categorization can also help at solving the first two
problems, and at the same time benefit from effective solutions that address the first two
problems.

Related work Existing approaches in image interpretation are very heterogeneous, a
fact which is related to the difficulty of the underlying tasks and to the diversity of image
types.

Probabilistic frameworks are well adapted to the variability of the visual features
of interest points in the image. In the absence of spatial reasoning, these frameworks
endow learning algorithms with the ability to cope with uncertainty at low level or high
level, to some extent. The difference between various methods is defined, among other
things, by the approach taken in order to take into account spatial information. In some
approaches (which are nowadays rarely used due to their obvious limitations), spatial
information may be completely discarded, the image being effectively vectorized. In
other approaches, local low-level features are clustered, thus adding to the resulting vec-
torial image representation an implicit structural information. Finally, some approaches
use explicit structural representations such as graphs, trees, ontologies, that are either
inferred from examples or given by prior knowledge, but models are more or less rigid
and since they do not tolerate well variability, they are usually appropriate only for
specific types of images.

Our objectives In a first step, our objective is to adapt discriminative machine learn-
ing methods that are used for learning structured data represented as graphs in other
domains , and to estimate the applicability of these methods on graphical models of
images where we take into account simple topological spatial information such as strict
pixel adjacency of image parts. We are interested in creating labeled graphical models
that are structurally similar to the underlying images, and that embed relevant image
part features into the corresponding graph vertices. Under this approach, difficulties
arise from the fundamental differences in graph structural properties and vertex label-
ing between image related graphs and simpler graphical models from domains such as
computational biology or chemistry.

A subsequent step is to determine adapted fuzzy representations of topological spa-
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tial relations between image parts, in the context of discriminative supervised learning.
The major difficulty of this part of our work consists in efficiently adding this new type
of information to a graphical representation, since by adding fuzzy edges we are con-
stantly changing the representation. Therefore, this task may be rephrased as finding
the appropriate graphical model of the image that is based on fuzzy spatial relations
and that carries the optimal amount of useful information for the image interpretation
algorithm.

Finally, a challenge that must also be addressed is that different spatial relations
create different representations of the same image, and we should be able to take into
account these representations simultaneously in order to benefit from different views
of the data. In reality, the regular machine learning algorithms use different features
and relations sequentially, and afterwards we must use appropriate learning methods in
order to enhance the method performance by combining all the basic learners optimally.

The structure of the document

Chapter 2:  this chapter introduces the central concept of statistical learning, support
vector machines, the first examples of structured data, and an overview of different
kernel functions for structured data, and particularly for labeled graphs.

Chapter 3: we present some challenges that must be addressed when specific kernel
functions are extended to graphical models with more complex labeling, and we also
discuss the advantages of methods using graph kernels, as compared to methods using
subgraph matching.

Chapter 4:  this part reviews the main types of image features and representations
that are currently used in image processing, along with the most popular approaches to
image interpretation. We propose a first methodological approach to structured image
interpretation based in an original way on strict adjacency graphs and marginalized
graph kernels.

Chapter5: weintroduce the fuzzy formalism, and as an original feature of the method,
adapted measures of fuzzy adjacency between image regions. We investigate optimal
graphical representations that take into account fuzzy spatial relations and their impact
on the performance of discriminative learning algorithms, and we propose a method for
tiltering out detrimental spatial information. This is another contribution of this thesis.

Chapter 6: finally, as a last contribution, we introduce the multiple kernel learning
framework and we explore its applicability for the specific case of classifiers related to
different fuzzy spatial representations of input images.
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Chapter 7:  we present the conclusion of our work, and different perspectives.

31



32



Chapter 2

Statistical learning theory and
structured data

2.1 Introduction

Statistical learning is an important topic in machine learning, and a specific formulation
of the more general concept of learning (Simon, 1984):

“Learning denotes changes in the system that are adaptive in the sense that they
enable the system to do the same task or tasks drawn from the same population more
efficiently and more effectively the next time”

Let us start by defining the formal representation of data that statistical learning
handles. We assume that the input for a learning problem consists of a set O =
{(x1, 1), - - -, (xn, yu)} Of pairs (x;, y;) € X X Y that are used to learn a function f : X — Y.
In a statistical learning framework, we assume that the pairs in O, along with the future
pairs (x, y), are generated by the same, unknown probability P on X X Y.

In order to estimate the quality of our learner, one needs to take into account a loss
function L : X x Y X R = [0, ), L(x, y, f(x)) being smaller when the estimated response
f(x) is better. Since it is unfeasible to estimate the fitness of an estimation f(x) for a
specific pair (x, y), one considers the expected loss of f over the entire input variables
space. This is called the risk of f:

Ruep(f) = fx yL(x,y,f(X))dP(x,yF fx L L(x, y, f(x))dP(ylx)dPx (2.1)

We assume that a function f is better the smaller its risk R, p(f) is. We are therefore
interested in the quantity:

Rip= f}(rLfR Rep(f) (2.2)

which is the smallest possible risk over all possible functions. The distribution P is
unknown and therefore it is impossible to find the minimizer without additional in-
formation. In statistical learning, the set O carries this additional information, thus
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allowing us to build a function fp : X — R whose risk R p(fp) is close to the optimal
risk R p.

We can formalize the learning property of our system according to the definition
above in the following way, known as the universal consistency principle. This principle
requires that for all possible distributions P on X X Y, the functions fy, computed by the
learner satisty

Rip(fp) = R p, 1 — (2.3)

Although the requirement that Equation 2.3 holds for all P is quite strong, for certain
loss functions it has been shown that one can build such learning methods (Stone, 1977).

The universal consistency assumption does not imply anything about the speed of
convergence, however. A formalization of this issue states that for sufficiently ominous
distributions P, the average risk of any classification method may tend arbitrarily to
zero (Devroye, 1982). Nevertheless, it is possible under certain additional mild assump-
tions on P to derive uniform convergence rates (Lehmann and Casella, 2003; Rieder,
1994; Gyorfi et al, 2002).

2.2 Support Vector Machines

2.2.1 Empirical Risk Minimization and Support Vector Machines

We will now continue by introducing support vector machines (SVMs) and we will focus
on a particular type of learning problem, namely binary classification. The purpose of
binary classification being the prediction of one of two states, we can redefine the output
space by Y = {-1, 1}. Consequently, the generic classification loss function L, is defined

as:
L = {O cif fx) =y (2.4)

1, otherwise

The purpose of the learning part is to find a function f* that minimizes the estimation
of the risk (2.2), where L = L. Since the distribution P is unknown, we use the set D by
approximating the risk function by its empirical counterpart:

Rip = % Z L (xi, yi, f(x1)) (2.5)
i1

Although for a specific f, R p(f) is asymptotically converging to Ry p(f), the op-
timal learner for R, o(f) is not an approximation of the minimizer for Ry p(-). This
phenomenon, called overfitting, outputs a learner that models too closely the examples
in O and fails to perform well on future data.

Overfitting may be avoided by restricting the set # of functions f that is supposed
to hold a reasonably good learner. Under this new assumption, known as empirical risk
minimization, the risk function to minimize becomes:
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Figure 2.1: The hinge loss plot. If yf(x) > 1, the point is correctly classified and the
penalty is null. Otherwise, the loss is positive and increases linearly.

Ry by = }2} Rrp(f) (2.6)

Although extremely useful, this restriction of the class of functions f to the set #
raises two major issues. First of all, the prior information concerning the unknown
distribution P is too scarce to allow for a good identification of the set . Therefore, we
cannot bound the error

R pr —Rip (2.7)

of this restricted model with respect to the general one. This is usually avoided by
increasing the size of the set ¥ with n. The second issue is that often solving Equation
2.6 is computationally infeasible.

We continue by explaining how support vector machines are fundamentally designed
to cope with these two challenges. First of all, the classification loss L. (Equation 2.4) is
replaced by a convex approximation, namely the hinge loss (Figure 2.1):

Lpinge(y, f(x)) = max{0,1 - yf(x)}, ye{-1,1}, f(x)eR (2.8)

Since Ry, o(f) is convex in f and under the assumption that # is convex, the problem
infrer Ry, 0(f) is also convex, thus computationally feasible. The second important
property of support vector machines addresses at the same time the computational
feasibility of the learner and the variation of #. SVMs consider specific sets of functions,
denoted as reproducing kernel Hilbert spaces H, which will be introduced more thoroughly
in Section 2.3.
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2.2.2 A Geometrical Interpretation

The maximal margin (maximal distance between the border separating the two classes
and the elements of D = {(x1, y1), ..., (xn, yu)}) idea is relatively old and was employed
in the generalized portrait algorithm (Vapnik and Lerner, 1963). We assume that the input
space X is a subspace of R?, and that we have an element w € R? with ||w|, = 1, and a
real number b such that:

{(w, X)) +b>0,, Viwithy; = +1 29)

(w,x;) +b <0, Viwithy; = -1.

The intuition behind these constraints is simply that elements with the same sign
will be placed on the same side of the separation hyperplane (w, x) + b = 0. The solution
of the algorithm is the pair (wp, bp) with |[wp|l, = 1 that satisfies 2.9 and has maximal
margin. This pair generates the following classifier function:

fo(x) = sgn ({wp, x) + bp) (2.10)

The maximization problem along with the constraints 2.9 can be reorganized into the
following optimization problem:

min (w,w) subject to (2.11)
welRY beR

yikwxy+b)=1 i=1,...,n

This simple and effective algorithm (Figure 2.2a) has two major drawbacks:

e In most real classification problems, linear classifiers are not appropriate (Fig-
ure 2.2c) and/or a linear solution does not exist (Figure 2.2b).

¢ In order to avoid overfitting, some training points (possible outliers) must be
intentionally misclassified.

The intuition behind the adjustment that overcomes the first drawback is the follow-
ing: if some points are not linearly separable in a given input space, they may become so
if we project them into another space, usually a higher dimensional one. In Boser et al
(1992), input data points are mapped into a Hilbert space H known as the feature space by
a typically non-linear feature map ® : X — . Then, the portrait algorithm is applied to
the mapped data set ((P(x1), y1), .., (P(x,), ¥u)), the linear separation thus taking place
in H:

min (w,w) subject to (2.12)
wel,beR

yi{w, @)y +b) =21 i=1,...,n

For certain mappings @, the first drawback is successfully addressed (Figure 2.2d);
however, plunging the input data in a higher dimensional feature space aggravates the
second issue, caused by overfitting (Figure 2.2e).
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(a) In this firstexample, the portraitalgorithm  (b) With an extra point as outlier, the problem
performs well. can not be solved by the portrait algorithm.

(c) Even if a linear classifier exists for this (d) A better, non linear classifier for the same
second toy problem, it is quite poor. problem (RBF, ¢ = 0.4).

(e) For this last toy problem, a large C = 10°  (f) With C = 5, the classifier ignores the outlier
leads to overfitting (RBF, ¢ = 0.4). and generalizes better (RBF, 0 = 0.4).

Figure 2.2: Several binary classification examples on toy datasets and within different
contexts.
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More recent work (Cortes and Vapnik, 1995) addressed this latter issue, by intro-
ducing soft margin support vector machines. In the initial approach, the constraints
yi (w, x;) + b) > 1 imposed that each element in D would be correctly classified by
fo(x). The novelty in soft margin SVMs is the introduction of slack variables &; that relax
the initial constraints in the following way: y; (w,x;) + b) > 1 — &;. Adding the slack
variables to the objective function keeps their values relatively low, so that the initial
constraints do not become trivial. The resulting optimization problem is:

min (w,w)+C Z &i subject to (2.13)

weMH,beR,EERM —1
1=

Vi(w, Ox)y+b)>1-¢&;, &>0, i=1,...,n

where C > 0 is a fixed parameter that is used to weight the second term of objective
function against the first. The lower C is, less will the classifier penalize outliers that it
will choose to ignore in order to optimize the margin (Figure 2.2f).

2.2.3 Solving the SVM

The optimization problem 2.13 takes place in the feature space H which is often high-
dimensional, or infinite-dimensional. Therefore, we can process it by using Lagrange
multipliers & = (a1,...,a,) > 0 for the constraints y; (w, P(x;)) +b) > 1 - & and f =
(B1,---,Pu) = 0 for the constraints &; > 0:

n

Lw,b, & a,p) = % el + C }: &= Y al&—1+y@ o)+ b)| - }: pici  (214)
i=1 i=1

i=1

In order to find the optimum of 2.13, we need to minimize the Lagrangian with respect
to (w, b, &):

oL 3 - B
(b, &, a, f)=w - le Y ®(x) = 0 (2.15)
oL 3 - B
= (wb,&a, ﬁ)—; yia; =0 (2.16)
L 11,6 0 f)C 01 =0, 1= .
Using Equations 2.15 and 2.16 into 2.14, we obtain the dual problem:
n 1 n n
i— 5 o D) d(x)), 2.18
. IL ) ]Z; iy i D) B(x,) (218)

where the boxing constraint « € [0, C]" is a direct implication of 2.17.
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Once a is found using one of the many methods that were proposed in the lit-
terature (Keerthi et al, 2001; Fan et al, 2005; Chen et al, 2006), we explicit  using f; =
C-a;,Vi=1,...,n. Inorder to compute b, we use the KarushbKuhnDTucker conditions
for the non-zero Lagrange multipliers. For a certain i with 0 < a; < C the constraints
&=0and & — 1+ y;(w'®(x;) + b) = 0 hold, therefore;

b= Yi— ’(/UTCD(XZ') =VYi— Z yjajCD(x]-)TCD(xi). (219)

=1

When predicting the class of a new object x € X, we estimate the classifier response
as:

folx) = wd(x) + b = Z YD) D) + b, (2.20)
j=1

and predict the class of x depending on the sign of this function.

2.3 Kernels and Reproducing Kernel Hilbert Spaces

In the previous section we mentioned that feature maps and feature spaces are useful
tools by which the initial linear SVM approach produces non-linear decision functions.

A crucial observation is that SVMs require computing inner products (®(x), D(x’))4,
in order to estimate fp(x) for a new element x € X that we want to classify. By k(x, x") we
denote the function (®(x), P(x"))4,. Instead of defining @ then computing the necessary
inner products, we can use support vector machines with a restricted family of functions
k: XxX — R that express at the same time inner products in possibly unknown
tfeature spaces. The purpose of this section is to briefly describe the constraints on
these functions, known as kernel functions, that ensure good classifier performance and
efficient computation.

Definition 2.1. Let X be a non-empty set. A function k : X X X — K is called a kernel on X
if there exists a IK-Hilbert space H and a map ® : X — H such that for all x, x" € X we have:

k(x, x") = (D(x), D(x"))gy (2.21)
We call ® a feature map and H a feature space of k.

Definition 2.2. A function k : X Xx X — R is called positive-definite if, for all n €
Nay,...,a, € Randall x4,...,x, € X, we have:

Z Z aioz]-k(xi, X]') > 0. (222)
i=l j=1

k is said to be strictly positive definite if for mutually distinct x4, ...,x, € X equality only
holds for a; = 0,i = 1,...,n. Finally, k is called symmetric if k(x, x") = k(x’, x).
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If k is an R-valued kernel with feature map @ : X — H then k is obviously symmetric.
It is also positive definite since forn € N,ay,...,a, € Rand all x4, ..., x, € X, we have:

i i aioz]-k(xi, X]') = <Z ozi(D(xl-), oz]-(D(xj)> > 0. (223)
i=1 H

i=1 j=1

The following theorem states states that symmetry and positive definiteness are not only
neecessary for k to be a kernel, but also sufficient.

Theorem 2.1 (Symmetric, positive definite functions are kernels). A functionk : Xx X —
R is a kernel if and only if it is symmetric and positive definite.

Theorem 2.1 is very useful for checking whether a function k that we consider with
respect to a given input space X is a kernel or not. Some of the most commonly used
kernel functions are:

e linear kernel, k(x, x’) = (x, x’),

e polynomial kernel, k(x, x) = ({x, x") + 1)?,

e sigmoid kernel, k(x, x") = tanh(y{x, x')),

e Gaussian kernel, k(x, x") = exp [— e — x/|I? /202]-

The family of kernel functions exhibits a number of closure properties (Genton, 2002;
Taylor and Cristianini, 2004), amongst which the simplest are the linear combination,
the multiplication, the exponentiation etc. These properties are useful for the design of
more complex kernels that might be more adapted to particular input data.

In the following part of this section, we will try to explicit the way a kernel k deter-
mines implicitly the function space # that we use to restrict our search for an optimal
learner f.

Definition 2.3. Let X be a non-empty set and H be a IK-Hilbert space over X that consists of
functions mapping from X into K.

o A functionk : X x X — K is called a reproducing kernel of H if we have k(-, x) € H for
all x € X and the reproducing property:

f(X) = <fl k(rx»

o The space H is called a reproducing kernel Hilbert space (RKHS) over X if for all x € X
the Dirac functional 6, : H — K defined by :

6x(f):f(x)r f€7’{

is continuous.
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Theorem 2.2. Every kernel k has a unique RKHS (for which k is a reproducing kernel).

Rather than simply minimizing R} »(f) (Equation 2.5), support vector machines take
into account a supplementary regularization term that is tied to the complexity of the
function f, using a fixed A > 0:

2
inf A R , 2.24

inf 17115 + Reo(f) (2.24)
in order to reduce the danger of overfitting. The following theorem is extremely useful
for solving this optimization problem.

Theorem 2.3 (Representer theorem (Kimeldorf and Wahba, 1971)). Let L : X X Y xR —
[0, o) be a convex loss and D = {(x1, 1), ..., (X, Yn)} € (X X Y)" the input for the learning
process. Let H be a RKHS over X. Then, for all A > 0 there is a unique fp,, € H satisfying :

MiFoaly + Reotfon) = inf Al + Reo() (2.25)

Moreover, there exists « € R" such that

n

for) =Y aiklx,x),  xeX (2.26)

i=1

The main implication of this result is that the minimizer fy ) is a weighted average of
at most n functions k(x;, -). A remarkable direct consequence of the representer theorem
is the fact that fp, is contained in a known finite dimensional space, even if the space
‘H itself is substantially larger (even infinite dimensional).

If we consider a hinge loss L (Equation 2.8), we can rewrite the optimization associ-
ated to our geometrical approach of SVMs (Equation 2.13) in the following way:

1 n

s 7 2 L\ Yir fon(xi)). 227
¥ n; (% Yir From(x) (2.27)
with A = 1/(2nC). There is a major difference between Equation 2.27 and the RKHS
formulation:

inf A [|f][}, + % Y LGy fx). (2.28)
i=1

feH

In the first case, we consider a general Hilbert space H, and we search for a hyperplane
specified by (w, b), while in the second case we start with a RKHS H. However, modulo
the offset term b, the two approaches are similar on account of the following theoretical

result:
Il = inf{Ikollyg, : w € Ho with f = ¢, ()} (2.29)

where @ is the feature map associated to Hj.
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2.4 Characteristics of good kernels

We have explained so far how kernel functions implicitly create a data mapping into
a feature space (this fact being summerized by Equation 2.21). The choice of a kernel
function is therefore of outmost importance for the learning process. However, beside
positive definiteness, kernels should present some additional properties that qualify
them as good for a specific input space X.

A very important property, usually denoted as completeness, is related to @ being an
injection on its domain X. If ®(x) = O(x’) for x # x’, this implies that we are not able
to distinguish between x and x’, which may cause difficulties. In terms of the kernel
function, completeness is present if k(x, -) = k(x’, -) implies that x = x’.

Another property, known as appropriateness of the kernel, requires that elements that
are close (or similar, in the absence of a metric) in the input space X be close in the feature
space, too. Since the distance in the feature space is given by:

d(x, x’)?H = [|D(x) — (I)(x’)II(ZH = k(x, x) + k(x', x") — 2k(x, x), (2.30)

this can help us decide if a kernel is appropriate or not. For a large class of kernels, which
are called stationary and which depend only on the difference between input elements:
k(x,x") = ks(x — x’), the distance is decreasing with respect to k(x, x'):

d(x, )2, = 2ks(0x) — 2k(x, x’) = 2ks(0x) — 2ks(x — x). (2.31)

Hence, it makes sense to interpret the kernel as a similarity estimation function for
the pair (x, x’): if the similarity increases, the distance between elements decreases.

2.5 Alternatives to SVMs in machine learning

There exists a broad effort in the scientific community directed towards developing
learning algorithms for pattern recognition and data mining. The books by Duda et al
(2001) or Bishop (2007) provide a valuable insight on alternatives to support vector
machines, along with their advantages and weak points: k-nearest-neighbor meth-
ods (Fix and Hodges, 1951; Stone, 1977), logistic regression (Cox and Snell, 1989), neu-
ral networks (Bishop, 1996; Anthony and Bartlett, 1999; Vidyasagar, 2002) or boost-
ing (Schapire, 1990; Freund and Schapire, 1997). Somewhat along support vector ma-
chines, various kernel based methods have been proposed and investigated too (Cristianini and Shawe-T
2000; Scholkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004). Comparisons be-
tween all these methods is beyond the scope of our document, but some of the advantages
of SVMs that should be considered when choosing the right approach for a problem are
the predictive power, the ability to detect simple and complex dependencies, and the
robustness with respect to outliers (Steinwart and Christmann, 2009).
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2.6 Structured Data

Support vector machines can be effectively applied to all types of data that can be
embedded in a Euclidean space, typically R". However, for many machine learning
applications, input data cannot be naturally depicted using numerical array represen-
tations. This is typically the case of structured data, which will be described in this
section.

Very often, information extraction on a real world entity will output sub-entities,
relations and labels. Typical examples of real world entities include gene sequences,
lexical units, social networks, drug interactions etc. Integrating all this information
into a computer comprehensible data structure is a non-trivial task, and the choice
of a particular data structure depends on the properties of the initial entity. Strings
(Lodhi et al, 2002; Leslie et al, 2002; Vert, 2002a; Leslie and Kuang, 2003; Leslie et al,
2004), trees (Collins and Duffy, 2001; Vert, 2002b; Vishwanathan and Smola, 2002) and
graphs (Holm and Sander, 1993; Manning and Schiitze, 1999; Tsuda et al, 2002; Kashima et al,
2003; Gaertner et al, 2003) are usually used for this purpose. In the following, we will
assume that X, the input space for the learning task, is the data structure space, and not
the definition space of the real world entity that the data structure represents.

The major difficulty when learning with structured data is that input spaces X are
not endowed with a universally accepted metric. The advantage of using support vector
machines, and kernel methods in general, is that by further mapping elements in X into
a feature space using a kernel function alleviates the need of a metric in X.

Kernels for data structures are based more or less on the same idea. The structure
is decomposed into substructures (substrings, subtrees, walks etc.) that form a feature
vector, which usually has a high dimensionality. Kernels employ these feature vectors
afterwards, and ensure tractability by using efficient programming techniques. Under
these circumstances, we now can see that embedding real world entities into a Hilbertian
space comes at the cost of a gradual simplification and inherent loss of information (Fig.
2.3):

e during information extraction, we assume that relevant properties of entities are ob-
served and enclosed conveniently in the corresponding data structure. In practice,
this process may be flawed because we do not always discern the link between fea-
tures and properties, therefore we may miss important information (for example,
certain medical properties of a substance may depend of a chemical feature that is
being ignored by a simple chemical model of that substance).

e when we compute a simplified representation of a data structure, we are usually
not able to find computationally useful injections. For example, if we are ap-
proximating a graph by its set of walks (paths of adjacent vertices) of length n,
different graphs (corresponding to entities with different properties) may generate
the same set of walks. This implies that simplified representations may discard
useful information when they are not adapted to the learning problem.
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Figure 2.3: A general approach in structural classification. First, information extraction
is performed on various entities like genes, protein networks, images, lexical units,
molecules etc., and an appropriate data structure is used for each type of input. Then,
the data structure is split into simpler parts (a graph is represented by the set of pairs of
neighboring vertices). Finally, an appropriate positive definite function is used to project
these sets into a feature space where linear classification is performed. Performance is
influenced by the quality of information extraction, by the choice of substructures and
by the appropriateness of the kernel function with respect to the substructures and to
the relations among them.

e kernel properties (see Section 2.4) are also important when creating a feature space
where distance is linked to perceivable differences between input entities.

In order to build a good classifier, we must ensure that the information bottlenecks
mentioned above do not filter out data features that are essential for differentiation. In
this chapter, we will take a closer look at the simplified representation and the kernel
functions for graphical models.

44



2.7 Convolution and Marginalized Kernels

Relations in objects Let us assume that x € X is a structured object, with its compo-
nents p = {x1,...,xp} € X X...Xp. While the components p are still substructures, they
are distinctive in the sense that they form together the initial object x. This feature may
be formalized using a relation R on X; X ... X Xp X X, where R(xy, ..., xp, x) is true iff
x1,...,xp are the components of x. We define R™'(x) as {x,...,xp : R(xy,...,xp,x)}. We
say that R is finite if R™!(x) is finite for all x € X.

For example, in the space S of finite strings over a finite alphabet, we may define
R(x1, x2,x) iff x1 0 x, = x, where o stands for string concatenation. In this example,
Xy = Xy = S, and the decomposition p = {x1, x,} is not unique: |[R™!(x)| = 1 + |x|s, where
|- | and | - |s represent set size and string length, respectively.

Typically, designing a kernel for objects x endowed with a relation R resorts to using
kernels KO, ..., K® for the elements of R7!(x). While various options are available,
convolution kernels have been successfully proposed (Haussler, 1999) to address the
problem of assembling part kernels in the following way:

D
Kr(x, %) = Z HK@(xd,x;) (2.32)

{x1,...xp}eR71(x) d=1
{x/ ... xpp }ERT()

When considering a relation R, we can abbreviate this computation by Kz(x,x’) =
K® % ... % KP). The following theorem specifies under what circumstances Kg(x, x’) is a
kernel:

Theorem 2.4 (Convolution kernel (Haussler, 1999)). If KY, ..., K®) are kernels on X; X
Xy, ..., XpXXp, respectively, and R is a finite relation on X1 X. .. X Xp X X, then KD ... x KD)
is a kernel on X x X.

Although convolution kernels are general and intuitive, choosing R for a specific
application represents the main challenge of this approach. Pioneering examples of such
relations may be found in works related to language processing (Collins and Duffy, 2001;
Zelenko et al, 2003) and text classification (Lodhi et al, 2002) where strings and trees have
been frequently used as data representations.

For graph representations however, it is much more difficult to find a finite relation R
which retains enough information from the initial graph. The ideal kernel, related to the
feature space generated by subgraphs, has been proven to be intractable (Gaertner et al,
2003), therefore we must restrict this feature space and use simpler representations, based
on walks or graph subtrees (Taylor and Cristianini, 2004). Under this type of approach,
we must consider the fact that the simplified graph representation may consist in an
infinite set of substructures, thus requiring an adapted kernel, that we present below.

The Marginalized Kernel Given a generic class of objects X, we assume that the
constituents x € X are generated according to a latent variable model which consists
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of the visible variable x and of a hidden variable 0, being considered jointly in a pair
z = [0,x]. As we need a kernel K(x,x’) for the visible variables, we define first a joint
kernel K,(z, z") for the mixed pair, which is used in a marginalized kernel (Tsuda et al, 2002)
defined as the expectation of the joint kernel over all the values of the hidden variable:

K(x,x') = f p(Olx)p(0'|x")K,(z,z")d0dO’ (2.33)
0,0'c®

where O refers to the domain of the hidden variable. In a discrete setting, the value of
the marginalized kernel is estimated by:

K@, )= Y pOpO'¥)K-(z2) (2.34)

0,0'c®

The difficulties to be considered when estimating marginalized kernels are the com-
putational burden which is related to the dimension of ®, and the estimation from the
data of the probabilistic model p(0|x). Therefore, the choice of the model p(0|x) should
maximize the relevance for the specific data x € X under the tractability constraint of
K(x,x"). With respect to the properties of the function K(x, x’), as long as the joint kernel
K.(z,z') is positive semidefinite, the kernel K(x,x’) is also positive semidefinite, since
the class of positive semidefinite kernels is closed under addition and multiplication
(Genton, 2002). The kernel may also be interpreted as the inner product of the two
vectors p(0|x) and p(0’|x’).

2.8 A Direct Application to Graph Learning

2.8.1 Graphical Representations

We start this section by presenting the formal graphical representation used in statistical
learning, with one notable exception that will be important in the next chapters: we con-
sider directed graphs, and cope with undirected ones as particular cases (one indirected
edge being considered as two directed edges). In the most general setting, the input
data structure is a directed graph G, consisting of:

e a set of labeled vertices V = {xy, ..., x|}
e aset of labeled edges &

e a vertex label functionv:V — S,

e an edge label functione: & — S,

For the sake of brevity, we write v(x) by v, and e(x1, x2) by ey,x,. The sets S, and S,
are two label sets. Their choice depends of the entities that are being represented by
the graphical model. For example, in the case of chemical compounds, S, is formed of
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atom labels, while for S, different solutions are available. In a simple setting, we may
use a unique label for all edges (which is equivalent to using unlabeled edges), but this
may cause issues with certain isomers (Fig. 2.4). Therefore, the choice of these label sets
is closely related to the properties of input entities. In a first step, we assume however
that label sets are finite.

H.l | _H 0 0]
Ho zC~y H =G HO HO
C Co H H_/ \ _H
L S~ H G CJ OH CH,OH
H H |_|/ C_/ H \C—C/ H 2
H S~y W1 IH OH OH
H H a-D-Fructofuranose B-D-Fructofuranose
(a) Structural isomers. (b) Stereoisomerism.

Figure 2.4: Unlabeled edges are adequate for the purpose of modeling structural isomers.
For stereoisomers, chemical bond types and spatial information have to be taken into
account in edge labels.

A walk in a directed graph G = (V,&) consists in a sequence of graph vertices
h = (x,...,x,)oflength || = n, such that (x;, x;11) € &. Graph walks are the substructures
that will be used in order to obtain a simplified representation of graphs.

Another useful tool that we employ is the product graph (Imrich and Klavzar, 2000)
of two input graphs.

Definition 2.4 (Product graph). The product graph G* of the two input graphs G and G’ is
determined by the following vertex and edge sets:

VX ={(x1,%) €V XV|0v, =0}
& = {((x1, %)), (x2, %)) € V4 (2.35)
(x1,%2) € EA (X}, X5) € E Ay, = ey

The fundamental property of the product graph is that an edge in G* corresponds
to two identically labeled source vertices, edges and destination vertices in G and G/,
respectively.

2.8.2 A Marginalized Kernel Based On Random Walks

We present now in brief a probabilistic construction (Kashima et al, 2003) that allows
the use of marginalized kernels on labeled graphs, when finite label sets S, and S,
have relatively small sizes. The main concept used here is the random walk, i.e. a
finite length walk which represents the realisation of a random variable in the space of
possible finite walks in a graph. If we refer to the formal definition of a marginalized
kernel (Section 2.7), the input graph G represents the visible variable, and the random
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walk h represents the hidden variable. In order to estimate a graph kernel, we need
to define a probability distribution p(h|G)for the hidden variable, along with the joint
kernel K.

Let us define the probability distribution that generates the hidden variable /. The
first element of the walk is a vertex x; given by a certain probability distribution p, over
V. This step being completed, we pass into a transition phase. At each subsequent
moment, the walk may end at the current vertex x; with a fixed probability p,(x;) or it
may continue by advancing to one of the neighboring vertices x;,; with the transition
probability py(x.1]x;).

Each walk h = (xy,...,x,) of length || = n, labeled as I;, = (vy,, €x,x,, Ux,, - - -, Ux,) has
therefore an associated probability that may be expressed as:

p(hiG) = ps(er) [ [ prteeiein) (2.36)
i=2

in which p; and p; have to be chosen in order to build p(h|G) as a probability distribution
in the random walk space V* = U V" (the union of all random walk spaces of a certain
finite length 7). Referring to Section 2.7, we define the kernel for the joint pair z = [k, G]
as:

0 ,if |nl # 11|

Kile,2) = {Kh(h, Wy, if I =] (2:37)

In the equation above, Kj(h, I") represents the kernel function between two hidden
variables h and I’ which are independently generated in the two graphs to be compared,
G and G’. The constraint that || = |[I’| is necessary for the tractability of the problem.

Accordingly, the kernel (2.34) between two graphs G and G’ measures the similarity
of all the possible random walks, weighted by their probabilities of apparition. As for
the kernel K,(h, h"), we can employ a convolution kernel (Equation 2.32) by considering
the simple following relation between a walk / and its constituent parts:

R7Y(h) = {xy, (x1,%2), X2, .o, (X1, %), X}, R7U(K) € V X (E X V) (2.38)

Using two kernel functions K, : S, XS, = Rand K, : S, X S, — R for vertex and
edge labels, respectively, we can explicit the expression of the convolution kernel for
random walks:

Killt, 1) = Ko(0s,, 00) | | Kellr e e K0z, 02). (2.39)

i=2

In order to have an efficient computation for this type of graph kernel, we follow
a general family of probability functions p(h|G) that enable us to express K(G,G’) as a
matrix power series (Gaertner et al, 2003). We fix the following stochastic constraints
for p(h|G) (Equation 2.36):
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ps(v) = po(v)pg(v)

2.40
1-pg(v) ( )

pi(ulo) = = o Palulo)p,(u)

with 0 < py(x) < 1, Y po(x) = 1 and an advancing probability ), .y pa(x'|x) = 1
distributed on the outgoing edges of a vertex x: p,(x’|x) > 0 & (x,x") € &.

For most graphical models, a uniform start probability as well as a uniform advanc-
ing probabilities for each vertex are appropriate, unless specific prior knowledge can
enhance the fitness of these distributions.Usually, there is no reason to prefer a certain
vertex as start point, or to prefer certain transitions to the detriment of others, therefore
we use the following;:

1 ].
o) = Pl = e El

In terms of py, p,, p,, the expression of p(h|G) (Equation 2.36) can be rewritten as:

(2.41)

p(RIG) = po(er) [T (1 = py(xin)) paleibri) | o), 122
(2.42)

p(hlG) = po(x1)py(x1), n=1

Although this form is more explicit, the form in Equation 2.36 is preferred for computa-
tional reasons. A direct consequence of this choice for py, p,, p; is that p(h|G) will define
a valid probability distribution on V*: } ;.- p(h|G) = 1.

As mentioned above, we assume that the label sets S,, S, have a small number of
elements. This situation arises for example in biological sequence (Tsuda et al, 2002) or
chemical compound classification problems (Mahé et al, 2004), where this kernel model
originated. Therefore, an appropriate kernel for assessing vertex or edge label similarity
is the Kronecker delta function:

1,ifz=t
Ks(z, t) = (243)
0,ifz#t

Based on the constraints 2.40, computing the marginalized kernel K(G, G’) is tractable
because its value can be rewritten as an infinite matrix power series. In order to explicit
K(G,G’), we have to consider the product graph G* of the two input graphs G and G'.
We rely upon two variables, the first one IT; = ((15(X, X')) v)exy” 15 @ [VV'| vector
containing the joint start probabilities of two vertices x € V and x’ € V' if they have the
same label, and 0 otherwise. The second variable needed for the kernel computation
[Ty = ((70((x1, x)I(x2, x;))))(xl,x;),(xz,xg)evm/’ is a (|V|V'))? square matrix whose elements
assess the joint transition probability between two pairs of vertices belonging to the first
and to the second graph, if and only if these vertex pairs and the corresponding edge
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Figure 2.5: A basic example of labeled graph inference: each vertex has an associated
feature label. In this example, the first two graphs are intuitively more alike, but the
third one is closer to the second than to the first one. However, with a different relation
being considered between vertices (which would imply a different localization of the
edges), the second graph could become more similar to the third one.

pair are identically labeled (otherwise the probability is null):

ms(x, x') = ps (0)ps (')
(2.44)
1 ((x1, )| (02, x5)) = p&(xalxn)pf (x51x))

In G*, Il; and II; represent exactly the array of vertex start probabilities and the
full matrix of transition probabilities. The building strategy of G* implies there is a
bijection between identically labeled walks in the initial graphs G and G’, and possible
walks in the product graph G*. Furthermore, the probability distributions in Equation
2.40 correspond in G* exactly to the functions presented in Equation 2.44. In this way,
multiplying probabilities associated only to identical walks in G and G’ in order to
estimate Equation 2.34 boils down to a much simpler task, that of summing all the
probabilities associated to walks in G*.

The stochastic process of random walk generation in G* which is controlled by I'l; and
I, is a Markov chain, in agreement with the independence between past transitions that
end in a vertex x and the outcome of future transitions starting from x. The probability
to get a random walk (x; 5 x,) of length (measured in number of edges) n starting in
vertex x; € G* and ending in vertex x, € G* is:

p(x; = %,|G*) = 7,(x1) X T/ (x1, x2) (2.45)
where IT}(x, x,) represents the value in the matrix I'T} which is found at the intersection

between the row corresponding to the source x;, and the column corresponding to the
destination x;.
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(a) The firstand the second graph have fourcommon (b)  The second and
random walks. There arenocommonrandomwalks the third graphs have
of length two (or more) between the first graphand only two common ran-
the third one. dom walks.

Figure 2.6: Common random walks of length two between pairs of graphs depicted in
Figure 4.5. Similarity between graphs is computed by observing similar random walks;
more common random walks account for greater similarity.

The graph kernel K(G, G’) can be rewritten in terms of this quantity:

[o¢]

KGGY=) Y plaD 0l
n=0 xq,x,€G*
= Y O = T+ TL + T8 + )1
n=0
=TI (I -T1)"'1 (2.46)

where 1 represents the vector with all its elements equal to 1.

Table 2.1: Marginalized kernel values between the graphs depicted in Figure 4.5 (p,(v) =
0.4). A higher value accounts for a higher graph similarity.

Grapha) Graphb) Graphc)
Graph 4.5a 0.0741374 0.0535117 0.0400000

Graph 4.5b 0.0535117 0.0543478 0.0427273
Graph 4.5¢  0.0400000 0.0427273 0.0543478

Due to the inversion of (I —I1;) which dominates the computation cost, the problem
has an order of complexity of O((|'V||V'|)?). There are numerical approximation meth-
ods (Barrett et al, 1994; Borgwardt et al, 2005) that are able to improve the computational
speed of the algorithm, but many of these improvements are conditioned by a low car-
dinality of S,and 8., and by a low degree of vertex connectivity. We will discuss these
methods in a subsequent chapter.
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As an illustration of this approach, we present in Figure 2.6 the possible random
walks, of length two only, between the three example graphs depicted in Figure 4.5.
Equation (2.34) is equivalent to detecting similar random walks, for all lengths, and
adding up the product of their associated probabilities. The actual marginalized kernel
values between these graphs are presented in Table 2.1. Values are in agreement with
the perception that the first two graphs are quite similar, and that the third one is closer
to the second than to the first one.
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Chapter 3

Towards More Expressiveness in Graph
Labeling

3.1 Kernel improvement on limited label set graphs

The need for a labeled graph kernel arose initially from performing specific prediction
tasks in domains like biology and chemistry. The objects to be analyzed, be it amino
acid sequences or chemical compounds, are endowed with a well defined structure and,
most importantly, their label sets are rather reduced in size. Therefore, the choice of a
strongly discriminative kernel like the one depicted in Section 2.43 and the simple use
of graph adjacency for modeling spatial adjacency were entirely justified and resulted in
state of the art performances (Tsuda et al, 2002; Kashima et al, 2003). Due to the kernel
simplicity, both conceptually and in terms of computational challenges, further work
has been done in order to make the marginalized graph kernel suitable to more complex
classification tasks.

This extension work revolved around finding efficient methods to incorporate richer
descriptive labeling of the constituent parts that form the object to classify, along with
including contextual information in this labeling.

One strategy has been to label similar components differently, based on the local
structure of the graph. This translates into incorporating relational information in ver-
tex labeling, at the cost of increasing the size of the label set S,. As paths have been
replaced with paths labeled with their environment, this has increased the relevance of
the features; the potential downfall of this approach is that the kernel might discriminate
too strongly based on the environment and, as a result, the similarity rates might drop
too drastically for similar contexts. The reliability of the kernel has been successfully
proved (Mahé et al, 2004) in a setting where the variability of the environment is in-
trinsically limited. An incremental approach has been used to study the impact on the
kernel relevance of the size of the local environment that has been taken into account.

The same study has explored another strategy to adapt the kernel, that of denying
the random walks the possibility to return, i.e. imposing x; # x,_, for some i. This



behavior, denoted tottering, does not bring new structural information concerning the
object to classify. The only walks being considered by this version of the algorithm have
the following property:

h=(x1,...,x), NVi=1,...,n-2 (3.1

This approach belongs to a wider class that alters the probability laws in Equation 2.37
according to a particular type of object or classification task. The price to pay in this
case for improving structural relevance is the creation of a larger model, if we want
to preserve the Markov property of our walk generation process. More precisely, the
transition probabilities in Equation 2.40 change to:

1=py(0)
pq(©)
for cases when w, the vertex anterior to v, exists. This more complex model allows
for an explicit definition of p,(u|v, w) = 0 if u = w, which makes returning on an edge
impossible. The drawback of taking into account the two previous states is obviously an
increase in computational complexity. We can bring this problem down to the regular
kernel computation by transforming a graph G into a form G’ in the following way:

pi(ulo, w) = Pq(11) (3.2)

e each vertex v or edge e in G becomes a vertex in G’; the label of ¢ in G’ becomes the
label of its destination in G:
V=yVué

e an edge is placed in G’ between a vertex v in G and an edge e in G originating in v,

e an edge is placed in G’ between two edges in G that do not create a loop:

E = @ )weV, (@t eE U {(u,v),@N)|u0), @1 c&E u+t)

Given the way G’ is generated from G, there is a bijection between non-tottering
random walks in G and all possible random walks in G’. This implies that computing
the necessary second order random walk kernels on the initial graphs G is equivalent to
computing regular random walk kernels on their transformed graphs G’, which accounts
for an increase in complexity from O((|(V1||(V2|)3 ) to:

O(VAIV,))’) = OV, + 11V, + &)%) (3.3)

These improvements, however, are successful in settings that still allow the sets S,
and S, to have a small size (or to have a small subset of frequently used labels) and, at
the same time, to be able to grasp, using this limited labeling, the most relevant features
of a complex object that is being modeled by the graph.

When it comes to graph representations of images, the high variability of region fea-
tures requires a rich set S, of descriptors of their geometric and photometric properties.
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Furthermore, we can equally expect the set S, to cope with complex relations or con-
straints between regions, which also increases connectivity within the graph. A higher
connectivity decreases the benefits of preventing graph tottering and does not justify the
computational burden, since the phenomenon is much less frequent. A similar situation
arises in chemical compound property prediction tasks, when the distance between two
adjacent structures may influence the overall behavior of the molecule; therefore, the
adjacency property must no longer be a binary function, but one that gives an actual
physical distance (Mahé et al, 2006).

3.2 Continuous Labels and More Complex Kernels for
Vertex and Edge Features

The original graph kernel K(G, G’) defined in Equation (2.46) is estimated by summing
the similarities of all pairs of random walks of equal length. For a certain pair of such
random walks (i, i), let us suppose that we get simultaneously to a pair of corresponding
vertices (x;, x}). At this point we analyze the next transition in each walk. If the labels
of the next two edges (ex,,, exv, ) and the labels of the next two vertices (v,,, vy, ) are
not identical, the similarity brought by these walks will be null and we start analyzing
another pair of walks. Otherwise we multiply the current similarity of the walks by
the probabilities for the two transitions occurring in each walk. This leaves us with a
probability of getting these random walks from start to end of:

plh, ') = [P?(vl) |1 ptG(vilvi—l)) : [P?'(vi) 17 @ Ivﬁ_l)) (3.4)
i=2 i=2

in which we suppose implicitely that for the walks (/, /"), the labels of all the corre-
sponding constituent parts are identical. Using a Kronecker delta function for vertex
and edge similarity, it is obvious that random walk kernels in Equation 2.39 will be also
delta functions, so the graph kernel in Equation 2.34 is reduced to the direct sum of all
the probabilities p(h, h’") above (Equation 3.4) computed for identically labeled random
walks.

This strategy works for discrete ranged kernel functions, but in the case of region
features like gray level or surface, we need a less discriminative kernel. There are many
possible solutions to this problem, depending of the type of numerical representation of
the numerical features.

The way similarity is computed between two random walks in Equation 2.39 using a
highly discriminative kernel (Equation 2.43) is not adapted to the case when the ranges
S,, S, are subspaces of a continuous space like R k>1. A sequence of similar (but
not necessarily identical) vertex and edge labels to be compared should get a similarity
value Kj,(h, h’) that is neither 0 nor 1, but some value in between. Moreover, a variation in
any of the factors Ky (vy,, vx;) or K.(ex, ,x,, exlfilx;) that form Kj(h, h") (Equation 2.39) should
entail a matching (in terms of sign) variation in Kj(h, h’). This is a consequence of the
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importance each pair of constituents (v,,, 'le{) or (ey, ,x; €x;_1x;) has in the overall similarity
of the two paths 1, 1"

Concerning positive definiteness, let us recall why it is possible to use any positive
definite kernel in the place of the delta function. Functions K, and K, integrate into the
walk kernel Kj, which is a convolution kernel, as mentioned in Section 2.8.2. There-
fore, the closure property of convolution kernels (Theorem 2.4) guarantees the positive
definiteness of Kj, and consequently of the graph kernel, if K, and K, are also positive
definite.

The next step is to integrate these values to the graph kernel computation. If we
employ in the graph kernel definition the joint probability from Equation 3.4 and we
replace the delta function K(h, ") with Equation 2.39, we obtain:

KG G =YY [Kv(vxl,vxi) H (Kelex, 1 e ) - Kolox, 0))
TR i=2

xpla) - pf () - | [ (pF b (i) (3.5)
i=2

By comparing this revised form with the previous kernel expression that was deter-
mined in Equation 2.46 using the properties of the product graph , we can determine
what has to be done in order to take into account vertex and edge kernels. More precisely,
when we label the product graph, we have to take into account not only the probability
distribution, which is related to the graph structure, but also the initial graph labels
and include them explicitly into the new labels. Incorporating these additional values to
the model requires an adjustment of the expressions of Il; and I1; in Equation 2.44: in
order to build the product graph, we will not select only the vertices having the same
label, because this would not be helpful under the continuity assumption. Rather than
doing this, we will penalize each vertex-vertex combination by a factor representing
their similarity function. The same strategy applies to the edges of the graph product:

T5(x, x') = pS (x)pS (') X
(3.6)
T((x1, X))I(x2, %5)) = pf (alxr )ps (x51x)) X X

The vertex and edge kernel functions appear in this model as probability multipliers
along transitions, which penalize paths with respect to their constituent dissimilarities.
Using the revised variables I'l; and I'l; from Equation 3.6, we can now employ the formula
2.46 to compute the revised graph kernel from Equation 3.5.

The initial case depicted in Equation 2.44 appears now clearly as a particular case
of Equation 3.6 when using a highly discriminative kernel function (Equation 2.43) for
Kv(vxi/ vxlf) and Ke(exi_lxi/ exl’._lxlf)-
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3.3 Benefits and alternative solutions in graph kernel the-
ory

In this general case of directed labeled graphs, the method presented above has some
clear advantages. Equation 3.6 makes it extremely clear to understand how structural
and label-related similarities are connected. Even though different graph kernels exist
and are especially useful for structural similarity, the random walk kernel is preferred
for labeled graphs and this method does not add to the initial complexity factor of the
random walk kernel for discrete labels.

The additional computational burden comes from estimating more complex vertex
and edge kernel functions, and from the fact that the frequency of null similarity values
between features decreases, which in turn rules out the benefits of sparsity-related
numerical improvements.

In Kashima et al (2003), an approximation of the graph kernel value is computed,
by iterating on a formula which converges to the exact value K(G,G’). Using dynamic
programming, the contribution of random walks of increasing lengths is being con-
sidered at each step. The authors need in practice approximately 20-30 iterations on
Mutag (Srinivasan et al, 1996) and PTC (Helma et al, 2001) pharmaceutical compound
datasets in order to attain convergence. This is related however to the sparsity of graph
adjacency matrices, which is uncommon when other types of data, as images, are being
represented.

3.4 Graphmatchingvs. graph kernels using random walks

Random walks and, more recently, quantum walks have already been successfully used
in pattern recognition for graph matching (Gori et al, 2005; Neuhaus and Bunke, 2005;
Emms et al, 2007). Even though graph matching presents a wide range of applicability
in image interpretation, we will try to underline the potential that a random walk graph
kernel has in certain cases.

Designing algorithms for exact and approximate graph matching is still a challenge,
as this is closely related to graph isomorphism. Random walk based strategies perform
very well on structural graphs (for instance, the result of Delaunay triangulation of
Harris corners in an image) either because they succeed in extracting a specific graph
signature, or because they succeed in efficiently pruning the search space of isomorphic
graphs. Label information is discarded, or dealt with in a particular adapted extension,
as its presence complicates the matching task.

In the case of graph kernels, label information is crucial for estimating graph simi-
larity. In Fig. 3.1 we present a simple case of two graphs with a different structure; if
the labeling is absent along the vertices and edges, the graph kernel cannot discriminate
using only the graph structure alone. The proof of this is presented below.

Lemma 3.1. In the absence of vertex and edge labels, given a random walk kernel K and for any
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Figure 3.1: Two structurally different, unlabeled graphs, along with the first elements of
their infinite random walk sets. The random walk kernel cannot differentiate them: even
if the random walk sets generated by two unlabeled graphs are different, the similar
walks weighted by their probabilities will add up to the same amount.

undirected graphs G and G’, we have K(G, G) = K(G, G').

Proof. LetG = (V,&)and G’ = (V', &) be two undirected unlabeled graphs. In this case,
the random walk kernel for these graphs is:

K66 =Y. Y Y plipi), (3.7)

n=1 heV* j/ ¢+

H=n -y =

since K(h,h’) = 1 for any h,h’ with |h| = |I’|. As we mentioned in Section 2.8.2, a
distribution p(h) is built in the common case on an uniform vertex quit probability

0 < pq < 1, a start probability p; which is evenly distributed to vertices ps(v) = p,/|V|
and a transition probability p; for the outgoing edges :

p(HIG) = py(on) | | pe(oitoi)
i=2

n

_ pa@) 77 1= py(vic1)
Y [1 o) |

(vilvi_1)py(0;) (3.8)

i=2
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As the vertex quit probabilities p?(vi), pf (v;) are uniform and equal to the constant
pq the expression of p(h) simplifies to:

n

(1-py"!
P(h) - pq |(Vp|q H pa(vllvl 1) (39)

The random walk kernel can be written as:

1-— 2n— .,
K(G,G) = Z 2 Z = (|(V||$)| * Hp%lvl—l)r’f @loi0)

nlhe(V fey

—qu (1—pq)2n—2 <Y Y H SofopC @lo,)  (3.10)
= Putoe b (00 |

heV* i=2
= nh ey’

W' |=n
The last sum of products of this equation can be computed:

Z Z ﬁpuc (ilvi)pS (©i|(v,_)) =

heV E(V i=2
|h|=n

Ih |=n
n n
_ G G/ ’ ’
=Y [Tré@hin|| Y T]rS @l
heV =2 Wy i=2
Vil=n =
=|VIV]

as a direct consequence of the property ),y p.(ulv) = 1, for any v € V. The expression
of K(G, G’) becomes then:

K(G,G) =Y p(1-py* == Z -pa?]
n=1 =1
Pq
= 11
2-pq G
This result is independent of the degree, connectivity patterns or any other structural
features of graphs G and G'. m|

Beyond the proof, the result is quite intuitive if we consider the reason of using
random walks in order to describe graphical structures. If we start generating a random
walk, at each step we have a stop probability, and a global probability to pass to an
unlabeled neighbor, which in this case is structure invariant since we do not discriminate
among neighbors.
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Figure 3.2: The elements C, and Cs in the class C of closed chain graphs, along with the
tirst elements of their infinite random walk sets. Their vertices are uniformly labeled,
except for one, which has the same distinct value across all the family graphs. For higher
degrees, perceiving the difference between elements using random walks becomes more
difficult.

An obvious consequence of this resultis that marginalized graph kernels are unsuited
when coping with unlabeled graphs. However, if labels are present, we witness a
considerable improvement in performance, even when discriminating within a graph
class with very fine differences among its elements. The reason is that if a vertex is
different with respect to its neighborhood, it can be used as a landmark in order to
describe this neighborhood.
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3.4.1 Discrete kernels and discrete values

Let us consider the class C of closed chain graphs, with all vertices being identically
labeled except one. By C,, € C we denote the closed chain with exactly n vertices (Fig.
3.2). In the feature space generated by the graph kernel function, we compute the
distance between Cy; and each of the chain graphs C; — Cy (the value of the distance
in the feature space has been explicited in Equation 2.30). The results are presented in
Fig. 3.3 for three different values of the random walk parameter p,. They show that the
kernel exploits the slight differences between the random walks on the closed chains,
and succeeds in creating a metric (Aronszajn, 1950) which is in agreement with our
intuition of an order in C.

0.35

pq:O.l
0.3r Pq—0-4 N
. pq—0.7
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o
o

0.1F i
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Closed chain size

Figure 3.3: Distances in the graph feature space between Cy,5 and other closed chains.
The distances are computed using a Kronecker delta kernel for vertex labels, for three
different values of the random walk parameter p,.

In real-life scenarios, we expect that labels have numerical values which are dis-
tributed depending on the model that we study and on various observation errors. We
analyze the progressive transition between discrete and continuous labels in the next
section.
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3.4.2 Continuous kernels and discrete values

Let us consider that all vertices are labeled using a discrete value p;, except the single
vertex which is labeled using p,. This time we compute the same distances with respect
to Cy5 using a Gaussian vertex kernel K, (x, y) = exp{—(x — y)?/25%}.

In the case of discrete labels, the use of a continuous kernel does not fundamentally
affect the graph metric for the following reasons. K,(x, y) = 1 for x = y, which is similar
to the previous case, when we used the Kronecker delta function. However, if the kernel
parameter o is relatively high with respect to the distance |11 — »], the value of the vertex
kernel between different labels increases from 0 to exp{—(u1 — p2)?/202}. As a result, the
values of the graph kernels increase, and a result of this increase in similarity is that
distances between feature points decrease. In Figure 3.4 we present the distances to Cys
for u; = 0,y = 1 with the initial discrete kernel, and with two Gaussian kernels. For
o = 0.1, the distances are identical to the ones computed using the discrete kernel.For
a larger 0 = 0.5, distances decrease while preserving the ordering. Obviously, using a
continuous kernel for discrete labels is unnecessary in most cases, but we can conclude
that for a reasonable choice of kernel parameters, impact on the metric in the feature
space is limited.

0.35 T
discrete kernel
0=0.1
0.3} 0=0.5 -
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Figure 3.4: Distances in the graph feature space between Cy5 and other closed chains
with 1y =0, u» = 1,p, = 0.4 and Gaussian kernels for vertices. For o = 0.1, the distances
are identical to the ones on the reference line, and for a larger o = 0.5, values decrease
while preserving the distance ordering between different graphs and Cys.
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3.4.3 Continuous kernels and continuous values

In a following step, we consider that the elements in C are uniformly labeled with a
value generated by a normal distribution .41 = .47 (u1,01), except for the one different
label, which is generated according to .45 = .4"(u2, 02). Then, we use a Gaussian vertex
kernel characterized by its parameter o.

Even for this artificial example, the choice of ¢ is not trivial. In kernel design, there is
no absolute rule for choosing the right kernel, but kernels should capture a meaningful
similarity measure. For our particular distributions, the Gaussian kernel K,(x, y) should
have the highest possible value if the input pair (x, y) is generated according to (.41, .#)
or (43, .43), and the lowest possible value if (x, y) is generated according to (.4, .43) or
(A2, M1). In order to express this mathematically we can estimate the kernel values for
the random variables used as labels via their expected values:

B _ _ _ ~(t1 — o)’
Er = E(Ko(x, ) /\ (P() = Ai(x), P(y) = ()} = exp

2 2 2
o +01+02

Tq

0% + 07 + 03
B> = B (Ko(x, ) /\ {P@) = A5(), Py) = A(y)) = Bx
Es = B (Ko(x, ) /\ {P(¥) = A (@), Py) = A(y)} =

o2 + 20%

Es = E(Ky(x, ) /\ (P®) = ), Py) = A(y)} =

H)

02 + 203

(3.12)

The ideal parameter ¢ minimizes [E;, [E; while maximizing [E; and [E4. This means
that o should be large enough for a high estimation between labels within the same distri-
bution, and small enough for a low estimation between labels of different distributions.
A straightforward solution is to maximize the following expression:

maxE; + Ey — E; — E, (313)
o

On the same example of graph family, let us choose ;1 =0, u, = 1and 07 = 0.05, 0, =
0.1. The numerical solution of the maximization problem above indicates an optimal
value for the kernel parameter as ¢* = 0.43. In Figure 3.5, we present the metrics
determined by different values of the kernel parameter 0. Low values of ¢ amplify the
noise within the labeling because random variables generated by the same distribution
may appear to have a low similarity. High values of ¢ determine a metric that is too
uniform, and values around ¢" are a good compromise.
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Figure 3.5: Distances in the graph feature space between Cy,s and other closed chains.
Vertex labels are generated according to .4 (1 = 0,01 = 0.05) except one vertex label
per graph which is generated according to A4 (u2 = 1,0, = 0.1). p, = 0.4 We use
Gaussian kernels for vertices with different o parameters. The reference line represents
the distance values in the absence of Gaussian noise on the labels. The other functions
show the effect that different values of the RBF parameter o have on the distances. Note
that small values of ¢ amplify the label noise, and large values determine too much
uniformity.

3.5 Conclusions

Using the results from the experiments on the graph family, we can reach some mean-
ingful conclusions concerning the applicability of labeled graph kernels. Unlike graph
matching methods, graph kernels are appropriate for pattern analysis based on struc-
tural and labeling properties. Labels may be inferred from structure alone, but graph
kernels are particularly useful when increasingly complex labels characterize the data.

The graphs that we used in order to exemplify the gradual extension to continuous
labels are inherently simpler than real data. In reality, we do not have very precise
information concerning the underlying label distributions. Moreover, the optimization
that we used in Equation 3.13 is one possible choice among many measures which
may indicate different optimum points (some relevant work may be found in fairness
measures used for network resource allocation (Lan et al, 2009)). This ambivalence and
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the specificity of different learning problems and datasets may suggest that extensive
kernel parameter search methods like the grid search are recommended for fine-tuning
the kernel functions.

More importantly, the major advantage of using kernels over graph matching is
that the distance which endows the graph feature space allows us to employ a SVM
classifier, rather than simply find the closest matches of a given input. More precisely,
the prediction of the classifier is closely related to the distance between pairs of objects
in the feature space, but the optimization of the decision function takes into account the
entire training set. Therefore, the closest points to an object to classify do not necessarily
indicate its class under this global optimization assumption.
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Chapter 4

Graphical Models In Image
Representation

If the doors of perception were cleansed, every thing would appear
to man as it is, infinite.

(William Blake, The Marriage of Heaven and Hell)

41 Introduction

Image interpretation requires a general representation of images that have to be pro-
cessed. The difficulty of this task is that a robust representation of a category builds
on information that goes beyond primary visual features, such as color and shape.
Intuitively, what makes humans so effective in image processing tasks is their ability
to interpret these primary visual features and, furthermore, to identify useful prior
knowledge and incorporate it into category representations. Prior knowledge is very
often related to the presence of multiple objects in an image, to spatial information be-
tween these objects and helps the observer analyze the image against personal semantic
concepts.

This difficulty relates specifically to the concept widely known as the semantic gap.
This phenomenon became obvious once image processing went past low-level feature
extraction, some of the most remarkable operations being;:

e edge detection (Roberts, 1977; Prewitt and Mendelsohn, 1966; Sobel, 1970; Canny,
1986; Hildreth and Marr, 1979; Petrou and Kittler, 1991)

e curvature detection and corner extraction (Harris and Stephens, 1988; Mokhtarian and Suomela,
1998)

e patch analysis and saliency operators (Kadir and Brady, 2001; Lowe, 1999, 2004)
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e motion detection by differencing (Barnard and Fischler, 1987; Horn and Schunck,
1981; Barron et al, 1994)

The interest towards more complex processing tasks increased as recreational and
professional use of images gained large interest. For instance, in the context of Internet
accessibility and wide availability of digital cameras, people may conveniently share
personal images with others. By definition, low-level features disregard shape infor-
mation and spatial relations, thus being unadapted to what people perceive in images.
High-level feature extraction revolves around find shapes in digital images, during a
complex process which is quite similar to the way in which we perceive the visual in-
formation around us. Typical tasks may consist in detecting particular combinations of
features (e.g., red cars), a specific setting (e.g., a pile of books), a specific event (e.g., a
penalty kick) or a subjective concept (e.g., a sad person or a nice house). The fact that
some tasks seem to be more difficult than others was formalized by defining three levels
of complexity (Eakins, 1993, 1996, 2002):

e Level 1 interpretation is based on primary features such as colour, texture, shape
or the spatial location of image elements. At this level, the features being used are
rather objective, their estimation is performed straightforwardly, and a knowledge
base is not required. At this level, the applicability is usually limited to specific
image categories and tasks.

e Level2interpretation involves some degree of logical inference on derived features
concerning the elements depicted in the image. At this level, queries are performed
in order to retrieve objects of a given type (e.g. fighter planes) or in order to retrieve
a specific object or person (e.g. Il Colosseo, or Sigmund Freud). The need for a
knowledge base that goes beyond the scope of the interpreted image is obvious.
Demand for level 2 interpretation is superior to that for level 1 interpretation, and
a large amount of queries that people articulate while performing common tasks
fall into this category.

e Level 3 interpretation makes use of abstract features and involves a significant
amount of high-level reasoning about the meaning and purpose of the objects or
scenes depicted. At the same time, complex reasoning and subjective judgement
are also required in order to link image content to concepts.

Within this classification of query types, strengths and limitations of different tech-
niques are easier to determine. The most significant gap lies between levels 1 and 2,
and since levels 2 and 3 together are traditionally referred to as semantic image retrieval
(Gudivada and Raghavan, 1995), we denote the gap between levels 1 and 2 as the seman-
tic gap. In reality, query classification is even more complex, and can be more accurate
if we take into account different user and system perspectives based on the data scope
and the specificity of queries (Figure 4.1).
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Figure 4.1: A comprehensive understanding of image retrieval shows the complexity of
an ideal multilevel interaction between user and system (Datta et al, 2006)
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4.2 High-level semantic image retrieval

4.2.1 Dealing with the semantic gap

The main effort in high-level semantic image retrieval is directed towards relating low-
level features to semantics. The most effective approaches to date are:

¢ using object ontology in order to define high-level concepts,

¢ using machine learning methods in order to associate high-level concepts to low-
level features,

e taking into account user feedback in a relevance loop in order to cope with subjec-
tive concepts,

e infering visual content based on textual information extracted from image context.

Most content based image retrieval systems exploit a combination of two or more
of these approaches in order to perform high-level semantic image retrieval. Compre-
hensive surveys on mixed CBIR strategies for bridging the semantic gap between user
and machine can be found in Smeulders et al (2000); Eakins (2002); Datta et al (2006);
Liu et al (2007); Vasconcelos (2008). Although the trend is promising, the problem of
designing systems that understand image content at semantic level remains open.

4.2.2 The task we address, and our approach

Our work falls in the second approach depicted above, the learning of concepts using
machine learning methods, for the purpose of image categorization. This particular task
consists in labeling an input image by one of some predefined categories, and has proved
to be a difficult problem in computer vision. Some of the reasons that explain this factual
outcome are structural variability which leads to different image representations of the
same object or of object instances belonging to the same class, clutter and occlusion,
and complex associations between an object defined as a semantic concept, a subjective
representation of the concept and image context (Figure 4.2). Complementarily, the
fact that the same image may have multiple subjective semantic interpretations also
increases the difficulty of this problem.

Image categorization has often been employed as a preprocessing step for speeding-
up more complex image retrieval tasks in large databases, or for performing automatic
image annotation. Therefore, just as unsupervised clustering in the absence of label
data, categorization is considered a fundamental early step in image retrieval. Image
categorization is an interesting option if the image database is well specified, and labeled
training samples are available. This is often the case for domain specific datasets, such
as medical, remotely sensed of art-related images.

Categorization may be performed using either discriminative or generative mod-
eling approaches. In discriminative modeling, classification boundaries or posterior
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Figure 4.2: Find instances of the class “hunting dog": an example of how image cate-
gorization must cope with variability, conceptual perception of a semantic notion and
contextual inference. 4.2a Hunting scene with occluding relevant elements. 4.2b Prior
knowledge of hunting pose or breed is necessary. 4.2c The sole presence of one of more
specific elements (in this case a goose) is neither necessary nor sufficient for taking a
decision. 4.2d An outlier which could nonetheless be included in the “hunting dog" cat-
egory. 4.2e A difficult scene the interpretation of which requires thorough attitude and
context analysis. 4.2f A scene addressing personal interpretation of the term “hunting
dog" and possibly prior breed knowledge.

probabilities of classes are estimated; in generative modeling, the density of data within
each class is estimated and the Bayes formula is used to compute the posterior. Each
approach is beneficial in a certain way: discriminative modeling directly optimizes class
boundaries, whilst generative modeling incorporates prior knowledge more easily and
is more practical if many classes are present.

In the following sections, we address the two fundamental issues in content based
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image retrieval: how to formally describe an image, and how to estimate the similarity
between image abstract representations. An interesting point worth mentioning, which
is at the core of computer vision challenges, is that these two processes are entwined
since the representation determines the similarity measure and its outcome, which in
turn may help refine or rethink the representation.

4.3 The image model

If we refer to earlier work in image interpretation, a solid improvement in recent years
has been made concerning the extraction of new features and the construction of image
representations based on these features. This advancement has also fueled the growth
of novel methods better suited for estimating representation similarity.

More specifically, we witness a major shift from global feature representations for im-
ages, such as color histograms and global shape descriptors, to sets of localized features
and descriptors, such as salient points, region-based features, spatial model features,
and local shape characterizations. This is a consequence of the comprehension that
global features are insufficiently adapted to reduce the semantic gap, whilst local fea-
tures often correspond with more meaningful image components and make association
of semantics with image portions more straightforward. In the following, we focus on
this approach for image representation.

4.3.1 Image segmentation

The first step in the buildup of a region-based image representation is the segmenta-
tion process. The importance of segmentation as a preprocessing step is critical, since
the values of features that are extracted afterwards may be influenced drastically by
segmentation precision. A review of current segmentation advancements is beyond
the scope of our work, but since hih-quality segmentation remains hard to achieve, we
mention here some current issues that affect segmentation based image processing.

Segmentation evaluation is one of these topics (Zhang, 1996, Roman Roldan et al,
2001; Paglieroni, 2004). It remains difficult to estimate whether an algorithm produces
more accurate segmentations than another, because segmentation itself is usually “ill-
posed” (what is the perfect segmentation of a complex scene?). Therefore, the most
common method for evaluating the performance of a segmentation algorithm remains
human evaluation, which is usually a tedious, subjective and non scalable process.
Automated, unsupervised evaluation methods which should be employed in large scale
region based image representation are even less reliable (Zhang et al, 2008).

In Figure 4.3, we present an image along with a set of labeled parts from the LabelMe
project (Russell et al, 2008). The issue of evaluating a given segmentation is illustrated
very well, since the regions highlighted by human subjects change with the observation
scale, and there is no ideal trade-off between segmentation simplicity and representation
accuracy.
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Figure 4.3: An image from the LabelMe project (Russell et al, 2008) and various labels
suggested by human contributors, which exemplify the subjective, scale dependent
aspect of image segmentation.

For a similar reason, in the case of iterative segmentation algorithms that use low-
level information, the absence of semantic cues hinders the use of prior knowledge for
evaluating the current state. Machine learning is needed in order to take into account
presumptive features of regions, that would correspond to real-world objects. The
drawback of this approach is that segmentation is no longer a preprocessing step, but
becomes a part (and a possible bottleneck) of an image interpretation loop. In Figure
4.4 we present an input image from the Corel dataset along with two segmentations
generated during an unsupervised automated hierarchical process (one of the most
accurate intermediate results, and the segmentation situated at the end of the hierarchy).
Evenin situations where image scale is not an issue, natural scenes are reputedly difficult
to segment, and choosing the most useful segmentation result is not trivial.

(b) (©)

Figure 4.4: Unsupervised hierarchical segmentation (Meyer, 2001) performed on a
Corel image. In the context of natural scenes, unsupervised segmentation performance
is usually low, therefore identifying the best intermediate result is critical. This example
also illustrates the need of prior information and semantic cues in order to improve the
segmentation process.

Many segmentation algorithms that are widely used nowadays are based on previous
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work that used watersheds (Beucher and Meyer, 1993), normalized cuts (Shi and Malik,

2000), Markov random fields and EM (Zhang et al, 2001), mean-shift techniques (Comaniciu and Meer,
2002), Markov chain Monte Carlo methods (Tu and Zhu, 2002) or Gaussian mixture mod-

els (Carson et al, 2002). On top of this existing framework, the innovative efforts are

directed towards finding perceptual grouping principles based on statistical inference,

prior knowledge and object models.

4.3.2 Alternative region detectors

The common notion of region can be extended to image keypoints that must show
invariant and stable properties in order to be detected with high repeatability in im-
ages taken from multiple viewpoints. The obvious advantage is that identifying these
keypoints allows for a compact but still pertinent image representation, just like in
the case of common image regions. Given the interest for scale, rotation or occlusion
invariant detectors, a large number of different local descriptors have been and are
being proposed. Among the most popular detectors we mention the difference of Gaus-
sian (DoG) (Lowe, 2004), the Hessian-affine detector (Mikolajczyk and Schmid, 2004),
the maximally stable extremal region detector (MSER) (Matas et al, 2002), the intensity
extrema-based region detector (IBR) (Tuytelaars and Gool, 2004) and the Fast-Hessian
(Bay et al, 2006). Each specific detector is known to perform better under certain circum-
stances (Li and Allinson, 2008) and the output representation may be more or less suited
for the machine learning algorithm that performs the interpretation task afterwards.

4.4 The region model

Our approach is to use a part-based model, which has been shown to cope well with in-
ner category variability in specific (Mikolajczyk et al, 2004; Suard et al, 2005; Toews et al,
2006; Cour and Shi, 2007) or more general (Lowe, 2001; Fei-Fei et al, 2003; Bar Hillel et al,
2005) settings, in image categorization as well as in other image processing tasks. This
type of model provides a realistic mechanism to combine local features into loose geo-
metric assemblies and to make use of correlating positions of parts.

The part-based model is characterized by a tradeoff between exploiting abundant
local visual features in a “bag of features” approach while disregarding geometric in-
formation, and extracting a constellation model. The first methods must usually cope
with the problem of incorporating features that do not belong to interest objects into the
object model as a result of no geometry information being used during training. The
latter, which are closer to the human natural way of representing objects as parts with
mutual geometric constraints, tend to be more complex and computationally intensive.
The issues that our work addresses are represented by joining fundamentally different
types of visual and spatial information into a flexible model and using them efficiently
together. More precisely, the purpose of our work is the creation of a framework able to
include image keypoints along with meaningful spatial information concerning them,
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stored in a form which is adapted for visual spatial representations. By keypoints, we
denote any entity contained in an image which is useful for its interpretation, and more
specifically, categorization. A landmark could be as basic as the result of Harris corner
detection, or as complex as a region highlighted by an image segmentation algorithm.
There is no constraint whatsoever on the semantic complexity of this element; how-
ever, in order to be relevant, keypoints must exhibit more or less explicitly some visual
invariance properties.

44.1 Related work

Different strategies in image categorization have been outlined in recent years. The
initial approach of interpreting images as single indivisible objects and using global
image features (Chapelle et al, 1999) evolved in order to cope with the major sources
of difficulty mentioned before (Figure 4.2). A subsequent approach has been to treat
images as bags-of-features (Sivic and Zisserman, 2003; Dance et al, 2004; Sivic et al, 2005),
thus taking into account primarily the vectorization of the image content. Although this
coarse representation, which disregards any spatial information between the detected
features, drastically simplifies the input data, results have been surprisingly promising.
In the ideal setting, the predefined visual dictionary contains words that are frequently
discriminative when taken individually. Therefore, it is possible to perform image inter-
pretation without the need to segment the image and infer object relative positioning.

An alternative approach has been the one of modeling objects as constellations of
parts (Weber et al, 2000; Fergus et al, 2003; Lazebnik et al, 2004) into a probabilistic gen-
erative model. Its major advantage over the previous approach is that taking into
consideration spatial information in the model improves its performance with respect
to object shape and appearance variability. Although the bag-of-features approach im-
plicitly preserves some spatial information, the constellation model allows for more
complex inference, taking into account the appearance variability into an explicit spa-
tial context. Thus, the constellation model offers a very intuitive and practical way
of representing many classes of real-life objects. However, the high-dimensionality of
the representation raises difficulties in using standard machine learning algorithms and
increases computational complexity. At the same time, constellation models are ideally
fit to represent rigid structured objects that are easily associated to a class model.

A lot of effort is currently directed towards designing image interpretation methods
that benefit from advantages of both of these two fundamentally distinct approaches.
Bag-of-features methods that take into account local subrepresentations (Lazebnik et al,
2006; Gosselin et al, 2007a,b) and flexible constellation models are bridging from both
ends the same gap that exists between structureless, granular, semantically poor im-
age representations and semantically meaningful, detail stripped models. A deep and
thorough insight into the limits of bag-of-features models that takes into account this
gradual transformation may be found in Marszatek (2008).

Under these circumstances, efforts have been made to steadily extend the bag-of-
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Figure 4.5: A basic example of labeled graph inference. Each vertex has an associated
visual feature label and each edge encodes a spatial relation. In this example, the first
two graphs are intuitively more alike, but the third one is closer to the second than
to the first one. However, with a different spatial relation being considered between
vertices (which would imply a different localization of the edges), the second graph
could become more similar to the third one. In a real image representation, vertices and
edges are associated to sets of labels, and inferring on labeled graph representations is
challenging.

features model by adding more spatial information and feature correlation information
into probabilistic discriminative methods. While this type of approach does not compute
a category model, it should be able to rely on category prior knowledge and relations be-
tween parts, as generative models do explicitly. Previous attempts have used a mixture
model using expectation maximization (Carbonetto et al, 2004) on local feature and spa-
tial information, experiencing convergence issues. In Chen and Wang (2004), a diverse
density function measuring a co-occurrence of similar regions from segmented images
(which accounts for the spatial local information) has been used in a SVM hyper-space
mapping, disregarding spatial information among regions whatsoever. A recent ap-
proach used Bayesian learning and conditional random fields for information propaga-
tion across image interest points (Carbonetto et al, 2008) with a very interesting result on
selecting local features that best identify an object category. In Bar Hillel and Weinshall
(2008), the authors are proposing a generative “star" graphical model (Fergus et al, 2005)
with discriminative-like parameter optimization enhanced by boosting, which benefits
from both approaches: generative modeling power and discriminative efficiency.

4.4.2 Our position within the structured representation framework

In our work, we aim to provide an alternative method for automatic feature selection in
image categorization. We are motivated by the fact that there is still a gap between the
performance of low-level feature based methods and that of semantically meaningful
ones. We address the ambivalence between a complete lack of image semantics and good
performance with a discriminative model that is able to passively infer concepts based
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on various visual features along with spatial ones, such as “a dark object located close to
around one and far from other large objects". Image keypoints are associated as vertices
into a probabilistic graphical model, and spatial relations are used for creating links
between these keypoints. The advantage of this model is that it offers a very intuitive
representation of image content. Moreover, by allowing the user to select the keypoint
family and the spatial relations to be considered it can be more easily matched to a
particular categorization task, thus tackling the “no free lunch" paradigm (Duda et al,
2000) that superior results on some problems must come at the cost of inferior results on
other problems.

More specifically, we are annotating each vertex, representing a keypoint, with nu-
merical visual descriptors. Each edge is annotated with descriptors of various spatial
relations which are being considered and which are representative of the two nodes
linked by the edge. While this type of structure has been used for model-based genera-
tive recognition tasks, its use in a discriminative machine learning framework is novel.
The major challenge and the purpose of our proposed method is to be able to detect
discriminative patterns into this labeled graphical structure during training. In Figure
4.5, we have depicted a simple example of a possible graph inference. In each of the
three graphs, v; represent evaluations of a certain descriptor for keypoints i while e¢;;
represents a spatial relation label associated to the edge (i, j), with i, j € {1, 4}, if the edge
(relation) exists. If we consider that, across the graphs, numerical values of the labels
associated to the same indices are close, we want to be able to evaluate the similarity
of these graphs and obtain some intuitive results, like the first two graphs are alike with
respect to the third one, and the third graph is more similar to the second one than to the first one.
Using this function in a discriminative classifier, we want to implicitly detect patterns
that make the first two graphs alike and different from the third one.

Since vertex and edge labels are represented by sets of descriptors, another challenge
arising in our approach is to make use of multiple descriptors synchronously for object
category discrimination, as each descriptor should bring supplementary information
concerning input data. This aspect, related to information fusion, is another original
point of our approach.

4.5 Description of keypoint model constituents

We present now the major features that are associated in our model (and in part-based
models in general) to segmented regions and, where applicable, to region based local
descriptors. Bear in mind that an exhaustive review of region descriptors is beyond
the scope of this section, but we encourage the reader to consult comprehensive work
related to region and visual descriptors in general, such as Nixon and Aguado (2008).
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4.5.1 Basic descriptors

One of the simplest possible scalar measures we can associate to a region is represented
by its size or area. This value is defined as:

a=) ) L) (4.1)
x oy

where Ii(x, y) is 1 if the pixel (x, y) belongs to region i, and 0 otherwise. This simple
descriptor is invariant to rotation and it changes with scale. Another simple descriptor
is represented by the region perimeter, which can be expressed as:

=) \/ () = X1 + (Y = ¥j-1)%) (4.2)
j

where (x;, y;) represents the j-th pixel forming the border of the region i.

4.5.2 Color

Color is one of the most perceptually significant object properties that is involved in
pre-attentive visual processing (Treisman, 1985). We rely heavily on color to identify
and categorize objects, and color represents a fundamental variable in digital image
processing and a plethora of related domains. This is reflected by the fact that early im-
age interpretation systems were entirely based on color information (Swain and Ballard,
1991) and later proposals continued to rely heavily on this feature. However, color per-
ception is a complex phenomenon, and its understanding is related, among other things,
to the issue of how lightness and brightness are determined, and how color differences
are perceived afterwards. Therefore, various color spaces have been introduced in or-
der to offer as precise a numerical representation of color as possible. Ideally, a color
descriptor should be illumination and pose invariant, and capable to take into account
specific surface properties that depend on the composition of the object.

In a certain color system, the color is usually encoded by the mean value if the
region displays chromatic uniformity, or by the histogram which keeps a count of pixels
exhibiting color values in predefined intervals. Quantization of these color spaces
may be an issue (Syeda Mahmood, 1997) and must be mapped according to perceptual
realities.

Obviously, these descriptors account for color occurrence exclusively, and not for
localization, but the latter is present however, given the spatial information encoded
implicitly in the determination of the concerned region.

4.5.3 Texture

There are multiple definitions and interpretations as to the nature of texture, many pos-
sible ways to represent and extract it, and a lot of research devoted to texture analysis.
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A question such as "Is there any texture in this image?" is far from trivial and may be
even considered ambiguous without further specifications (Karu et al, 1996). Therefore,
uncommon definition alternatives may be useful, such as stating that texture is a quan-
tity for which texture extraction algorithms provide meaningful results, or using an
appropriate example database (Figure 4.6).

In general, an image region is textured if it displays repetitive patterns. Therefore,
texture usually takes into account spatial variation and directionality in the area of
interest, and may be very helpful in describing the region content.

(b) D16 (c) D23

Figure 4.6: Texture examples from Brodatz texture database (Brodatz, 1968)

Various fundamental approaches exist for texture representation and analysis; we
can mention the use of multivariate Gaussian distributions (Weldon et al, 1996) , Fisher
Linear Discriminant Analysis (Saito and Coifman, 1995), nearest neighbor classification
(Strand and Taxt, 1994; Singh et al, 2001), learning vector quantization (Randen and Husoy,
1994), support vector machines (Kim et al, 2002), Gaussian Markov random fields (Cross and Jain,
1983), hidden Markov models (Povlow and Dunn, 1995) and hidden Markov trees
(Choi and Baraniuk, 1999) etc.

For further references, we refer the reader to a review of early methods (Randen and Husoy,
1999) and towards a comprehensive more recent survey (Petrou, 2006).

We have experimented with fast Gabor filter approximations implemented using
three-pole Infinite Impulse Response (IIR) filters (Bernardino and Santos Victor, 2006).
A Gabor filter has a response in the space domain given by:

hx, vy, u, 0) = exp( 1 l(x cos O + y sin 6)? s (—xsin O + y cos 0)?
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where u represents the modulating frequency along direction 0.

The output of the filtering process is an energy distribution G;(x, y) that corresponds
to each filter h; in the filter bank, and describes the response of the input image for
different scales, orientations and wavelengths. Gabor features are found by calculating
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statistics (mean and variance) corresponding to each image response:
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The feature vector F = [u,o] for texture representation is created afterwards by
concatenating the statistics above. In order to adapt to the specific structure of F, we use a
distance metric defined by Arivazhagan et al (2006) which normalizes the representation
with respect to the dominant orientation, which is equivalent to pre-aligning the textures
before filtering.

4.54 Shape

Very often, color information is unreliable or absent, and shape can be used to describe
images and locate objects within images. Shape is a fundamental property of an object,
although less localized than color or texture. Defining a reliable shape descriptor is a
difficult task, since various new issues such as occlusion, object flexibility, pose variations
add to of the previous illumination change induced difficulties. Shape descriptors that
are available satisfy some but not all of these requirements. Their complexity varies
widely and, in general, sophisticated descriptors are more expressive but demand a
very good quality of the input.

Consequently, and in contrast with the previous features, shape features require
good segmentation to detect objects or regions. In the context of (unsupervised) image
segmentation, the performance of the underlying task is so poor that the input for
shape feature extraction is completely unfit and the overall results are inadequate. This
difficulty is hard to overcome, for the fundamental reason that the segmentation process
uses implicitly a window of information which might simply be smaller than the window
of information needed for robust shape detection.

One of the simplest descriptors available is the compacity of a region, defined as the
normalized ratio between its surface and its squared perimeter:

c=— (4.6)

Statistical moments have been also widely used as shape descriptors for a long time
(Hu, 1962; Prokop and Reeves, 1992). They have been proven to be quite robust to noise,
which explains their popularity and success, but an important assumption concerning
the input is that there is no occlusion.

The two-dimensional Cartesian moment of order p and g is defined as:
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This simple representation can be centralized and normalized in order to achieve
translation and rotation invariance. Other invariant descriptors are Zernike and Legen-
dre moments (Teague, 1980; Mukundan and Ramakrishnan, 1995), Chebyshev moments
(Ping et al, 2002) etc., each family exhibiting specific advantages and disadvantages.

These sets of descriptors uniquely determine the original shape, in a process which
is similar from this point of view to a Fourier transform. The fundamental difference
however is that these moments are merely descriptors and cannot be used in practice to
reconstruct the original input (Teague, 1980), unless they do not form an orthonormal
family.

Other interesting edge-oriented approaches are based on embedding region edges
in appropriate feature spaces that provide the model with invariant properties. This
may be typically achieved by Kernel PCA (Romaniuk et al, 2004; Sahbi, 2007), but even
though these models cope very well with morphologically reasonable variations, they
are not very well adapted to occlusions and other issues commonly encountered in
image processing.

4.5.5 Hybrid approaches

In more difficult settings, it may be beneficial to take into account the local correlations
of texture, color and shape during feature extraction. More specifically, independent
tirst-order statistics may not discriminate between complex, different inputs and their
simplicity has the disadvantage of relating worse to human perception. The main
motivation behind unified descriptors is the following: correlations are generated by the
fundamental fact that intensity gradients exhibited by pixels are systematically related,
and the concepts of color, texture and shape involve regularity at different scales.

This topic has a long history in computer vision, as well (Caelli and Reye, 1993) and
many new descriptors have been progressively introduced in order to grasp higher-
order correlations among color, texture and shape (Gagaudakis and Rosin, 2002, 2003;
Prasad et al, 2004; Lin et al, 2009).

It is often believed that better image analysis can be achieved with more complex
feature descriptors, but this turns out to be false. Not all features are helpful for image
analysis in all situations, and unadapted descriptors may be harmful for the interpreta-
tion process and may actually decrease performance. Itis thusimportant that descriptors
are adapted to the complexity of the task and to the properties of the input.
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4.6 Applyingthe marginalized graph kernel to image rep-
resentations

The approach that we adopt consists in adapting a marginalized graph kernel function
(Kashima et al, 2003) for image specific labeling, on image graphical representations.
As any marginalized kernel, this kernel function between two image models is built
upon the similarity of random paths that are extracted from the two graphs. The
basic principle behind this method is that in similar graphs, one finds more frequently
similar random paths (for the detailed description of the underlying algorithm we refer
the reader to Section 2.2.1). Marginalized kernels have been used for labeled graph
classification (Tsuda et al, 2002; Mahé et al, 2004) but in a discrete labeling setting. In
image processing, region based image representations are used, but segmentation graphs
are usually considered for specific image categories (satellite or medical images), in the
context of subgraph matching. Learning using the whole segmentation graph raises the
issues of graph distance and graph similarity, which are not trivial, given the labeling
complexity and the inherent variability associated to segmentation.

4.6.1 Unsupervised segmentation and graph extraction

Our initial approach (Aldea et al, 2007) explores a methodological image categorization
method using marginalized kernels for segmentation graphs.

The first step of our method consists in extracting and graph modeling image infor-
mation. Within the segmentation graph, distinct regions correspond to vertices, while
edges model the adjacency spatial relation between corresponding regions. Beside this
spatial information brought by the structural expressivity of the graph, we integrate in
the vertex labeling intrinsic information related to region visual properties. From this
point of view, the interest of using a graphical model goes beyond the structural flexi-
bility, and relates to the easiness to add and link visual features to specific components.

As input data, we settled for one class of head X-rays (coronal view) and a second
class of mammographies (sagittal view); elements within the same class had not been
acquired with the same medical systems following the same protocol. We mention that
the method is not specifically tied to medical images and may accept any type of images
as input. However, a higher difficulty to segment the input requires an adaptation of the
unupervised algorithm that we present below, or its substitution with more sophisticated
methods.

For the processing step, we adopted a generic hierarchical image segmentation
paradigm (Beaulieu and Goldberg, 1989; Haris et al, 1998; Brun et al, 2005) that allowed
us to perform unsupervised segmentation over all the input images. We suppose that
each image is divided into components that may be further divided into subcomponents.
This decomposition may be represented by a tree whose root node is the whole image
and whose leaf nodes represent a partition of tiny regions built at the beginning of the
processing step. This partition may be for example the set of pixels of the image. The
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advantage of employing a hierarchical segmentation method is that changes are gradual,
unlike for other methods where the variation of one parameter may induce a completely
different segmentation map. This aspect is relevant because medical images which have
been acquired using different protocols but show the same body parts are sensitive to
segmentation methods that use absolute thresholds. As opposed to that, hierarchical
segmentation gives emphasis to relative relationships between image subconstituents.

To generate the leaf node partition of the tree, instead of employing each pixel as
a terminal node, we use a watershed over-segmentation that leaves us with a large
number of small regions. However, in order to smoothen out very small variations in
color and texture while preserving the overall boundary of objects, we apply anisotropic
diffusion averaging before over-segmentation. Anisotropic diffusion has been shown to
preserve important image structure while reducing unwanted noise (Perona and Malik,
1990; Black et al, 1998), and therefore it is useful as a pre-processing step before the
actual image segmentation, since it helps to keep at low levels the apparition of small
spurious regions.

At this point, we start “climbing” in the tree structure by merging adjacent regions
that have the closest average gray levels:

dify(r1,12) = [a04(r1) — avg(r)| (4.8)

where av,(r) denotes the average gray level in the region r.

Regarding the stopping condition for the region fusion process, we chose to set a
dynamic threshold t¢. If the smallest gray level difference between two neighboring
regions is higher than the threshold, we decide that the regions are not similar enough
for the fusion to be performed and we stop. The threshold is dynamic because we
compute it at each step as a (fixed) fraction f of the difference between the highest and
the lowest region gray levels that exist in the image:

tp=f- (malx avg(r) — miln avg(r)) 4.9)
re re
The overall segmentation schema is presented below (Algorithm 1).

Once the fusion has ended, we compute the following features for the resulting
regions, encoded as vertices:

e region area in pixels,

e relative area, a real value that represents the percent of the image covered by the
specified region,

e average gray value of the region,

e relative average gray value, corresponding to an affine transform with respect to
the highest and lowest average gray values in the image, gin €t $max:
g - gmin

7
max — g min

grayrel(r) = (410)
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Data: Gray level image I, fusion threshold f
Result: Region segmentation {r;} of image I
begin
ApplyAnisotropicDi fussion(l) ;
OverSegmentation(l) ;
foreach edge (r1,1,) do
| compute dif,(rq, 1)

end
stop «— false ;
repeat
compute f;
compute (r],75) = argmin,, ,, difo(r1,72) ;
if dif,(r],75) < t; then

r «— fusion(r],15);

foreach r which borders r* do

| update dify(r, ")

end

else
| stop «— true;

end
until stop;
end

Algorithm 1: Generic hierarchical segmentation algorithm
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(a) Initial image (b) Direct segmentation (c) Region fusion

Figure 4.7: Mammography segmentation

e region perimeter,
e region compacity,

The only relationship encoded by the edges (implicitely) is the strict adjacency.

As an example, we present a typical mammography in Figure 4.7a, along with one of
the best possible human-assisted watershed based segmentations (Figure 4.7b) and the
result of the unsupervised method presented above (Figure 4.7c). The same situation is
depicted for the other class in Figures 4.8a, 4.8b and 4.8c respectively.

4.6.2 Label kernels

The graph similarity is assessed using a marginalized kernel function and is employed
in a SVM classifier. We have explained in Section 3.2 how defining the graph similarity
boils down to defining kernel functions for the labels that annotate the graph vertices
and edges. We indicate now what choices are appropriate by default for different types
of labels, unless specific numerical properties motivate the usage of uncommon kernels.

For scalar values, KRPF Gaussian kernels (Section 2.3) are the most usual choice.
Another possibility, which is as powerful as the Gaussian kernel in terms of separability
and exhibits interesting scaling invariance properties, is the triangular kernel:

K2(f1, f2) = max(1 - |Ifi — £ll/C,0) (4.11)

This kernel is not positive definite, but belongs to the class of conditionally positive
definite kernels (Berg, 1984), therefore we can still use it in the SVM algorithm. It is
faster than the Gaussian kernels, and its compact support accounts for more sparsity in
numerical computations.

For features represented as histograms or arrays, specific distances have been shown
to perform very well. This is for example the case for Earth Mover Distance (EMD)
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(a) Initial image (b) Direct segmentation (c) Region fusion

Figure 4.8: Head X-ray segmentation

(Levina and Bickel, 2001), x2, L" or the Gabor feature distance presented in Section 4.5.3.
The procedure employed in order to get a valid positive definite kernel based on such a
distance d is known as kernelization:

ka(hy, hp) = e 0n12) (4.12)

4.6.3 Fast computation of the graph kernel

As it has been highlighted in Section 2.8.2 , direct computation of the exact kernel
value in Equation 2.46 is expensive since it involves the inversion of the (I — I'l;) matrix,
which scales as O((|'V||V'])?). There exist however alternative approaches that speed
up the computation in practice up to a few orders of magnitude (Gardiner et al, 1992;
Nocedal and Wright, 1999; Vishwanathan et al, 2006).

We have adopted an approximation method based on fixed point iterations. Starting
from Equation 2.46, we denote by z the quantity:

z=(1I-TI)™"1 (4.13)

We can further develop this expression as:

(I—Ht)-Z:ll
z—IL-z=1
z=IlL-z+1 (4.14)
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and solving the approximation is equivalent to finding the fixed point of this iteration.
By setting zp = 1, we can iterate by using:

Zy = Ht ©Zy1 + 1 (415)

until a convergence condition ||z; — z;1]| < € is satisfied.
The approximation algorithm is presented below:

Data: I, I1;, ¢
Result: Graph kernel K
begin
z«—1;
7z —1;
stop «— false;
repeat
z—1IL;-2Z7+1;
if ||z — Z’|| > € then
| 2 —z;
else
| stop «— true;
end
until stop;
KeTII-z;
end

Algorithm 2: Fixed point graph kernel computation

We have verified this approach on a typical computation involving an image with
N = 39 regions, generating a graph G with 39 vertices. The direct computation of
K(G, G) took t; = 1.964 s, and the approximative method (¢ = 107°) needed 12 iterations,
performed in f, = 0.076 s. We present in Figure 4.9a the evolution of the stopping
criterion quantity ||z; — z;-1]|, and in Figure 4.9b the iterative evolution of the distance
between the approximation computed at iteration k and the exact value K(G, G). This
method performs significantly faster and is also convenient due to the fact that we are
able to choose the desired precision.

4.6.4 Categorization performance

For the moment, edges are not taken into account, beside their implicit structural im-
portance. Therefore, we consider them as having the same label and we focus on the
richer vertex features. We have particularly analyzed two of them which are adjusting
to global image content: the relative surface s,,; with respect to the image surface and
the relative average gray value gray,. defined in Equation (4.10). They are less prone to
perturbations, rescaling, contrast or brightness variations, etc.
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Figure 4.9: Fast computation of the graph kernel

In a first phase of our experiment, we have compared the performances of K**F and
K2 kernels (Equation 4.12) for the s, feature and for different parameterizations of C
and respectively o, on a sample of 62 images, with 20 of them used for training. Given
the fact that for two values (fi, f») of a feature f, the similarity given by K* is null if
Ifi = fall = C, we consider that we can compare K* with a Gaussian kernel such that
C = 3o.

Categorization | C=0.05 | C=015 | C=0.2 C=05 C=0.6 C=1.0
rate 0=0.017 | 0 =0.050 | 6 =0.067 | 0 =0.167 | 0 =0.200 | 0 = 0.333
KA 0.81 0.74 0.83 0.83 0.83 0.86
KRBE 0.93 0.95 0.93 0.86 0.86 0.86

Table 4.1: Categorization rates based on the relative surface feature s,

Results in Table 4.1 show that the Gaussian kernel performs well in the case of a strong
discrimination (i.e., if region areas differ by more than one tenth of the image surface,
the kernel returns a very small similarity value). While simplifying the discrimination
function, the triangular kernel does not manage to discriminate as efficiently as the
Gaussian kernel in the initial range of the surface feature.

4.6.5 Categorization with more than one feature

The typical formulation of the marginalized graph kernel (Section 3.2) prescribes the
use of a kernel pair (K;, K,) in the buildup of a graph kernel. This means implicitly that
we choose a vertex feature and an edge feature, and consequently the graph similarity
estimation is based on these two values. However, in the general case of a feature set
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F=1{fi,..., fu} associated to a graph component, the kernel function may be extended in
order to take into account several, if not all the elements of F. Kernel functions related
to these various features allow us to treat them in a unified way, merging them in a
global similarity estimate. As each kernel provides us with a partial description of data
properties, we are intuitively interested in building a parameterized combination that
employs each feature according to its relevance. The most straightforward and impartial
method is to employ a linear combination of base kernels:

[F|
Kf = Z MK, (4.16)

i=1

where the multipliers A; > 0 satisfy },_; A; = 1. Here as well, the weighted sum of
definite positive functions preserves the key property of definite positiviness of the
result.

In a second step, we have built a linear kernel as in Equation (4.16) based on both
Sy and gray,.;, in order to analyze the classification performance as a function of the
individual kernel multipliers. The tests are performed, as before, on the sample of 42
images. The discrimination thresholds are fixed at 0.2 and 0.5 for the surface and gray
level features respectively. Gray level weight is gradually increased from 0 to 1 in the
linear kernel combination.

The graph shown in Fig. 4.10 illustrates that performance is improved by combining
multiple features in the global kernel function, even by using only two vertex features
in the absence of edge labeling. Ideally, the weighted combination of kernels should be
able to use information from multiple data sources by assessing the relative importance
of each of them in an unsupervised manner. This issue is related to a very active topic
in machine learning and will be developed in a following chapter.

4.7 Conclusions

In this chapter, we have presented the fundamental issues in content based image
retrieval and various popular approaches that have been used in order to overcome
these issues. We have also mentioned some major image representation solutions,
along with their advantages that make them suitable for specific CBIR approaches, and
their shortcomings. We have motivated our choice for a region based graphical model
and we have reviewed the visual features that are the most adapted for this kind of
representation. We have presented the use of a version of marginalized graph kernel
which extends the one being used in computational chemistry and which allows the
interpretation of image-based graphs. We have applied this approach for a simple
medical image classification task, based on a generic segmentation method. The results
validate this model and show that further work is necessary for investigating in an
unsupervised manner which of the possible features are relevant for graph-based image
representation and classification in a specific context. We are also interested in labeling
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Figure 4.10: Performance of a linear combination between a triangular kernel for relative
surface (C=0.2) and a triangular kernel for relative average gray level (C=0.5)

edges with spatial relation features that go beyond planar neighborhood and that are
essential for expressing image content comprehensively.

90



Chapter 5

Fuzzy Spatial Relations and Graphical
Models

5.1 Motivation for the use of fuzzy spatial relations

Graphs have been used as object models or in scene representation in order to benefit
from their ability to encode relations between vertices. The most common visual graphi-
cal models are denoted as spatial graphs, since their vertices represent image keypoints,
and edges represent spatial relations, such as the adjacency property that we reviewed
in the previous chapter, but also more complicated relations related to distance, relative
positioning, topology etc. Other graphs that encode more complex knowledge indi-
rectly related to spatial information (such as semantic or conceptual graphs) are often
structurally related to spatial graphs, too. However, we strictly focus here on graphical
model based representations of input images, without adding prior structural or vertex
related information.

Obviously, the use of graphical representations of entities is not restricted to the
different fields of computer vision. Life sciences employ frequently spatial graphs for
entity representation, but these structures model binary relations. These binary relations
represent in fact the simplest possible relations between two entities, such as the presence
or the absence of a chemical interaction, that may be further particularized using a set
of features (e.g. type of chemical interaction). With few exceptions (Mahé et al, 2006),
spatial relations being used follow this pattern, and simply encode the presence of an
interaction between two elements of the whole structure.

5.1.1 Fuzzy information as an extension of binary relations

As to the extraction of spatial information for image representations, the situation is
more complex. First of all, spatial interactions present an inherent semantic variability
which goes well beyond the binary case mentioned above. This is accurate not only

7 ‘"

for complex spatial interactions such as “surrounded by”, “along” etc., but even for
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some of the simplest spatial relations such as the estimation of the distance between two
objects. First of all, a binary crisp model is unable to encode and differentiate between
subtle concepts such as “near”, “close to” or “next to”, and for a complex scene this
fact is independent of the competence of a human subject who would be estimating
the relation. Secondly, a binary model is often unadapted for the input that is provided
in computer vision by preprocessing tasks, such as segmentation. In cases where the
strict adjacency depends on a few pixels, the output graph may change severely as
different segmentation approaches are employed. Figure 5.1 shows different possible
segmentation results due to an ambiguous decision concerning the central area of the

image.

121‘2 12
2

3| 4/|3 |4 4
a) b) 0)

Figure 5.1: Strict adjacency does not exhibit robustness to preprocessing tasks such as
segmentation. Here, we present different segmentation outputs that are possible due
to an ambiguous decision concerning the central area of the image (a) All regions are
adjacent to the others. (b) Regions 1 and 4 are not adjacent anymore. (c) Regions 2 and
3 merged , and regions 1 and 4 are not adjacent anymore.

Therefore, being able to encode more than an implicit strict adjacency is beneficial
not only for a more precise description of the structural properties, but at the same time
improves the overall representation robustness. The spatial graph is not a segmentation
graph in the strict sense of the term, but an extended graph which may become even a
full graph if needed.

5.1.2 Ambivalence of spatial relations

Even under the simplified binary relation model, it has been shown that information
brought by the absence of interactions may increase performance, in relevant appli-
cations. For example, in protein-protein interaction (PPI) networks (Figure 5.2) the
absence of protein interactions is also relevant for disease prediction. Therefore, an out-
come prediction method presented by Borgwardt and Kriegel (2007) explicitly builds
the complement graph G of the initial interaction graph G, which encodes the absence
of interactions: G = {V = V,& = V x V\&}. Then a composite graph kernel is built,
using an initial simple kernel K:

K'(G,G)) = K(G,G') + K(G, &) (5.1)

which leads to noteworthy improvements in classification accuracies on disease outcome
prediction for cancer patients.
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Figure 5.2: A typical PPI network example, in this case depicting proteins known to be
involved in infertility (yellow nodes), and their interaction partners, depicted as gray
nodes. (Center for Disease Systems Biology, Denmark)

This hints to the fact that, in computer vision, representing only positive estimations
of a spatial relation may be detrimental, since the degree of absence of a spatial interaction
may be in itself relevant to interpretation. We can think for example that “next to” and
“far from” are not necessarily complementary, although they may be interpreted in
a simplified manner as the two extrema of a unique specter. Therefore, the use of
complement graphs is unadapted. Again, being able to express these nuances of spatial
concepts in a compact form is beneficial.

5.2 Representation of objects by spatial fuzzy sets

Concrete domains are expressive means that enable to describe concrete properties of
real world objects such as their size, their spatial extension or their color. A fuzzy
extension can be obtained with fuzzy sets defined on these concrete domains, as de-
grees of acceptance of a property according to usual modeling methods in fuzzy set
theory (Dubois and Prade, 1980), which may be represented by a trapezoidal member-
ship function for instance. Consequently, axioms, rather than being satisfied (true) or
unsatisfied (false) in an interpretation, become a degree of truth in [0, 1]. More details
about the semantics of fuzzy description logics can be found in (Straccia, 2005).

In image interpretation, we can consider the image domain as a concrete domain. As
a consequence, these fuzzy extensions defined over concrete domains can be a powerful
means of reducing the semantic gap. More specifically, a spatial fuzzy set is a fuzzy
set defined on the image space, denoted by S, S being typically Z? or Z?> for 2D or 3D
images. Its membership function i (defined from Sinto [0, 1]) represents the imprecision
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on the spatial definition of the object (its position, size, shape, boundaries, etc.). For each
point x of S (pixel or voxel in digital 2D or 3D images), u(x) represents the degree to
which x belongs to the fuzzy object. Objects defined as classical crisp sets are particular
cases, for which p takes only values 0 and 1. In the following, all definitions will include
the crisp case as a particular case, so that the complete framework applies for both crisp
and fuzzy objects and relations.

Different approaches can be chosen to model spatial relations by fuzzy sets and as
a consequence, the fuzzy representations of spatial relations can be of various natures.
The choice of the representation depends on the relation but also on the type of question
raised and the type of reasoning one wants to perform. For our work, we will focus
specifically on topological relations between two objects, which are based on notions
of intersection, interior, exterior (for more specific information, Vieu (1997) performs
a review of the qualitative formalisms). Fuzzy representations of topological relations
allows us to cope with imprecision related to concepts such as inclusion, exclusion
(Dubois and Prade, 1980), adjacency (Bloch et al, 1997) and other more complex con-
cepts. An excellent overview of fuzzy spatial relations for image interpretation that
introduces an ontology related to their semantics may be found in (Hudelot et al, 2008).

5.3 Image representations and fuzzy spatial relations

In addition to keypoint based features, we propose to improve the relevance of the
graph structure by adding edges carrying supplemental structural information. Since
spatial relations should be considered according to keypoint characteristics, we will
illustrate our method by choosing segmentation regions as keypoints in the image and
introducing some spatial relations that are particularly useful in this context.

Previous region based methods (Aldea et al, 2007; Harchaoui and Bach, 2007) use
adjacency graphs: the edges indicate pairs of regions which are strictly adjacent at pixel
level. The adjacency graph may be informationally poor since adjacency is a relation that
is highly sensitive to the segmentation process and to the scene specificity, and whether
it is satisfied or not may depend on one pixel only.

We propose the use of additional features based on structural information (Kuipers,
1978). As an application, we choose here to take into account two fundamental types of
spatial information: distance and directional relative position. Note that other relations
could be added as well, using the same framework.

5.3.1 Distance between regions

The distance between two regions R; and R, is computed as the minimal Euclidean
distance between two points p; € Ry and gq; € R; (note that it is not a true distance):

d(R1,R2) = min  (deuctidean(Pis q;)) (5.2)

piERl,qj'GRz
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Distance, as well as orientation, may not always be relevant, for instance the distance
between two regions is the same if those two regions are adjacent by only one pixel,
or if a region is surrounded by another region. Therefore we propose to consider a
topological feature that measures the adjacency length between two regions.

5.3.2 Fuzzy adjacency

For our application, we consider a topological spatial relation represented by an ex-
tended degree of adjacency, described below.

The notion of adjacency is fundamental since it is related to a generic relationship
between objects or regions in an image, and is therefore widely used as a feature in
structural pattern recognition. We have seen in Sections 5.1.1 and 5.1.2 that a strict
(crisp) definition of adjacency does not exhibit robustness in the presence of different
sources of noise such as segmentation errors. One way to estimate fuzzy adjacency is to
compute the matching between the area “near” a reference region and another region.
This measure is maximal in the case where the reference region is embedded into the
second, and is minimal if the two regions are far away from each other.

Fuzzy representations are entirely appropriate to model the intrinsic imprecision of
several relations such as “near” (Bloch, 2005). We define the region of space in which
a relation to a given object is satisfied as a fuzzy set. The membership degree of each
point to this fuzzy set corresponds to the satisfiability degree of the relation at that
point (Bloch, 2005). Note that this representation is in the image space and thus may be
more easily merged with a representation of another region.

The spatial relation “near” is defined as a distance relation. A distance relation can be
defined as a fuzzy interval f of trapezoidal shape on R*. A fuzzy subset y; of the image
space S can then be derived by combining f with a distance map dy to the reference
object R:

Vx €S, pa(x) = f(dr(x)), where dr(x)= 1yr€11§ d(x,y) (5.3)

In our experiments, the fuzzy interval f is defined with the following fixed values:
0, 0, 10, 30 (Figure 5.3a). We exemplify using a butterfly image (Figure 5.3b) and the
result of a segmentation exhibiting four distinct regions (Figure 5.3c). We illustrate the
distance map to the region represented by the left wing (Figure 5.3d) and the fuzzy subset
corresponding to the relation “near the left wing” (Figure 5.3e) which uses the distance
map and the fuzzy interval defined above. Similarly, we compute fuzzy subsets for the
right wing (Figure 5.3f) as well as for any other regions designated by the segmentation.

5.3.3 Directional relative position.

Several methods have been proposed to define the directional relative position between
two objects, which is an intrinsically vague notion. In particularly, fuzzy methods are
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Figure 5.3: (a) Fuzzy interval for the distance relation. (b) Inputimage. (c) Segmentation
result, four distinct regions. (d) Distance map to the region represented by the left
butterfly wing. (e) Fuzzy subset corresponding to the relation “near the left wing” (red
corresponds to highest values). (f) Fuzzy subset corresponding to the relation “near the
right wing”.

appropriate (Bloch and Ralescu, 2003), and we choose here to represent this information
using histograms of angles (Miyajima and Ralescu, 1994).

This allows us to represent all possible directional relations between two regions. If
R; and R; are two sets of points Ry = {p1, ..., p»} and Ry = {q1, ..., 4.}, the relative position
between regions R; and R; is estimated from the relative position of each point g; of R,
with respect to each point p; of R;. The angle histogram Hg,r, is defined as a function of
the angle 0 and Hp,,(0) is the frequency of the angle O:

> —

Hrp,r,(0) = [{(pi,9)) € Ri X Ro/ £ (1, piq;) = O} (5.4)
where / (—i),;ﬁ;) denotes the angle between a reference vector —1) and ;ﬁ In order to
derive a real value, we compute the center of gravity of the normalized histogram. A
simple example is provided in Figure 5.4.

5.4 Fuzzy feature measures

A classification of comparison measures between fuzzy sets has been proposed in
Bouchon-Meunier et al (1996). The advantage of this classification is that it takes into
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Figure 5.4: Angular histogram between regions 1 and 2. The gravity center is represented
by the vertical line.

account the semantic function of the underlying feature or relation, therefore allowing us
to consider the most appropriate measure among similarity, dissimilarity, satisfiability,
inclusion or resemblance.

5.4.1 Adjacency measure based on fuzzy satisfiability

So far we have defined the area of the image in which the relation “near to" a reference
object is defined. The next step consists in estimating the matching between this fuzzy
representation and a second region. Among the possible fuzzy measures, we consider
as criterion a M-measure of satisfiability (Bouchon-Meunier et al, 1996) defined as:

erS min(,unear(Rl)(x)/ ‘URZ (X))

Sat*(near(Ry), Ry) =
( ( 1) 2) erS‘unear(Rl)(x)

(5.5)

where S denotes the spatial domain.

This fuzzy measure estimates the precision of the position of the object in the region
where the relation is satistied. It is maximal if the second object covers entirely the
kernel of yemr,). Note that the size of the initial fuzzy set is not restricted and may

be modified accordingly with respect to the image space. If the object R; is crisp, this
ZXERZ Pnear(Rl)(x)

m re r
easure reduces to TR

by the object R;.

There are situations where a slightly different formulation is also convenient. If the
object R, is relatively small, the fuzzy measure is low even if the object R, is entirely
contained in the kernel of (e r,). Therefore, we can employ the following measure:

thus representing the portion of i,,e.r,) that is covered

erS min(#nmr(Rl)(x)/ ‘URZ (X))

Sat’(near(Ry), Ry) = Y ves 1R, (X)

(5.6)

ZXER2 .ulzear(Rl)(x)
Lres HRy (X)
this time the portion of the object R, which is contained in peer(r,).-

Again, if the object R; is crisp, the measure reduces to , which represents
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5.4.2 Adjacency measure based on fuzzy resemblance

Beside satisfiability, we also choose a symmetric measure, the M-measure of resemblance
(Bouchon-Meunier et al, 1996) defined as :

Yres MUN(Unear(r;) (X)) 1R, (X))
ZxGS max((unem(Rl)(x)/ ‘URZ (X))

This measure represents the ratio between the cardinality of the intersection of ez,
and pg,, and the cardinality of their union. It is maximal if the object and the relation
are identical: this resemblance measure accounts for the positioning of the object and
for the precision of the fuzzy set as well.

In Figure 5.3(e) and Figure 5.3(f) we have illustrated the fuzzy subsets corresponding
to the two wings. With the fuzzy satisfiability measure defined above, we get a response
of 0.100 for “right wing near the left wing" and 0.109 for “left wing near the right wing".
It is equally worth noting that the two regions are disconnected with respect to crisp
adjacency.

In the remaining sections, we will denote by a spatial relation R one of these measures
of fuzzy adjacency, but we underline the fact that R could be substituted for other
functions that estimate the interaction between elements of the image structure. The
choice of the spatial relation of adjacency for our illustration is immediate because
fuzzy adjacency information extends naturally one of the most simple and pertinent
relations between image regions, the crisp adjacency. However, taking into account
more complex spatial relations such as “parallel to” or “along”, along with their fuzzy
measures of satisfiability (Vanegas et al, 2009; Takemura et al, 2005), is possible as long
as these spatial relations are appropriate for the content of the input images.

Res(near(Ry), Ry) =

5.5 Fuzzy spatial information and discriminative models

We can see that fuzzy spatial relations for images extend very conveniently the binary
relations that are being used in other domains and achieve to merge at the same time
information concerning the presence and the absence of an interaction. However, there
are difficulties that arise when using this type of relations for discriminative learning.

In the context of image representation using spatial relations, interesting work has
been done using binary relations (Deruyver et al, 2009) supported by a specific ontol-
ogy, or by using a count vector (Lebrun et al, 2008) which estimates simple relative
positioning. Typically, each independent spatial relation builds in itself a novel data
representation, therefore additional work may be necessary in order to make use of
different spatial features simultaneously and efficiently.

In this section, we focus on the fact that a single fuzzy spatial relation creates by itself
an infinite set of different representations. Rather than using multiple spatial relations
for learning, we try to underline the specific challenges that a discriminative learning
algorithm has when using a family of representations generated by the same fuzzy
spatial relation.
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5.5.1 The information gain

Very often, there is a correlation between the value of a fuzzy spatial relation and the
information gain: if the response is high, it means that the relation that the function
has been designed for is much present. Consequently, low responses may be frequent
(e.g. in the case of the “near" spatial relation) and may not bring the same amount of
information.

Discriminative learning, and discriminative learning for labeled graphs in particu-
lar, makes intensive use of similarity assessments between input objects. The similarity
score between two graphs increases if these graphs exhibit many similar substructures.
From the learner point of view, similar but less meaningful labels are just as relevant as
the labels that carry more structural information. Therefore we may experience a phe-
nomenon where the repetitive similarity of less meaningful labels masks the similarity
computed by the graph kernel using the occurrences of information rich labels. As a
result, the graph kernel function will over-increase the graph similarity measure, thus
diminishing its discriminative ability in the feature space. The cause of this phenomenon
may also be highlighted within the following statement:

Proposition 5.5.1. If regions A and B are connected in the graph G, and regions C and D are
connected in the graph G’, and if A is similar to C and if B is similar to D, and (A,B) and (C,D)
are equally near, then the similarity between G and G’ is increased.

This result is a direct consequence of the behavior of stationary kernels, such as the
RBF kernel; if features exhibit close values, the value of the kernel will be high and will
not depend on the feature values. This behavior denotes that the discriminative model
is polluted by the quantity of information that is not equally important for the task and
that masks the relevant information. A reasoning model that would be more adapted
for our situation, and that we need to adopt in order to be able to cope with noisy spatial
information, is depicted by the following proposition:

Proposition 5.5.2. If regions A and B are connected in the graph G, and regions C and D are
connected in the graph G’, and if A is similar to C and if B is similar to D, and (A,B) and (C,D)
are equally near, and A is near to B, and C is near to D, then the similarity between G and
G’ is increased.

5.5.2 Graph pruning

A straightforward solution to this situation is to prune the edges by thresholding the
spatial relation values, so that edges will appear only when the fuzzy adjacency estima-
tion between two vertices goes beyond a minimum value 6. We consider that, below
a certain value, there is no relation whatsoever between two regions. This also implies
that we consider that the absence of the spatial relation does not bring any help at all in
the discriminative task. In the following, we denote by V(G) the vertex set of graph G,
and by &(G) its edge set.
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Definition 5.1 (0-graph). Let us consider a region representation of an image I and a spatial
relation R. By V(I) we denote the set of vertices corresponding to the regions of I. A O-graph
Gy is defined by:

Go = (V(I); (v1,02) € VA(DIR(01,v2) = 6) (5.7)
where R(vy,vy) is the generic spatial relation function between regions (vertices) v1 and v,.

In this way, we can associate to the pair (I, R) an infinite set of graphical representa-
tions G = {Ggloso. In reality, the size of this set is finite and is bounded by w
Two elements of interest in G are the full graph G¢ = Gy|60 = 0, and the fully disconnected
graph G; = Ggl0 > maxy, v,ev( R(v1,02). Since Gf and G4 contains the maximum and
the minimum possible number of edges respectively, we may state that from this struc-
tural point of view, the other elements of G are situated “between” these two particular
members.

However, the structure of the strict adjacency graph enriched by the labeling deter-

mined by R, that we further denote by G,:

G, ={V =V();
& = {(v1, v2) € V?|border(v,, v,) > 0;
S, = {label(v)|v € V};
Se = {R(v1, v2)I(v1, v2) € EY} (5.8)

does not necessarily belong to this set G of 0-graphs. Given the perceptual importance
of the segmentation graph, a valid question that is raised now is: “Which is the most
consistent and reliable projection G of the segmentation graph G, into the family G?”. The
overall purpose of determining this projection is that if R is well adapted to preprocessing
noise, then strict adjacency graphs modeling the same entity will have the tendency to
project into more similar graphs G, thus improving the representations robustness.

In order to project G, into G, we need an appropriate distance which we describe
below.

Graph edit distance

One possible way to estimate a structural difference between two labeled graphs is to
define a set Y of allowed elementary operations v, such as insertion, deletion or label
modification of a vertex or an edge, and a set W of costs ¢’ associated to the elements of
Y. Let us recall the general definition of the graph edit distance (Riesen et al, 2007):

Definition 5.2 (Graph edit distance). Let G = (V, &) be the source and G' = (V', &) be the
target graph. The graph edit distance between G and G’ is defined by:

6(G,G)= ~ min Zgb(v)

0EN(G,G)
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where the set of edit paths I'(G,G") contains all the possible finite sequences of elementary
operations that transform G into G'.

Expliciting 6(G, G’) for strict adjacency and 0-graphs

An important property that all the graphical models display here is that the vertex set
is the same, as a unique representation of the regions of I: VG, V(G) = V(I). Under
these circumstances, the graph edit distance 6(G,, Gg) between G, and a Gy € G depends
strictly of the differences in their edge sets. In addition, if two edges are present in G,
and Gy between the same vertices (v;, v;), they have the same label R(v;, v,). This means
that we can restrict the set Y to elementary operations of edge insertion and deletion
only.

The edge set differences are generated by strictly adjacent regions that are not close
enough in terms of O-fuzzy adjacency, and non strictly adjacent regions that are close
in terms of O-fuzzy adjacency. A very simple definition of costs for the elementary
operations is that we only apply a unit cost for adding or deleting an edge between pairs
of regions. The graph edit distance may be expressed as:

8(Ga, Go) = card{(vy; v2) € VA(G,)(v1,02) € E(G,) A R(vy,v,) < O}
+ card{(vy; ;) € (VZ(GH)I(vl,Uz) ¢ E(Gy) A R(vy,vp) > 6} (5.9)

The graph or graphs G € G that minimize ¢ are the closest (structurally) to the
adjacency graph G,. These are the projections of G, in the set G, and are ideally robust
generalizations of G, with respect to the spatial relation R.

The element that bridges the informational gap between G, and the set G is the
complete graph G, which includes (structurally) any element Gy € G, as well as the strict
adjacency graph G,. Ideally, the learning algorithm should exhibit the best performance
with Gy, but then it should be able to cope well with the issue generated by a lot of
similar low-information edge labels.

5.6 Experiments and results

5.6.1 Data set

The Internet Brain Segmentation Repository (IBSR) data set' contains real clinical data
and is a widely used 3D healthy brain magnetic resonance image (MRI) database. It
provides eighteen manually-guided expert brain segmentations, each of them being
available for three different views, along reference planes: axial, sagittal and coronal.
Each element of IBSR is a set of slices that cover the whole brain.

!The MR brain data sets and their manual segmentations were provided by the Cen-
ter for Morphometric Analysis at Massachusetts General Hospital and are available at
http://www.cma.mgh.harvard.edu/ibsr/
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Figure 5.5: Samples from IBSR data set. 5.5a, 5.5b Two slices of the sagittal view of the
same 3D MRI volume representing the two categories. 5.5c, 5.5d Coronal view. 5.5e,
5.5f Axial view. The original images are presented below their corresponding manual
segmentations.

(k) )

The main purpose of the data set is to provide a tool for evaluating the performance
of segmentation algorithms. However, the fact that it is freely available and that it
offers high quality segmentations as input data makes it also useful for our experiments,
in the context of unsupervised image segmentation methods and their unsupervised
evaluations still being far from perfect (Section 4.3).

5.6.2 Experimental setup

Image categorization between images belonging to different views in the data set (sagit-
tal, coronal, axial) is performed with a 100% success rate for many of the features that
we take into account. Therefore, we built a more challenging categorization problem by
considering images belonging to the same view; a secondary benefit of this approach is
that by choosing certain slices we can control the difficulty of the task.

Since the brain representation is made up of consecutive slices in any of the three
views and the brain structure varies progressively, we created one of the classes by
selected three consecutive slices at the same localization over all the eighteen 3D brain
segmentations. A second class was built using three consecutive slices which are posi-
tioned at a certain distance from the first block; as the distance between the two blocks
of slices decreases, the difficulty of the categorization task increases. We found out that
choosing a distance of only two or three slices between the training blocks, along with
category intra-variability, would account for a difficult categorization task. Table 5.1
references the total number of slices in each 3D brain view and the indices of slices being
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Table 5.1: Identification of the slices composing the database in each view of the 3D
volume, for the three possible views: sagittal (S), coronal (C) and axial (A)

View Slices Slicescat. 1  Slices cat. 2

S 256 121,122,123 126,127,128
C 128 58, 59, 60 64, 65, 66
A 256 121,122,123 126,127,128

used for defining each category; Figure 5.5 presents typical class elements for all views.
Each brain view will provide three images for each class, thus creating a class definition
of 54 images.

Concerning the graph construction and labeling, nodes are represented by manually
segmented regions while edges account for spatial relations between regions. For vertex
labeling, we use normalized region visual features: the mean gray level (which is
normalized according to the lightest and darkest regions in the image), the relative
region area (normalized according to the total image area) and the normalized region
compacity, defined as the normalized ratio between its surface and its squared perimeter.
In the following part of this section, we will experiment with the coronal view and with
the mean gray level as region feature. Spatial relations based on adjacency measures
being considered between image regions build up the edge labeling, respectively.

We perform n-fold cross validation on the data set (n = 10), and we repeat the
classification task m times (m = 10); the performance given below is the mean value of
these m executions.

5.6.3 Categorization with strict adjacency structures

Given a region feature and a spatial relation, we build the labeled strict adjacency graphs
G, and we use RBF kernels with parameters that are adapted to the range [0, 1] of these
normalized features (see Figures 5.6, 5.7 and 5.8). Afterwards, we set up a grid search
in the o parameter space for each of the two kernel functions.

For each element of the grid, we try multiple values for the regularization parameter C
ofthe SVM, C € {1072,107%,...,10°%}. Figures 5.6,5.7 and 5.8 present the best classification
performance for each pair (0uertex, Tedge), for the values and features specified on the axis.

The novelty of this approach is that the adjacency graphs include as edge labels
fuzzy estimations of the region adjacency. However, some regions which are strictly
adjacent might have a small estimation of the fuzzy adjacency, while regions which are
disconnected may present a higher value of R. Next, we analyze the impact of adding
structural information which is not necessarily tied to the strict adjacency between image
regions.
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0.001 0.002 0.005 0.01 002 005 01 025 05 1
o gray

(a) Using the mean gray level region feature and the
Sat’® measure, the best performance, 99.00%, is attained
for oyertex = 1 and Gegqe = 0.05.

0.001 0.002 0.005 0.01 0.02 005 01 025 05 1
o area

o sat’

(b) Using the relative area region feature and the Sat’
measure, the best performance, 98.91%, is attained for
Overtex = 0.005 and Oedge = 0.005.

Figure 5.6: Categorization performance for the Sat’ measure and two different region
features, using grid search in the space of kernel parameters. At this point, we model
input data using strict adjacency graphs.
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o gray

(a) Using the mean gray level region feature and the
Sat* measure, the best performance, 96.16%, is attained
for yerter = 0.5 and g = 0.05.

=

0.001 0.002 0.005 0.01 0.02 0.05 0.1
o area

o sat®

(b) Using the relative area region feature and the Satk
measure, the best performance, 98.59%, is attained for
Overtex = 0.02 and Ggq = 0.1.

Figure 5.7: Categorization performance for the Sat* measure and two different region
features, using grid search in the space of kernel parameters. At this point, we model
input data using strict adjacency graphs.
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(a) Using the mean gray level region feature and the Res
measure, the best performance, 97.68%, is attained for
Overtex = 1 and egge = 0.02.

0.0001
! i 78

0.001 0.002 0.005 0.01 0.02 0.05 0.1
o area

o Res

(b) Using the relative area region feature and the Res
measure, the best performance, 100.00%, is attained for
Overtex = 0.05 and 046 = 0.02.

Figure 5.8: Categorization performance for the Res measure and two different region
features, using grid search in the space of kernel parameters. At this point, we model

input data using strict adjacency graphs.
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5.6.4 Categorization with fuzzy adjacency structures

In order to understand better the nature of these measures, we have indexed all the
region pair interactions in all the images in the dataset. Table 5.2 shows some interesting
observations related to the properties of these estimations. If we consider the numerical
distribution, we notice that Sat° attains the maximal value, whilst the other two estima-
tions are harder to satisfy. This results from the fact that small objects may be found
entirely in the kernel of a reference object, but never include the whole kernel of the
reference object.

Another observation that motivates the analysis of 0-graphs is that strict adjacency
and a high value of the estimation of fuzzy adjacency do not imply each other (line
two and three of Table 5.2). The obvious implication is that it is sometimes advisable to
place edges in graph representations even in the absence of strict adjacency. The second
implication is that it is equally advisable to avoid placing edges in some cases where
strict adjacency is present.

Section 5.5.2 presented a method that assists decision making in such circumstances.
In order to estimate the impact of different estimation thresholds 0 on the structure
of 0-graphs, we compute the sum of of graph edit distances between the set of strict
adjacency graphs and O-thresholded graphs with respect to the relation R and using
Equation 5.9, for all the image representations in the database. The evolutions of the
distances are presented in Figure 5.9, Figure 5.10 and Figure 5.11, for Sat°,Sat* and Res
estimations respectively . The threshold 6 that would minimize globally the structural
difference between G, and Gy € G is given by the value corresponding to the minimum
in the distance sum profiles (Table 5.2).

For our dataset, the optimal threshold for the Sat® satisfiability measure is 6 = 0.934.
This high value means that most of the times, strictly adjacent regions account for
satisfiability values that go beyond the threshold, as it is perceivable from the high
proportion of maximum values. The next measures exhibit a different behavior; they
penalize very fast the absence of a strong adjacency. In this cases, the R values associated
to the strict adjacency relation are more scattered in an interval of low values, thus the
optimal thresholds are situated further from the maximum values: .0 = 0.101 for Sat*,
and 0 = 0.091 for Res.

5.6.5 Fuzzy measures of adjacency and frequent low values

Let us analyze next the impact of adding structural information which is not necessarily
tied to the strict adjacency between image regions. We have already highlighted the fact
that for two of the three estimations, high values are absent. The complementary aspect
which is interesting from the statistical learning point of view (Section 5.5) concerns the
frequency of null estimations, which carry relatively low information.

In order to visualize the repartition between important adjacency information and
less important adjacency interactions, we present the histograms in Figures 5.12,5.13
and 5.14 that count the values of the estimations computed as in Section 5.4, between
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Table 5.2: Observations related to the properties of the three measures of fuzzy adjacency
on the set of all the region pairs in all the images in the dataset

Observation Satisfiability Sat° Satisfiability Sat* Resemblance Res
max R(v1, v2) 1.000 0.629 0.386
"max  R(v, ;) 1.000 0.481 0.287

border(v1,02)=0

min  R(vy,v,) 6.25e-4 1.07e-4 8.60e-5
bPrder(vl,vZ)>O
?) 0.934 0.101 0.091
R(vq,v,) < 0.01 28.47 % 52.66% 55.63 %

all the region pairs in all the dataset images. These figures depict very well the gradual
transition between crisp adjacency (a histogram with all the values in 0 and 1, and
nothing between) and the three estimations of fuzzy adjacency.

From these figures, we notice that the first type of measure, Sat*, takes the maximum
value more often, while the frequency of low values is significant. For the second
measure, Sat°, maximum values are quite low even for adjacent regions (the maximum
value in all the dataset being 0.629), and low values are even more frequent. Finally,
the third type of measure, Res, exhibits values which are even more concentrated in the
lower part of the support, the maximum value being 0.386. The exact frequency of very
low values (R(v;, v;) < 0.01) is also presented in Table 5.2, for each of the three measures.
In each case a high proportion of low estimations of fuzzy adjacency is concentrated in
this part of the distribution.

In Tables 5.3, 5.4 and 5.5 we compare the categorization performances for different
settings involving spatial relations. As a reference, we use the best classifier detected
for a certain region feature-spatial relation pair, using grid search. This classifier relies
on the strict adjacency graph extracted from the image, but the edges are labeled using
the spatial relation value between the corresponding vertices. The performance of this
classifier is recalled in the fourth column of the graph. The interest of incorporating
spatial relation information to the edge labeling is proven in the third column by the
weak performance of the classifier on the adjacency graph which uses only the region
tfeature information (the edge kernel k, being fixed set as k., = 1).

Next, we pass to the threshold graphs Gy in the set G. In our setting, the spatial
relations R are represented using values in [0, 1], therefore the threshold 0 is also a
number in [0, 1]. We estimate the categorization performance along the set G in specific
points adapted to the value distribution of R, such as the complete graph G0 = 0, G,
and values in between. We repeat the same experience for some suboptimal kernels for
the image features, in order to observe the variation with 0 in this kind of points too.
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Figure 5.9: For a given Sat’ threshold 0, we show the number of different edges between
the set of strict adjacency graphs of the dataset and the set of O-threshold graphs associ-
ated to the same images. The minimal value accounts for the highest overall structural
similarity between the strict adjacency graphs and the O-threshold graphs.
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Figure 5.10: For a given Sat* threshold 0, we show the number of different edges
between the set of strict adjacency graphs of the dataset and the set of O-threshold
graphs associated to the same images. The minimal value accounts for the highest
overall structural similarity between the strict adjacency graphs and the O-threshold
graphs.
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Figure 5.11: For a given Res threshold 0, we show the number of different edges between
the set of strict adjacency graphs of the dataset and the set of O-threshold graphs associ-
ated to the same images. The minimal value accounts for the highest overall structural
similarity between the strict adjacency graphs and the 0-threshold graphs.
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Figure 5.12: Histogram of the satisfiability Sat’ measure of fuzzy adjacency. Null values
are the most frequent ones, but maximal values are frequent too.
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Figure 5.13: Histogram of the satisfiability Sat* measure. Much lower values are ob-
served, as this measure estimates the presence of the second object over a circular
neighborhood of the reference region.The maximum value in all the dataset is 0.629.
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Figure 5.14: Histogram of the resemblance Res measure. Null values are equally the most
frequent ones, but this measure penalizes very fast the absence of a strong adjacency
and the maximum value in all the dataset is 0.386.
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5.7 Discussion

In the first place, the benefits of enriching the strict adjacent graph structure with fuzzy
spatial labels are clearly visible from the discrepancy between the third and the fourth
column in all the final tables. Performing a grid search in the feature kernel space for
a region feature and a spatial relation is a tedious process but the resulting parameters
(0, 0,) guarantee a high performance.

From this point on, we may notice that the spatial relation Sat’ does not cope well
with the transition to thresholded labels. For multiple values of O that are chosen as to
take out null estimation edges, or to select only high estimation edges, the performances
of the classifiers are not comparable with the previous case, which was based on the
enriched adjacency graph.

For the other two estimations, overall results show that once we leave G, and pass to
structures Gg which are based entirely on thresholded fuzzy spatial relations, classifica-
tion results are comparable with the best performance witnessed on the strict adjacency
graph structure with the optimal kernels provided by (7, 0;). However, we do improve
systematically the classification results using Gy if the parameters (o, 0.) are suboptimal.
This means that by using an adapted threshold 0 we can decrease the grid search size
and still obtain good results while experiencing a noticeable speed gain.

In order to find the adapted threshold 0 which is specific to each R, we notice that
if 0 > 0, performance is systematically reduced; this means that pruning edges beyond
this point has a clear harmful result on the image representation. Adding edges to G,
however gradually increases the performance, up to a point when Gy is very close to
becoming Gf, when performance falls drastically. In our results, this is visible for the
threshold 6 = 0.01, which rejects a high proportion of low information edges that would
otherwise flood the graph classifier.

5.8 Conclusion

In this part of our work, we studied the benefits offered by image representations
using labeled graphical models, as well as by employing fuzzy descriptors for spatial
information. Graphical models allow for a flexible integration between intrinsic visual
features of image parts and the spatial interactions taking place between image parts.
We showed that fuzzy information is highly beneficial for the learning process when
we use it to enrich the labeling of strict adjacency graphical structures, but that if we
extend the edge set beyond strict adjacency, loose spatial interactions may screen more
relevant spatial information and that generic kernel functions are not well adapted to
take into account the entirety of spatial relations within images. A solution that we
propose in order to filter low information in edge labeling is to prune the edge set using
thresholds that are adapted to the nature of each spatial relation estimation. Results
show that integrating fuzzy spatial information is beneficial for image interpretation,
and that thresholding the spatial values correctly is an efficient method for filtering out
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less important spatial information.
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Table 5.3: Categorization performance for (region feature - Sat’) image information.
The parameters for the kernel functions are the optimal values found using the grid
search, and a pair of suboptimal values. In the third column, the strict adjacency graph
is used, but no spatial relation labels are added to the graph. In the fourth column, we
use fuzzy adjacency labeling on the strict adjacency graph. Afterwards, we use different
O-threshold fuzzy adjacency graphs.

Region feature Spatial relation  Strictadj.  Strict adj. Fuzzy 0-graphs
No relation Fuzzy labeling

Mean gray Sat® Satistiability 53.76% 99.00% 6=0.00 (75.91%)

(0=1.0) (0=0.05) 0=0.05 (78.72%)

6=0.20 (73.22%)
6=0.93 (73.17%)
6=0.99 (75.89%)

Mean gray Sat® Satisfiability 51.93% 90.45% 0=0.00 (57.94%)
(0=0.05) (0=0.05) 6=0.05 (68.85%)
0=0.20 (69.67%)
0=0.93 (63.38%)
0=0.99 (64.23%)

Rel. area Sat® Satisfiability 51.07% 98.91% 0=0.00 (78.47%)
(6=0.005) (6=0.005) 0=0.05 (82.21%)
0=0.20 (72.12%)
0=0.93 (77.38%)
6=0.99 (81.64%)

Rel. area Sat’ Satistfiability 51.07% 92.54% 6=0.00 (82.36%)
(0=0.005) (0=0.5) 6=0.05 (85.66%)
6=0.20 (84.94%)
0=0.93 (74.45%)
6=0.99 (79.71%)
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Table 5.4: Categorization performance for (region feature - Sat) image information.
The parameters for the kernel functions are the optimal values found using the grid
search, and a pair of suboptimal values. In the third column, the strict adjacency graph
is used, but no spatial relation labels are added to the graph. In the fourth column, we
use fuzzy adjacency labeling on the strict adjacency graph. Afterwards, we use different
O-threshold fuzzy adjacency graphs.

Region feature Spatial relation  Strictadj.  Strict adj. Fuzzy 0-graphs
No relation Fuzzy labeling

Mean gray Sat* Satisfiability 52.18% 96.16% 6=0.00 (95.01%)

(0=0.5) (0=0.05) 0=0.01 (93.81%)

6=0.02 (92.90%)
6=0.10 (88.73%)
6=0.50 (85.63%)

Mean gray Sat* Satisfiability 51.93% 90.49% 0=0.00 (73.51%)
(0=0.01) (0=0.05) 6=0.01 (90.49%)
0=0.02 (87.04%)
0=0.10 (85.74%)
0=0.50 (80.18%)

Rel. area Sat* Satisfiability 50.18% 98.59% 6=0.00 (95.86%)
(0=0.02) (0=0.1) 6=0.01 (98.14%)
6=0.02 (97.98%)
0=0.10 (97.74%)
6=0.50 (73.87%)

Rel. area Sat* Satisfiability 50.18% 88.11% 6=0.00 (93.45%)
(0=0.02) (0=0.001) 6=0.01 (97.15%)
6=0.02 (93.84%)
6=0.10 (83.66%)
6=0.50 (71.81%)
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Table 5.5: Categorization performance for (region feature - Res) image information. The
parameters for the kernel functions are the optimal values found using the grid search,
and a pair of suboptimal values. In the third column, the strict adjacency graph is used,
but no spatial relation labels are added to the graph. In the fourth column, we use
fuzzy adjacency labeling on the strict adjacency graph. Afterwards, we use different
O-threshold fuzzy adjacency graphs.

Region feature Spatial relation Strict adj.  Strict adj. Fuzzy 0-graphs
No relation Fuzzy labeling

Mean gray Resemblance 53.76% 97.68% 6=0.00 (78.64%)

(0=1.00) (0=0.02) 0=0.01 (94.49%)

6=0.02 (92.00%)
6=0.09 (74.43%)
6=0.30 (65.56%)

Mean gray Resemblance ~ 53.32% 90.06% 0=0.00 (57.03%)
(0=0.25) (0=0.01) 0=0.01 (95.49%)
6=0.02 (90.35%)
0=0.09 (88.55%)
0=0.30 (58.33%)

Rel. area Resemblance 51.94% 100.00% 6=0.00 (96.57.%)
(0=0.05) (0=0.02) 6=0.01 (98.63%)
6=0.02 (99.81%)
0=0.09 (99.05%)
6=0.30 (73.07%)

Rel. area Resemblance 51.94% 92.37% 6=0.00 (95.18%)
(0=0.05) (0=0.002) 6=0.01 (99.09%)
6=0.02 (95.45%)
0=0.09 (85.27%)
0=0.30 (58.33%)
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Chapter 6

Automated Visual Feature Selection
Using Multiple Kernel Learning

6.1 Motivation for multiple kernel learning

When one chooses one of the many solutions for image representation that we have men-
tioned in Chapter 4, it is not always clear whether a given set of features is appropriate
for that particular application. This problem gets more complicated if different features
generate individual representations which define independent views of the same input
data. Determining the optimal way of making use simultaneously of different views of
the data, and filtering out features that are useless in a specific context, is not a trivial
task.

The interest for integrating heterogeneous data using multiple kernels originally
arose in computational biology, as a large number of fitting kernels exist for entity repre-
sentations. A general framework for integrating and drawing inferences from a collec-
tion of kernel observations has been proposed and successfully applied for membrane
protein prediction (Lanckriet et al, 2003) and protein function prediction (Lanckriet et al,
2004b). Since then, the multiple kernel learning algorithms evolved and their applica-
bility extended greatly.

If we relate specifically to our method and to the preprocessing step, images are
segmented and a strict adjacency graph is built upon the resulting adjacent regions.
Intrinsic region features like color or shape are computed. The only structural informa-
tion retrieved from the image is the adjacency relation between regions that is implicitly
stored in the graph structure by the presence of an edge between two vertices. Once the
graph is built, a marginalized kernel extension relying on the features mentioned above
is used to assess the similarity between two graphs and to build a classifier. However,
the method is limited in the sense that only one feature or one pair (visual feature-spatial
relation) at a time is used to build a classifier. This kind of situation where multiple clas-
sifiers use limited knowledge on the input data is not very rare; we can mention, among
other situations, the example of hyperspectral image classification where individual
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bands are used by separate learners (Tuia et al, 2009). Closer to region based methods,
in Harchaoui and Bach (2007), the authors consider finite random walks on segmenta-
tion graphs and use multiple kernel learning for different random walk lengths. The
visual information being considered is region color and the only spatial relation is also
the adjacency between segmented regions.

6.2 Ourapproach usingthe multiple kernel learning frame-
work

In this paper, we propose to automatically create a kernel based on multiple visual fea-
tures and spatial relations. The presence of multiple features emphasizes the importance
of a generic, reliable method that combines data sources in building the discriminant
function of the classifier (Lanckriet et al, 2004a). As we enrich the graph by adding com-
plex structural information retrieved from the image, such as topological relations or
metric spatial relations, this raises specific methodological problems, that are addressed
turther, in particular by using different kernels for each type of relation and combining
them under a global optimization constraint.

The framework is open to the introduction of any other feature that describes image
regions or relations between them. However, we stress the importance of selecting
relevant features and of finding positive definite kernels that give an intuitive similarity
measure between them. The general outline of the proposed method is illustrated in
Figure 6.1.

6.3 The multiple kernel learning formalism

The purpose of multiple kernel learning (MKL) is to provide a single kernel function for
heterogeneous data, in this case exemplified by different types of features annotating
the graph representation of an image.

For a given categorization task using a training set X with m elements, image infor-
mation is processed in the form of a symmetric and positive definite matrix K € R,
commonly designated as the kernel matrix:

Ki,/’ = K(Xl', x/) (61)

with x;,x; € X. The first step of the method is to build these basis kernel matri-
ces {Ky,...,Kg} corresponding to kernel functions {Kg,..., K} of different features
{fi,..., fa} taken into account. These matrices are basic in the way that each of them
represents a narrow view of the data. For a challenging image set, categorization in
such basic feature spaces might not be efficient, because a reliable discrimination is not
performed using only one feature. In these cases, fusion of the information brought by
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Figure 6.1: The diagram of our method. In the training part, for each image, keypoints
(possibly highlighted in a detection block) along with spatial information are used to
create a graph representation. Different kernel functions for individual features that
label the graph representation are used to build base SVM classifiers. Finally, multiple
kernel learning is used on these functions, and an optimal multiple feature kernel is
determined. In the testing part, a graph is extracted from each image of the test database,
and is classified by a support vector machine using the multiple feature kernel and the
graph representations of training images.

each kernel is necessary. The most straightforward solution to this problem is to build
a linear combination of the basis kernels:

K= Z;" MK (6.2)

This type of linear combination represents a compromise that allows mutual compen-
sation among different views of the data, thus ameliorating the categorization flexibility.
The methodological problem of optimally retrieving the weight vector A has been ad-
dressed in Lanckriet et al (2004a) and consists in globally optimizing over the convex
cone P of symmetric, positive definite matrices:

P={XeR™|X=XX>0) (6.3)
the following SVM-like dual problem:
ﬁn%{n max 2a’e — a’D(y) K D(y)a, subject to (6.4)
€ n aE m
KeP
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C>a>0, traceK) =c, K = Z AKg, a'y=0
i=1
where m is the size of the training database, e € R™ is the vector the elements of which
are equal to 1 and D(y) € R™ x R™ is the matrix of null elements except the diagonal
ones which are the labels (+1 or -1) of the training examples, D(y);; = y;.

In the problem specified above, C represents the soft margin parameter, while c > 0
tixes the trace of the resulting matrix. The interest of this program is that it minimizes
the cost function of the classifier with respect to both the discriminant boundary and the
parameters A;. The output is a set of weights and a discriminant function that combines
information from multiple kernel spaces.

The problem can be transposed into the following quadratically constrained quadratic
program (Lanckriet et al, 2004a), the primal-dual solution of which indicates the optimal
weights A;:

n;itn 2a’e — ct, subject to (6.5)

t>——a' D(y) K; D L, i=1,...,
_trace(Kﬁ)a ) f y)a, i "

C>a>0,a"y=0

The drawback of this approach is that solving the problem becomes unfeasible as the
number 7 of available kernels increases, mainly because in the SVM primal of 6.4 the
regularization of the weight vector a mixed (I-/;)-norm is used, instead of the classical
[,-norm. Recently, a more efficient multiple learning algorithm that solves the MKL
problem through a primal formulation involving a weighted /,-norm regularization has
been proposed (Rakotomamonyjy et al, 2007):

. 1 ) .
1. +C ir b tt 6.6
min, 2 I Zijg subject o 66

yi(sz(xi)"'b] >1 —51',2/\1( =1,&>0,A4>0
k k

with fi € 7, the reproducing kernel Hilbert space (RKHS) associated with the kernel
K. The advantage of this new formulation over the initial MKL problem introduced by
Equation 6.5 is that even though the two systems are convex, only the latter is smooth
due to the weighted l,-norm regularization.

Using MKL in this form for our specific problem boils down to defining basis kernel
functions for each feature, with parameters being selected according to their feature
variability in the data. More precisely, the threshold for the discrimination function
should roughly indicate the smallest distance between two feature values that would
trigger a 0-similarity decision for an observer. This threshold is closely correlated to the
feature type and equally to the data being analyzed.
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For each of the basis kernels above, we build a graph kernel that will provide us
with a graph similarity estimate based on a single feature of the data. Some features are
more discriminative than others for a specific data set and therefore generate a better
classifier. The multiple kernel learning framework presented above allows us to build a
heterogenous decision function that weighs each feature based on its relative relevance
in the feature set through its weight A;, thus providing optimal performance with the
given feature kernels as inputs (Fig. 6.2).

— _ R T i
Basis kernel construction B Graph extraction Multiol
—_— for training images utiple
RBF feature kernel
Feature f
kernel
T ——
\J
Kernel »| Marginalized - Multiple
parameter s graph kernel | kernel learning
- S —/  —— T —
- -7

Figure 6.2: A detail of the multiple kernel learning step of our method. For each feature,
RBF kernels built using different parameters are computed and used in the general
marginalized graph kernel in order to get a representation of training set through the
selected feature. Finally, the MKL algorithm is used and the selected basis kernels are
used together in a multiple feature kernel.

6.4 MKIL, structured data and relations

The standard MKL framework copes very well with the common situation, when dif-
ferent types of kernels belonging to a set K = {Kj, ..., K,} are computed independently
on a training set X, and then the multiple kernel is computed using Equation 6.6. An
implicit assumption is that the elements of the set K are computationally independent
(each element taken individually is sufficient to get a classifier) and we can train one
classifier per kernel K; € K.

Our setting is slightly different and more complex; more precisely, the graph repre-
sentations in X have independent parts: the vertex labels and the edge labels. Therefore,
we have two distinct families of kernel candidates, which are combined within the graph
marginalized kernel computation in Equation 3.5, simply denoted here by the function
f: Ke = f(Ky, K.). We call K; a composite kernel because it depends on more than one
kernel function at a time. In fact, K¢ presents this property because it resorts to a con-
volution kernel for computing path similarities in graphs, and convolution kernels are
composite:
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D
K(x,x") = Z H KD (x,, x") 6.7)
{x1,...xp}eR(x) d=1

{x],xp JeR™1(x')

In practice, we have a large family of n hypotheses XK, for vertex kernels and another
one K, of medge kernels. Vertices or edges may be multi-labeled and therefore variability
in vertex kernels may arise as a consequence of label variability or because of parameter
variability for a certain label. For example, vertex labels may encode texture, color, shape
information for regions or more general visual interest areas in an image, and edge labels
account for spatial information, such as distance, orientation, symmetry etc. Assuming
that we consider exhaustively all the possible n - m pairs of kernels (K¢ ;Kf ) € (K, Ke)
that correspond to vertex and edge features («; ), we will get a graph kernel K*# which
will be useful in detecting patterns depending only of a and . In other words, we
would assume that there are no higher order correlations between features, which is not
entirely accurate.

The general MKL formulation imposes that we provide a selection family for K; and
thus, MKL is performed at graph kernel level, and not at the vertex or edge level. The
drawback of this constraint is that, starting from an individual vertex or edge kernel, we
are supposed to provide a graph kernel and thus to consider an implicit value for the
missing factor (K, if we analyze a vertex kernel and K, if we analyze an edge kernel). In
both cases we set the missing value to 1, being committed to discriminating with a basis
kernel using one feature only. However, we are convinced that a MKL formulation that
would optimize the terms K, and K, directly inside the function f (instead of optimizing
the result of f) would perform better. To our knowledge, this problem of optimizing
directly the terms of such a composite kernel has not yet been addressed, most probably
because it is quite unusual that an object x € X needs more than one kernel function at the
same time for its substructures. Addressing this problem is an interesting perspective
of future work.

6.5 Experiments and results

In order to perform the necessary tests for this chapter, we will slightly modify the
setting in order to adapt to the new algorithm flow, while at the same time maintaining
a reasonable experimental size. More specifically, for each of the three categorization
sets defined in the previous chapter, we are going to select randomly a smaller train
set of 30 images that we are going to keep unchanged in the following part of the
experiment. Concerning the graph construction and labeling, we use three normalized
visual features as region descriptors: the mean gray level (whichis normalized according
to the lightest and darkest regions in the image), the relative region area (normalized
according to the total image area) and the normalized region compacity, defined as
the normalized ratio between its surface and its squared perimeter. Spatial relations
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being considered between image regions are the fuzzy adjacency using resemblance or
satisfiability estimations.

For estimating feature similarity, we use RBF kernels with thresholds that are again
adapted to the range [0,1] of these normalized features: ¢ € {0.05,0.1,0.2,0.4,0.8}.
Likewise, RBF kernels are used for estimating spatial relation similarity between pairs
of regions, but since their numerical values tend to be smaller, the kernel parameter will
be selected from the following set: o € {0.01,0.02,0.05, 0.1, 0.2}. As mentioned above, for
each classification task we use N = 30 training graphs and the rest asT = 78 test graphs,
evenly divided for the two categories.

Each feature or relation kernel is integrated in a graph marginalized kernel that we
use to get a matrix (Equation 6.1) which corresponds to a certain view of our training
data set; this results in a set of 25 training matrices. At this point, we use SimpleMKL'
which solves Equation 6.6 in order to find an optimal combination among the kernels
that had been computed. For the regularization parameter C of the SVM that controls the
trade-off between maximizing the margin and minimizing the /;-norm of the slack vector
&, we perform a grid-search with uniform resolution in log, , space: log,,C € {-3,...,6}.
Our results correspond to observations reported by Rakotomamonjy et al (2007), that as
the value of the regularization parameter C increases, the number of kernels taken into
consideration in Eq. 6.2 increases too, and stabilizes at a certain point.

Table 6.1: Categorization error in sagittal projection for the kernels selected by MKL
and for the multiple kernel, with C = 10% and C = 10°.

C=10°
Feature kernel (¢ value) Cat.1 error Cat.2 error Global error A
gray level (0.05) 0.10 0.31 0.21 0.38
gray level (0.20) 0.13 0.21 0.17 0.06
compacity (0.05) 0.03 0.10 0.06 0.24
area (0.05) 0.00 0.18 0.09 0.32
MK 0.03 0.03 0.03 -

Cc=10°

Feature kernel (¢ value) Cat.1 error Cat.2 error Global error A

gray level (0.05) 0.08 0.28 0.18 0.38
gray level (0.20) 0.03 0.21 0.12 0.06
compacity (0.05) 0.00 0.10 0.05 0.24
area (0.05) 0.00 0.21 0.10 0.32
MK 0.03 0.03 0.03 -

1SimpleMKL, a Matlab multiple kernel learning toolbox, available at http://asi.insa-
rouen.fr/enseignants/ arakotom/code/mklindex.html
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Table 6.2: Categorization error in coronal projection for the kernels selected by MKL
and for the multiple kernel, with C = 10° and C = 10°.

C=10°
Feature kernel (o value) Cat.1 error Cat.2 error Global error A
gray level (0.05) 0.38 0.21 0.29 0.28
compacity (0.05) 0.23 0.18 0.21 0.48
area (0.05) 0.26 0.03 0.14 0.24
MK 0.15 0.10 0.13 -
C=10

Feature kernel (0 value) Cat.1 error Cat.2 error Global error A

gray level (0.05) 0.33 0.28 0.31 0.36
compacity (0.05) 0.13 0.21 0.17 0.40
area (0.05) 0.33 0.03 0.18 0.24
MK 0.18 0.03 0.10 -

Finally, for a given parameter C, the effectiveness of individual feature or relation
based kernels and of the multiple kernel is tested in their corresponding SVM classifiers;
higher values of C correspond to a higher performance, therefore we present below
results for a saturated value C = 10° along with those for C corresponding to the
transition range of the kernel weight vector A, C = 10°. For the sake of brevity, among
the estimations for the 25 kernels being considered each time, we will present those for
the individual kernels that have been selected by the MKL algorithm.

For each of the three different projections that correspond to three different catego-
rization tasks and for each of the feature kernels selected by MKL, we present the global
categorization error ,the individual error for each of the two classes, and the feature
kernel weight in the multiple kernel. Finally the performance of the multiple kernel is
presented.

Discussion In most cases, results show an amelioration of the performance compared
to the initial categorization rates, thus proving the interest of the multiple kernel learning
approach for image kernels. Tables 6.1, 6.2 and 6.3 present the performance evaluation
for the sagittal, coronal and axial projections respectively.

In sagittal projection, individual kernels that have been selected by the MKL algo-
rithm have an overall good performance, and the multiple kernel succeeds in obtaining
a clear amelioration over its constituents. A noticeable behavior, which is also common
to the other two categorization tasks, is that kernels built upon small, discriminative o
values perform better and are also selected in the multiple kernel equation. However,
in the case of the sagittal projection categorization, two different kernels are selected for
the same visual feature; this is an improvement over the typical parameter grid search,
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Table 6.3: Categorization error in axial projection for the kernels selected by MKL and
for the multiple kernel, with C = 10° and C = 10°.

C=10°
Feature kernel (0 value) Cat.1 error Cat.2 error Global error A
gray level (0.05) 0.41 0.26 0.33 0.49
compacity (0.05) 0.51 0.18 0.35 0.38
area (0.05) 0.28 0.26 0.27 -
resemblance (0.01) 0.05 0.03 0.04 0.12
MK 0.31 0.05 0.18 -

C=10°

Feature kernel (o value) Cat.1 error Cat.2 error Global error A

gray level (0.05) 0.49 0.28 0.38 0.35
compacity (0.05) 0.38 0.13 0.26 0.23
area (0.05) 0.08 0.08 0.08 0.24
resemblance (0.01) 0.05 0.00 0.03 0.18
MK 0.31 0.00 0.15 -

where different parameter values use better some category elements at the disadvantage
of others and where we have to make a choice taking into account the global performance
over the training set.

The multiple kernel does not guarantee the minimum of the test error over individual
kernels (for example, in Table 6.1, Cat. 1 error for the area kernel is inferior to the MK
error), but its success is represented by the potential amelioration of the test error over
all the individual kernels, as a result of simultaneously using different types of visual
features (Cat. 2 error in the same table).

For the coronal projection, basis kernels are overall less successful due to more subtle
differences between the two categories, but still the multiple kernel uses the comple-
mentary views on data successfully and ameliorates the categorization performance.
The axial projection problem is the most difficult and visual features alone discriminate
weakly between the two categories; however, in this case a very good performance is
exhibited by the spatial relation of resemblance. The multiple kernel performance is
noticeably improved by the spatial information, especially in the detection of the second
category, but overall it does not get close to the results acquired using the resemblance
relation. We assume that in these particular situations, a MKL approach that would take
into account the structure of a composite kernel as the graph marginalized kernel would
use more efficiently spatial relation and visual feature information altogether.
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6.6 Conclusion

We have described a graph probabilistic model for image representation and catego-
rization, which provides a flexible method to encode image keypoints and their visual
properties along with spatial information concerning keypoint relative localization. This
model does notimpose a certain semantic complexity of keypoints nor a particular choice
of spatial relations, thus generalizing strict structured representations and those disre-
garding spatial information completely. A method for image categorization based on
marginalized kernels on these graph models has been proposed. The key step in our
approach is to simultaneously use visual features and adapted spatial information as
to maximize the discriminative capacity of our categorization algorithm. In particular,
we show that a graph representation of the image, enriched with numerical attributes
characterizing both the image keypoints and the spatial relations between them, associ-
ated with a multiple kernel learning of these features and relations, leads to improved
performance. Kernels are created for each feature and relation, and image categoriza-
tion is performed using multiple weighted views of the data, in which view weights
are automatically estimated so as to give more importance to the most relevant features
and relations. We have shown that this method is successful and that learning from
complementary representations of data can ameliorate the categorization performance.
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Chapter 7

Conclusion and perspectives

The work that has been performed is aimed to propose a general and modular framework
of image interpretation based on structured image representations and fuzzy spatial
information. Even though we have chosen to illustrate our method using medical
applications, the method is not fundamentally tied to a specific type of input images.
The modular aspect of our method resides in the versatility of the underlying graphical
model, which ensures the independence between the interest points that we choose to
represent as vertices, and the spatial relations that we choose to encode as edges.

In the context of this solution for image representation, we have started our work by
presenting a marginalized graph kernel which extends the one being used in compu-
tational biology, and which allows the interpretation of image-based graphs. We have
applied this approach for a simple medical image classification task, based on a generic
segmentation method. The results validated our approach and laid the foundations
for taking into account more complex spatial information, in the form of estimations of
tuzzy adjacency between regions that go beyond planar adjacency and that are essential
for expressing image content comprehensively. At the same time, we have shown that
taking into account different region features within the same image classifier is beneficial
for performance.

Afterwards, we proposed the use of a series of fuzzy spatial descriptors that are re-
lated to topological relations between image regions and we studied the benefits offered
by image representations using this additional type of information. We showed that
understanding the distribution of the information gain of these descriptors is important
for a better integration with the rest of the image model, and that adding spatial informa-
tion, which implies changing the graphical structures, may influence to a considerable
degree the performance of the learning algorithm.

We also presented a method that may be used for these types of graphical models
in order to automatically select and to merge, among a set of visual features and spatial
relations, the information which gives the best discriminative performance in a spe-
cific context. This is also a major advantage that accounts for the adaptability of our
framework for different types of interpretation tasks.
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Main contributions The main contributions related to our work might be summarized
along the following directions:

e the proposition of fuzzy graphical models as a compromise between the bag-of-
feature image representations and the constellation model based representations
used in image interpretation,

e the use of marginalized graph kernels for image based graphical models,

e the inclusion of fuzzy spatial information into the region based graphical model,
and the study of its impact on discriminative learning,

e optimal automatic selection of multiple features for the marginalized graph kernel.

The central direction of research has been motivated by the current gap between
the importance of spatial information in image interpretation, and its scarce presence
in the models proposed in the litterature. The method that we propose is modular and
adaptable, and even if it lacks the speed of typical bag-of-features methods, the cost
that one pays for the increase in structural complexity is not prohibitive. Moreover, an
advantage of our kernel based method is that the critical computations required by the
classifier may still be executed at the same time on different devices, making it adapted
for distributed computing environments.

In the context of structure learning for image interpretation, a major shortcoming
of support vector machines, related to the interpretability of the learned model, is
partly alleviated by the multiple kernel learning framework. Using MKL output, one
may understand better which features are effective and which correlations between the
different views of the data are discriminative. Our method makes use of this advantage
of MKL framework over plain support vector machines.

The main difficulty that we have clearly identified with our method is the requirement
for a visual structured input which is appropriate for high level interpretation. Failure
to do so has two negative impacts. Firstly, in the presence of preprocessing errors, input
graphs are usually much larger than needed (e.g. meaningless oversegmentation),
thus failing to remain within acceptable dimensions, from a computational point of
view. Secondly, in the absence of graph vertices being genuinely associated to image
keypoints, our method has a limited usability.

Perspectives There are many different perspectives that are highlighted by our work,
since each part of our learning framework may be improved and extended indepen-
dently. There are however four special directions that are probably very interesting to
explore further.

One promising perspective is related to the interest points that are associated to
vertices. The nature of the interest points is theoretically restricted only by the computa-
tional limitations of our method (relatively high polynomial complexity in the number
of vertices). However, the semantic complexity of interest points determines directly the
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semantic level that the learning framework addresses. In the case of regions, the seman-
tic level is higher than that of bag-of-features approaches, but the main disadvantage
is that the quality of the required preprocessing task (in this case, image segmentation)
must be elevated too. Other region based descriptors, especially the ones related to
pre-attentive mechanisms, are less complex semantically and more robust to rough pre-
processing. If these descriptors were to be employed instead of segmented regions, the
main challenge would be probably to detect the most meaningful descriptor set for a
given image, while keeping the set size low enough for reasonable computation time.
In this case, a secondary perspective of further research is represented by fuzzy spatial
relations that are better adapted for other types of interest points.

Another interesting perspective is related to the formalization of the information
gain in fuzzy spatial relations. Using fuzzy adjacency measures, we have proven that
adjacency information may take more or less informative values. The distribution of
the most useful values is specific to the meaning of each spatial relation. Knowledge
regarding this distribution within structured entities allows for a more expressive spatial
labeling of entity graphical models, which in discriminative learning is directly related
to absence of uniformity, and therefore discriminative fitness.

Certainly, a reasoning framework using region based keypoints that are linked by
complex spatial relations presents a greater potential for infering with semantic con-
cepts, but it is inherently sensitive to the structural quality of the input (e.g. manual
segmentation). One promising perspective is to associate this method with low-level
oriented CBIR concepts, in order to “close the loop”, or to perform iteratively low level
and high level image processing tasks that are mutually beneficial.

Finally, we highlighted the fact that learning with heterogenuos data of structured
visual representation might benefit from specific adaptations of multiple kernel learning
algorithms.
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