
PhD

Multiview Echography Restoration
with Applications to 3D Breast and Cardiac

Imaging

Restauration Echographique Multi-vues
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Abstract

Ultrasound echography is one of the most widely used medical imaging modalities
because it is non-invasive, real-time and cost-effective. However, it suffers from some
image quality defects, such as speckle noise, limited spatial resolution and angle depen-
dent tissue contrast. Spatial compounding, which consists in averaging acquisitions
from different angles, has shown good performances in reducing speckle in 2D imag-
ing. In our thesis, we extend spatial compounding capabilities to also improve spatial
resolution and angle dependency, particularly for 3D breast and cardiac imaging.

We propose new techniques to combine acquisitions from different angles, following
two approaches: multiview deconvolution and multiview fusion. Multiview deconvo-
lution consists in solving the inverse problem of estimating the original volume from
the different acquisitions, by modeling the degradation as a convolution of the original
tissue with a space-varying point spread function (PSF). We propose a technique to
estimate the PSF based on subspace techniques, adding a priori knowledge of the
geometrical relationship between the different acquisitions and shape constraints. The
inverse problem is regularized with an edge-preserving functional adapted to speckle
noise statistics, and solved iteratively. The second approach, multiview fusion, consists
in detecting the features of interest in each acquisition to build a combined volume. We
propose different fusion techniques in spatial, spectral and wavelet coefficient domains.

We applied the developed techniques to 3D ultrasound breast imaging. Volumes
were obtained by scanning the tissue with a linear array attached to a robotic platform.
A well-known problem in breast imaging in the limited elevational resolution of linear
arrays. We overcame this problem by scanning the tissue at different angles, and com-
bining those acquisitions. A non-rigid registration process was developed to guarantee
the alignment of the different acquisitions. Multiview deconvolution methods showed
best results with respect to improvement of spatial resolution and signal-to-noise ratio
(SNR). This leads to the improvement of important parameters for clinical practice,
such as tissue delineation and contrast resolution both on phantom and in vivo data.

Finally, we applied the developed techniques to real-time three-dimensional (RT3D)
ultrasound cardiac imaging. This imaging modality can be further improved by in-
creasing the field-of-view (FOV) and heart wall contrast. With this aim, different
views were acquired through different acoustic windows. In order to combine such
acquisitions, a robust rigid registration algorithm was developed. Multiview decon-
volution showed slightly better results than other techniques, improving heart wall
contrast and SNR. This leads to improvement of clinically relevant parameters, such
as tissue delineation and heart wall contrast.
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Résumé

Nous présentons dans cette thèse de nouvelles techniques pour l’amélioration de la
qualité d’images échographiques ultrasonores tridimensionnelles. L’échographie par
ultrasons est l’une des technologie les plus utilisées dans l’imagerie médicale, car elle
permet d’observer tous types de tissus mous. Elle repose sur la propagation d’ondes
ultrasonores à travers le corps humain, qui sont réfléchies aux interfaces entre les
tissus, créant des échos qui sont ensuite affichés pour leur interprétation médicale.
Les avantages de cette technique sont nombreux. Entre autres, la technologie est :

• non-invasive : en plus de 50 ans de pratique, aucun effet co-latéral n’a été ob-
servé ;

• temps-réel : les images s’obtiennent de façon immédiate, ce qui permet d’interagir
avec les organes et voir comment ils répondent. De plus, on peut ainsi observer
les phénomènes rapides, comme le battement du cœur ou le flux sanguin ;

• relativement peu coûteuse par rapport à d’autres méthodes d’imagerie ;

• portable : les appareils peuvent être transportés, par exemple, dans les salles
d’opérations ou au domicile des patients ;

• multi-organes : tous les types de tissus mous sont visualisables.

Cependant l’imagerie par ultrasons a quelques inconvénients. Du point de vue
pratique, elle est dépendante du patient et du praticien. Par exemple, des facteurs
comme l’obésité rendent difficile l’obtention d’échographies de bonne qualité. De plus,
actuellement, le praticien tient la sonde échographique à la main, ce qui nécessite une
certaine expérience pour obtenir des images de bonne qualité. Du point de vue de
l’image, les limitations sont entre autres (voir section A.3) :

• La présence de speckle (terme anglais qu’on emploiera par la suite, se traduisant
par bruit de chatoiement en français), qui est un bruit déterministe présent
partout dans l’image. Il crée une texture même dans des surfaces homogènes et
peut masquer des éléments importants pour le diagnostic. La taille du speckle
dépend de plusieurs facteurs, mais notablement de la fréquence ultrasonore
utilisée. La fréquence est limitée par l’atténuation qui détermine la profondeur
à laquelle les images peuvent être prises à une certaine fréquence. Chez les hu-
mains cette profondeur peut atteindre une quinzaine de centimètres, ce qui limite
la fréquence maximale utilisable et ainsi le niveau minimal du speckle.
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• La résolution spatiale, qui fait référence à la plus petite taille d’éléments que l’on
peut distinguer. Dans notre cas, la résolution dépend de la fréquence et de la
taille de la sonde, et est donc ainsi limitée.

• La dépendance de l’angle. La visibilité des tissus dépend de l’orientation par
rapport au faisceau d’ultrasons. S’ils sont orthogonaux, un fort écho sera produit
dans la direction de la sonde, et le tissu sera très visible. S’ils sont plutôt
parallèles, très peu d’énergie arrivera à la sonde et le tissu sera donc peu visible.

Des exemples de ces phénomènes peuvent être appréciés à la Figure 2.7.
Plusieurs techniques ont été proposées pour améliorer ces artefacts. L’objectif est

d’obtenir une représentation fidèle de l’image originale du tissu à partir de l’image
échographique obtenue. En particulier, la plupart des techniques sont dédiées à la
réduction du speckle. Le filtrage spatial consiste à utiliser la statistique locale de
l’image pour discriminer les réflecteurs réels des interférences créées par le speckle. Ce
filtrage peut être de différents types : adaptif [64], à diffusion anisotropique [88, 110, 44]
ou à seuillage de coefficients d’ondelettes [61, 15, 11].

Une autre approche consiste à utiliser plusieurs acquisitions avec une certaine diver-
sité entre elles. Elle porte le nom de compounding (terme anglais qui peut se traduire
comme combinaison). Elle peut prendre la forme de :

• combinaison temporelle (temporal compounding) [47], qui consiste à combiner
différentes acquisitions faites à différents instants ;

• combinaison fréquentielle (frequency compounding) [40], qui consiste à utiliser
différentes fréquences pour créer l’image échographique. Les différentes acquisi-
tions ont une texture de speckle non corrélée, et leur moyenne réduit les effets
de speckle ;

• combinaison spatiale (spatial compounding) [155, 116], qui consiste à obtenir des
images selon différents points de vue, et qui produit aussi différentes textures
non corrélées.

Nous allons nous intéresser particulièrement à cette dernière technique, le spatial
compounding, qui a prouvé son efficacité en imagerie bidimensionnelle ces dernières
années.

Notre contribution intervient principalement sur deux axes :

1. Méthodes. Développer de nouvelles techniques de spatial compounding, avec
l’objectif d’améliorer le rapport signal-sur-bruit mais aussi la résolution spatiale.
On propose deux approches différentes :

• Déconvolution multi-vues aveugle (qu’on appellera dans le texte blind mul-
tiview deconvolution), consistant à résoudre le problème inverse, où l’on
suppose que chaque acquisition est une version dégradée du tissu original,
et on recherche l’image la plus vraisemblable.
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• Fusion multi-vues (qu’on appellera dans le texte Multiview fusion), où l’on
construira un volume à partir des caractéristiques présentes dans chaque
acquisition.

2. Applications. Démontrer la valeur ajoutée de ces méthodes dans de nouvelles
applications, en particulier sur :

• Imagerie 3D du sein. Typiquement en imagerie 2D, l’obtention des volumes
3D du sein reste un défi. On utilisera une sonde linéaire collée à un bras
robotique pour effectuer un scan de la totalité du tissu. Cependant la
résolution est limitée dans le plan d’élévation (voir annexe A.3.1) et pose
quelques problèmes, que l’on va résoudre avec les méthodes proposées.

• Imagerie 3D+T du cœur. De nouvelles sondes temps-réel 3D pour l’imagerie
du cœur ont été récemment introduites sur le marché. La combinaison des
acquisitions à travers différentes fenêtres acoustiques (voir section 6.2.3)
permet d’augmenter le champ de vue, le contraste des parois et le rapport
signal-sur-bruit.

En pratique, chaque application nécessite une étape préliminaire de recalage
des différentes acquisitions avant la combinaison, c’est pourquoi des techniques
spécifiques ont été développées.

Voici le contenu de chacun des chapitres.

Chapitre 1 : Introduction

Nous présentons ici la problématique générale, avec le même niveau de détail que dans
ce résumé.

Chapitre 2 : Multiview Deconvolution

Nous introduisons la déconvolution multi-vues. Nous commençons par un rappel de la
problématique classique de déconvolution, où l’on souhaite restaurer une image à partir
d’une acquisition modélisée comme étant dégradée par une opération de convolution et
l’addition de bruit. On présente différentes solutions proposées dans la littérature, et
on conclut en remarquant que les fréquences qui ont été trop atténuées seront difficiles
(voire impossible) à restaurer.

Ensuite, le cas multi-canaux est discuté. On dispose de différentes acquisitions
de la même image originale mais convoluée avec des noyaux différents. Dans ce cas,
le problème est moins mal posé, au sens où les informations manquantes d’un canal
peuvent être complétées par d’autres canaux. Dans certaines conditions, il est même
possible de restaurer la forme exacte de l’image originale. On présente aussi des
techniques de régularisation permettant le contrôle de l’amplification du bruit, et ainsi
que la préservation des bords.
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On s’attache finalement au cas particulier des cas multi-canaux avec multi-vues, où
l’on dispose de certaines relations spatiales entre les différents noyaux. Cette configu-
ration, spécifique à nos applications, nous permet de mieux comprendre la contribution
de chaque acquisition au plan spectral, et les contraintes géométriques pour capturer
les caractéristiques qui nous intéressent.

Chapitre 3 : Blind Multiview Deconvolution

Afin d’exploiter les techniques décrites au chapitre précédent, la connaissance des
différents noyaux, qu’on appellera PSFs (de l’anglais Point Spread Function, ou tache
focale en français), est nécessaire. On se demande alors s’il est possible de les es-
timer à partir des seules acquisitions. Pour répondre à cette question, nous étudions
la littérature de la déconvolution aveugle (blind deconvolution, en anglais), pour les
cas mono et multi canaux. Nous nous intéressons en particulier aux techniques de
sous-espace, qui nous donnent une solution fermée des PSFs uniquement à partir des
acquisitions.

Malheureusement, les techniques de sous-espace sont assez sensibles au bruit et à
l’estimation du support de la PSF. Pour améliorer leur performance, nous ajoutons les
contraintes géométriques des différentes PSFs afin de réduire le nombre d’inconnus.
Pour les rendre encore plus robustes nous introduisons des contraintes de forme, en
particulier de forme gaussienne, qui nous permettront d’utiliser ces techniques dans
les conditions réelles de nos applications.

Nous terminons ce chapitre avec l’évaluation des techniques de déconvolution multi-
vues aveugle sur des images synthétiques créées avec simulation du bruit de speckle et
dégradation spatiale des images d’échographie ultrasonore.

Chapitre 4 : Multiview Fusion

Dans ce chapitre nous abordons une autre approche de restauration: la fusion multi-
vues. On crée alors un volume fusionné à partir des caractéristiques présentes dans
chacune des acquisitions. On espère que ces techniques seront plus simples car il ne
faut pas estimer l’ensemble des PSF. Nous disposons en effet de solutions directes et
non itératives, plus rapides que la déconvolution multi-vues. Nous présentons plusieurs
méthodes :

• Moyenne pondérée (Weighted averaging en anglais), consistant à affecter un
poids différent à chaque vue en fonction d’une mesure de saillance et de speckle.

• Moyenne généralisée (Generalized averaging en anglais), qui permet une transi-
tion douce entre des opérateurs de minimum, moyenne et maximum en fonction
de la différence entre les différentes acquisitions.

• Fréquences Maximales (Maximum frequency en anglais), qui préservent dans
chaque acquisition les parties du spectre qui contiennent le plus d’énergie.

• Fusion par ondelettes (Wavelet Fusion en anglais), qui préserve les coefficients de
la transformée par ondelettes contenant le plus d’énergie. Pour ne pas préserver
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aussi tout le bruit, un seuillage des coefficients est effectué indépendamment à
chaque niveau de la transformation.

On termine ce chapitre par une étude comparative de toutes ces méthodes, en
incluant la déconvolution multi-vues aveugle. Cette dernière donne les meilleures per-
formances en toutes conditions. De plus, elle est la seule qui arrive à égaliser la
dégradation du système. Cependant, les techniques de fusion donnent des résultats
acceptables avec un temps d’exécution plus faible.

Dans le chapitre suivant, nous appliquons ces techniques à de nouvelles applica-
tions.

Chapitre 5 : 3D Breast Ultrasound Imaging

L’imagerie du sein est d’extrême importance pour le dépistage du cancer. Dans ce
chapitre, nous utilisons les techniques développées pour améliorer la qualité des images
échographiques 3D du sein. L’obtention des volumes échographiques du sein présente
plusieurs obstacles, les sondes actuelles étant trop petites par rapport à la taille des
tissus à acquérir en image. Le système utilisé comporte une sonde linéaire fixée à
un bras mécanique, balayant la sonde linéairement en créant un volume à partir de
différentes coupes. En plus du speckle, les images ont une faible résolution sur le plan
d’élévation, due à la petite ouverture selon cette dimension.

Pour résoudre ces problèmes nous avons proposé d’acquérir des images dans différentes
orientations, et d’appliquer les techniques développées dans cette thèse. On a d’abord
analysé les données obtenues pour vérifier les hypothèses posées lors de l’étude théorique.
L’approximation gaussienne comme forme de PSF se révèle assez valable (voir section
5.4.1), et le bruit de speckle peut être modélisé comme un bruit additif gaussien coloré
(voir section 5.4.2).

Avant de fusionner les différentes acquisitions, nous avons utilisé un algorithme
de recalage élastique fondé sur les FFD (Free Form Deformations). A première vue,
les effets de cette étape sont minimes car les images sont déjà initialement très bien
recalées. Néanmoins des artefacts potentiels peuvent apparâıtre, dus aux mouvements
involontaires du patient et qu’il faut corriger.

Une fois les volumes bien recalés, ils sont alors combinés avec les techniques présentées.
Sur des images de fantômes, on a vérifié la diminution de la taille de la PSF (amélioration
de la résolution spatiale) et la réduction du bruit de speckle. La technique de déconvolution
multi-vues aveugle présente les meilleurs résultats. On a pu vérifier sur les images in
vivo que cela se traduisait par une meilleure délimitation des tissus et une augmenta-
tion du contraste des masses, paramètres critiques pour le diagnostic oncologique.

Chapitre 6 : 3D Heart Ultrasound Imaging

Les maladies cardiovasculaires sont la première cause de mortalité dans le monde.
Récemment, des systèmes 3D en temps-réel échocardiographiques capables d’obtenir
des séquences de volumes et permettant une meilleure estimation des fonctions car-
diaques ont été introduits. Les limitations de cette technologie sont : (i) un champ de
vue ne contenant pas tout le cœur, en particulier avec les patients aux cœurs dilatés,
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(ii), des ombres dues à l’impossibilité des ultrasons de traverser les côtes et l’air des
poumons, ou dues à la dépendance à l’orientation des parois, et (iii) la présence de
speckle.

Pour améliorer ces points, nous proposons de faire des acquisitions à travers différentes
fenêtres acoustiques. Leur combinaison, de type mosäıque 4D, permet d’augmenter le
champ de vue, et d’améliorer le contraste des parois et le rapport signal-sur-bruit.

Dans cette application, la partie de recalage est beaucoup plus difficile que pour
l’application du sein, car les différentes acquisitions ne sont pas dans le même repère.
On a développé une méthode de recalage rigide suffisamment robuste pour tenir compte
des difficultés de cette application. Ensuite, les images sont fusionnées avec les tech-
niques développées. Les résultats montrent que la déconvolution multi-canaux aveugle
est également la plus performante sur cette application.

Chapitre 7 : Conclusions and Future Work

Finalement, nous résumons les conclusions et nous traçons les futures lignes de travail.
Conclusions :

• Nous avons prouvé que l’on pouvait à la fois réduire la puissance de speckle et
améliorer la résolution spatiale à partir des acquisitions depuis différents points
de vue.

• Nous avons présenté plusieurs façons de combiner ces acquisitions, et la deconvo-
lution multi-vues aveugle s’est révélée être la plus performante avec des images
synthétiques de fantôme et in vivo.

• Il est effectivement possible d’améliorer la résolution dans le plan d’élévation des
sondes linéaires par restauration multi-vues.

• La restauration multi-vues des échocardiographies 3D+T permet d’augmenter le
champ de vue et d’améliorer le contraste des parois et le rapport signal-sur-bruit.

Futures lignes de travail :

• Estimation automatique des hyperparamètres de régularisation.

• Autres schémas pour l’estimation de PSF et de l’image.

• Validation clinique sur des cas pathologiques pour l’imagerie du sein, et des
nouvelles maladies pour l’imagerie du cœur.

• Application de ces techniques pour l’imagerie échographique 2D.

• Application de ces techniques dans d’autres domaines, comme l’obstétrique.
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C H A P T E R 1

Introduction

In this thesis we present new techniques to improve the image quality of 3D ultrasound
echography. This imaging technique is one of the most widely used since it permits
to observe all kinds of soft tissues in a non-invasive way. It is based on the propaga-
tion of ultrasonic acoustic waves through the body, which are reflected by the tissue
boundaries, creating echoes that are visually displayed for medical interpretation. In
more than 50 years of usage in clinical practice, no long-term side effects have been
reported. In comparison to other imaging techniques, it is relatively low cost, devices
are portable and available almost everywhere.

However, ultrasound echography has several limitations. From an imaging point of
view, exams are corrupted by a particular type of noise named speckle. This artifact
causes a textured patterning that can hide important features for diagnosis. The
amount of speckle is determined by the frequency of the ultrasound wave, which is
constrained by the depth at which the tissue needs to be imaged. For applications
on humans, the depth varies from 2 to 15 centimeters, bounding the frequency limits,
thus the amount of speckle. The spatial resolution, which refers to the size of smallest
element that can be distinguished, is also determined by the frequency and the size
of the probe used, which again are subject to physical constraints. Also, the visibility
of tissues depend on their orientation with respect to the ultrasound probe. Tissues
perpendicular to the ultrasound beam create strong echoes, and are therefore very
visible, and parallel ones create weak echoes, and are therefore poorly visible. Besides
the imaging limitations, echography is patient and practitioner dependent. Factors
such as obesity can greatly reduce the echogenicity of the patient, resulting into a
difficult exam to interpret. Indeed, the practitioner needs to have advanced skills to
properly place the probe on the body of the patient. Otherwise, relevant elements for
clinical diagnosis may not be present in the echographic exam.

Many techniques have been proposed to overcome the aforementioned imaging lim-
itations, including: spatial filtering, temporal integration, frequency compounding and
spatial compounding. The goal is always to restore an image of original tissue, over-
coming the limitations of the imaging system. Typically, the goal is focused on reducing
speckle. Spatial filtering consists in exploiting the local statistics to discriminate ho-
mogeneous areas from real reflectors. This kind of filtering can take many forms, such
as adaptive filters [64], anisotropic diffusion [88, 110, 44] or wavelet shrinkage [61, 11].
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Applications that include a temporal dimension, averaging different acquisitions at
different instants can improve the signal-to-noise ratio [47]. The frequency compound-
ing technique [40] consists in imaging the tissue at different frequencies, obtaining
uncorrelated speckle patterns in each acquisition. The same principle is performed in
the spatial compounding technique [155, 116], where several acquisitions are obtained
from different points of view. The tissue is either insonified from different parts of the
probe or with different angles, obtaining uncorrelated speckle patterns. Averaging the
different views increases the signal-to-noise ratio by

√
M [136], where M is the number

of views used. We will focus on the spatial compounding technique, which has proved
to be very effective with two-dimensional imaging in the recent years, with the aim of
further developing this technique.

Our contribution can be mainly divided into two axes: (i) develop new techniques
of spatial compounding with the goal of improving the signal-to-noise ratio but also
the spatial resolution and the field of view, and (ii) demonstrate their value in new
applications, particularly on 3D breast and cardiac imaging.

Regarding the combination techniques (i), we follow two different approaches:

• We state the restoration problem as an inverse problem, where the different views
are degraded versions of the original image, and we recover the most probable
original image. This leads us to estimate the degradation of the system, under
some assumptions on our data. This technique belongs to the field of blind
multiview deconvolution.

• We propose to construct a combined volume from the features detected in each
of the acquisitions. We propose techniques both in the spatial and transformed
domains, denoting them multiview fusion techniques.

Regarding the applications (ii), we used the developed techniques for:

• 3D breast imaging. Volumetric imaging of the breast tissue is a challenging task,
since there are no probes for this application. The breast tissue is scanned with
a linear probe attached to a mechanical arm, but the limited resolution of linear
arrays in the elevational plane is a critical issue. The developed techniques
overcome this difficulty. Indeed, the combination of the different acquisition
improves the signal-to-noise ratio.

• 3D+T cardiac imaging. We applied the developed techniques to the recently in-
troduced 3D cardiac ultrasound, combining acquisitions from different acoustic
windows. In this way, the field of view is improved, as well as the tissue delin-
eation, the signal-to-noise ratio and the spatial resolution.

In practice, the different views need to be perfectly aligned before being combined.
Otherwise, blurring artefacts may appear and reduce the benefits of the combination
techniques. Therefore, registration issues and techniques will be described for each
application.
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Introduction

This document is organized as follows.
In Chapter 2 we introduce the concept of multiview, as different acquisitions ob-

tained with different angles. This diversity turns into a diversity in the frequency
domain which allows the restoration at least at these parts of the spectrum. The
intrinsic problems of single channel and multichannel deconvolution theory are re-
viewed, as well as regularization techniques. The obtained solutions have never been
used previously for spatial compounding in ultrasound imaging.

In order to apply the techniques described in Chapter 2, we need to estimate the
point spread function of the system. We review the blind multichannel techniques for
this purpose in Chapter 3, highlighting their limitations. In particular, we introduce
the multiview constraints into subspace techniques to improve their robustness to
noise and support estimation. Without this specific particularization, multichannel
techniques would not be feasible on real data.

In Chapter 4 we propose new alternative techniques to build a fused volume by
detecting and choosing the features of interest of each view. We propose four new
different techniques, namely weighted averaging, generalized averaging, maximum fre-
quency and wavelet coefficient fusion. These techniques are simple, since they do not
require an iterative schema to find the solution. Moreover, they do not depend on the
estimation of the point spread function.

We proceed to apply the developed techniques to real applications. In Chapter
5 we obtain high resolution ultrasound volumetric images of the breast, including
high-resolution C-scans. It would not be possible to obtain such images with a single
scan. A non-linear registration scheme is implemented to register the different views.
The limited resolution in the elevation dimension is improved by applying the new
developed techniques, which also improve the signal-to-noise ratio.

In Chapter 6 we propose the multiview restoration techniques for cardiac applica-
tions. Acquisitions from different acoustic windows are obtained and combined with
the proposed techniques, which permit to increase the field of view, the myocardium
contrast and the signal-to-noise ratio. In order to combine such acquisitions, a robust
rigid registration algorithm is developed.

Finally, conclusions and future research lines are provided in Chapter 7.
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C H A P T E R 2

Multiview Deconvolution

2.1 Introduction

Imaging systems are sensitive to certain physical properties of the imaged object,
within certain limitations due to the nature of their sensors. Therefore, the output of
the imaging systems provides partial information on the real object. Image restoration
techniques try to recover the original image, taking out the system degradation. It
is a key area in signal and image processing, and its applications include almost all
imaging disciplines [14]. The degradation induced by the system may be complex and
difficult to describe. However, under the hypotheses of spatial invariance and linearity,
the observed image vd can be modeled as a convolution operation between the original
signal v with the system’s point spread function (PSF) h [57]:

vd = h ∗ v (2.1)

The formation of ultrasound images is a rather complicated process, as described
in Appendix A.2. In this thesis we focus on the restoration of log-compressed envelope
images. In this case, the spatial degradation of the system can be considered as a
convolution with a spatially varying PSF [79]. In this chapter, however, we simplify
the discussion to the case of spatially invariant PSF and tackle this problem in Chapters
5 and 6 for each specific application.

Deconvolution, a particular case of restoration, consists in inverting the convolu-
tion operation, that is, obtain v from vd and h. It has been extensively reviewed in
the literature [83], and successfully applied to a diversity of domains including astron-
omy [144], digital photography [75], microscopy [41], seismic sciences [71] and medical
imaging [53]. Another particular case of restoration, related to but different from de-
convolution, is image reconstruction. It may refer to combining several acquisitions
of the same scene, such as in computer tomography imaging [135], where the image is
reconstructed from its projections.

In order to make vd as close as possible to v, our strategy is to acquire not one
but M times with different orientations. These different acquisitions, or views, have
complementary information that combined lead to a better image quality of the system.
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2.2 Single Channel Case

We denote these acquisitions by vi:

vi = hi ∗ v, i = 1..M (2.2)

This second scheme receives the name of multichannel deconvolution, while the
first is referred to as single channel deconvolution, or simply deconvolution. Note that
in this case there are M channels providing information, and only one unknown v.

This chapter starts by briefly discussing the state-of-the-art of the single channel
deconvolution case, to understand its intrinsic limitations. The multichannel case is
presented in detail, with references to the single channel case to clarify concepts. The
theory is developed generically, with some particularizations to echography imaging.
Further on, we introduce the concept of multiview deconvolution, which refers to the
fact that the different channels are in fact acquisitions from different points of view.
The application to real cases is treated in detail in Chapters 5 and 6. Moreover, within
this chapter, we assume that the spatial response h is always known, and we tackle
the blind case -where h is unknown- in Chapter 3.

2.2 Single Channel Case

If the system degradation is assumed to be linear and shift invariant, the relationship
between the original signal v and the degraded signal vd can be described, in the
continuous domain, as the convolution integral. For one dimensional signals, we have:

vd(x) = h(x) ∗ v(x) =

∫ ∞

−∞
h(x− τ)v(τ)dτ (2.3)

In the discrete domain, the relationship is described by the convolution summation.
Again, for one dimensional signals, we have:

vd[x] = v[x] ∗ h[x] =
∞∑

τ=−∞
h[x− τ ]v[τ ] (2.4)

If additive noise is supposed, the acquired signal can be modeled as:

vdn = h ∗ v + n (2.5)

and its Fourier transform is

Vdn = H · V +N (2.6)

where H, the Fourier transform of the PSF h, is also known as optical transfer function
(OTF). Typically H has the form of a low pass filter, describing different kinds of blur
such as motion, out-of-focus or atmospheric turbulence. Figure 2.1 shows an example
of an original and a degraded image. As it can be seen, since many features have
been lost, it is an ambitious goal to recover the original image using only the observed
image.
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Multiview Deconvolution

a) original image b) blurred and noised image

Figure 2.1: The original image a) has been blurred with an horizontal Gaussian kernel
and 10% noise added, resulting in b). The goal of deconvolution techniques is to invert
this degradation and recover the original image a) from b).

Equation (2.3) is a Fredholm integral of the first kind [16], so recovering v from vd

and h is in general an ill-posed problem in the sense of Hadamard [63]. This means
that the solution may not exist, may not be unique or may not be stable. For instance,
if H is a perfect low-pass filter with cut-off frequency w0, signals V ′ equal to V for
w < w0, but with arbitrary values for w ≥ w0, would also be solution of Equation
(2.6). In other words, if some information is missing, many solutions can be found
which are solution of Equation (2.6). Without a priori knowledge about the original
signal, the later will not be recovered.

2.2.1 Deterministic approaches

Least Squares Solution

To find a solution of Equation (2.5), denoted as ṽ, one may consider minimizing the
differences between vd and h ∗ ṽ. We are looking for a ṽ which, convolved with the
system’s PSF h, is most similar to the acquisition vd. Using the L2-norm as distance
between two signals results in:

ṽ = arg min ‖vdn − h ∗ ṽ‖2 (2.7)

By Parseval’s theorem, the system can also be expressed in the Fourier domain, as
follows:

Ṽ = arg min
∥
∥
∥Vdn −H · Ṽ

∥
∥
∥

2
(2.8)
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2.2 Single Channel Case

The solution to Equation (2.8) is [144]:

ṼLS(w) =
H(w)∗

|H(w)|2
· Vdn(w) =

H(w)∗

|H(w)|2
· V (w) +

H(w)∗

|H(w)|2
·N(w) (2.9)

This technique, also known as Fourier Quotient, illustrates the intrinsic problem of
deconvolution: small values of |H(w)|2 turn into noise amplification. Indeed, ṼLS(w)
is not even defined for |H(w)|2 = 0, the zeros of the OTF. Such problems make this
technique unpractical. On the other hand, in the noiseless case and if |H(w)|2 has no
zeros in all the spectrum, deconvolution is exact. Unfortunately, this is a rare case in
practice.

Constrained Least Squares Solution

To overcome the mentioned problems with the least squares solution, the solution space
can be constrained by adding some a priori information about the original signal v.
Typically, it is desired to limit the high frequency content of Ṽ due to low values of
H(w). Given an operator C, also known as regularization function, we can express
the constrained least squares problem as a minimization of Equation (2.7) subject to:

∥
∥
∥C · Ṽ

∥
∥
∥

2

≤ E (2.10)

where E is the maximum amount of energy at the band-pass of C admitted in the
solution Ṽ . The function C usually takes the form of a high-pass filter.

There exist many approaches to find a solution of the system composed by Equa-
tions (2.8) and (2.10). The Tikhonov-Miller method [151] consists in defining an energy
J as a weighted sum of Equation (2.8), which is referred to the data fidelity term, and
Equation (2.10), which is referred to as the regularization term.

J(Ṽ ) =
∥
∥
∥Vdn −H · Ṽ

∥
∥
∥

2

+ λ ·
∥
∥
∥C · Ṽ

∥
∥
∥

2
(2.11)

The λ parameter determines the trade-off between these two terms. Along with the
other parameters C may depend on, it is known as a regularization hyperparameter.

The solution that minimizes Equation (2.11) for linear operators is [144]:

ṼRLS(w) = arg min J =
H(w)∗

|H(w)|2 + λ |C(w)|2
· Vdn(w) (2.12)

Again, ṼRLS is only defined if the denominator |H|2 + λ |C|2 > 0, ∀w, which is
equivalent to the Hessian of J being definite positive. Notice, however, that in this
case it suffices that C(w) is not zero at the zeros of H(w) for ṼRLS to be defined.

The solution of Equation (2.11) can also be obtained by iterative techniques. For
convex energies, gradient descent techniques (e.g. conjugate gradient descent [125])
will converge to the global minimum in a fast way. If the energy is not convex, the
convergence to a global minimum is difficult to be guaranteed analytically, and other
techniques (e.g. graduated non convexity [27]) should be used.
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Multiview Deconvolution

Iterative solutions have some advantages such as not requiring the computation
of big matrices and being numerically more stable. Additional constraints can be
imposed to the intermediate solution, such as non-negativity. Indeed, the number of
iterations can also be used as a regularization parameter.

2.2.2 Stochastic approaches

Up to now, the solution, signal and noise have been regarded as deterministic quanti-
ties. Considering signal and noise as stochastic processes, constraints can be specified
using their statistical characteristics.

Wiener filter

Defining by Sv(w) and Sn(w) the spectral power of the signal process v and noise
process n respectively, we can define C in Equation (2.10) as C(w) =

√

|Sn(w)| / |Sv(w)|.
For λ = 1, the Wiener filter solution is obtained:

ṼWiener =
H∗

|H(w)|2 + |Sn(w)|
|Sv(w)|

· Vdn(w) = HWiener(w) · Vdn(w) (2.13)

Interpreting C(w) =
√

|Sn(w)| /
∣
∣Sv(w)

∣
∣ in the context of Equation (2.10), it can

be seen that frequencies where noise is predominant are attenuated. Wiener solution
ṼWiener is the optimal solution to the least squares criterion 2.7 if the noise n follows a
Gaussian zero-mean distribution.

Hyperparameter estimation

In the general case, the optimal choices for the hyperparameters and regularization
functions in Equation (2.12) depend on the signal and noise. Hyperparameter es-
timation techniques [28] use signal and noise statistics, and thus, are considered as
stochastic algorithms.

Bayesian Approach

Given vd, the objective is to find the most probable v, that is, maximizing the prob-
ability p(v|vd). Defining by p(vd) the probability of the blurred image and by p(v)
the probability of the original image, the Bayes theorem [20] establishes the following
relationship:

p(v|vd) =
p(vd|v)p(v)

p(vd)
(2.14)

The maximum likelihood (ML) solution is:

ṽML = arg max p(vd|v) (2.15)
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2.2 Single Channel Case

The maximum a posteriori (MAP) solution is:

ṽMAP = arg max p(vd|v)p(v) (2.16)

In both cases p(vd) is considered constant and ignored in the maximization process.
The ML solution is the same as the MAP if p(v) is assumed to be an uniform proba-
bility density function. Actually, p(v) plays the role of regularization, expressing the
knowledge about v. The regularization operators described in Section 2.2.1 can be
expressed in the Bayesian framework as:

p(v) α e−
λ
2
‖Cv‖2

(2.17)

In other words, the MAP solution is the regularized ML solution.
In the case where the additive noise is supposed to follow a Gaussian distribution

with zero mean and variance σ2
N , the a posteriori probability is

p(vd|v) =
1√

2πσN

e
− (vdn−h∗v)2

2σ2
N (2.18)

and the ML solution is equivalent to the least squares solution, since maximizing
Equation (2.18) is equivalent to solving Equation (2.7).

If the original image v is also assumed to follow a Gaussian distribution with
zero mean and variance σ2

V , then the MAP solution is equivalent to the Wiener filter
solution.

Similarly, the expectation maximization (EM) method is obtained by assuming a
Poisson distribution for n, and maximizing p(vd|v) using the Picard iteration [73]. This
method is also known as the Richardson-Lucy algorithm [135], and has the interesting
property that, by construction, the solution is always positive.

2.2.3 Deconvolution of Ultrasound Images

The deconvolution of B-scan ultrasound images, due to the presence of the strongly
correlated speckle noise (see appendix A.3.2), is an even more challenging problem
[102]. There exist different approaches for the signal and noise models for ultrasound
imaging, depending on the stage of the image formation process (see appendix A.2).
These steps are typically divided in: RF signal, envelope signal or log-compressed
signal.

The RF signal is hardly available, due to its heavy computational load, although it
is the “raw” signal, therefore closer to the physical principles of ultrasound propaga-
tion. Within this category, the blind homomorphic deconvolution approach [150, 149]
deconvolves the first and second harmonic RF lines (see appendix A.1.3), using a
cepstrum method. Since the two signals have poorly correlated speckle patterns, its
compounding by averaging tends to remove them. The approach proposed in [12]
consists in modeling the ultrasound pulse local polynomial estimation, similar to a
wavelet, which permits to robustly estimate the point spread function and deconvolve
the image. Michailovich et al. [109] estimate the point spread function by wavelet
denoising of the RF signal.
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Multiview Deconvolution

The envelope signal noise statistics are considered to be of multiplicative nature
[159], following a Rician distribution. Therefore, the use of adapted techniques such as
Expectation Maximization [79] is appropriate. Many models have been proposed for
the log-compressed signal model, such as additive white Gaussian noise [9], additive
colored Gaussian noise [79] or additive with a Fisher Typpett distribution [80]. In
the framework of deconvolution, an interesting approach in [132] uses a phantom to
characterize the system and compute the inverse filters to perform the deconvolution.
However, since the emitted pulse will change in shape as long as it goes through
the tissues not necessarily in the same manner as it does through the phantom, the
application of this technique is limited. The wavelet decomposition approach has
been followed in [74], with results slightly worse than with additive noise. Ultrasound
deconvolution for non-destructive testing is examinated in [39], where techniques based
on higher order statistics (HOS), subspace methods and neural networks are proposed.

2.2.4 Other specific approaches

Stronger a priori constraints can be introduced if there is a solid knowledge about
v. The CLEAN algorithm [68] supposes that the original image is composed of point
sources, suited for astronomical applications. Local constraints can be introduced
by autoregressive (AR) models [108] and non-linear grid filters[156], under a basic
hypothesis that the needed information to recover the original image for each pixel is in
its vicinity. However, a training stage is needed before their utilization, thus resulting
in a dependence on the training set. The NAS-RIF (Non-negativity and Support
Constraints Recursive Iterative Filtering) algorithm [92] introduces constraints such
as non-negativity and the object size, and can achieve a great performance if the object
size is well determined in advance.

In the domain of synthetic aperture radar imaging (SAR), Holmes [70] performed
blind deconvolution of images following Poisson statistics using a maximum-likelihood
approach. His algorithm consisted in two simultaneous Lucy-Richardson-like decon-
volutions to obtain both the original image and the point spread function. Strict
positivity is therefore ensured. Holmes also investigated the interest of further ex-
plicit constraints such as symmetry or band-limited constraints for the PSF. Lane [94]
proposed a variational approach minimizing a penalizing function that measures the
deviation from the observed convolution product and the violation of positivity and,
possibly, of support constraints for the original image and the PSF, turning into one
of the most robust methods.

Another axis of research is to perform a wavelet decomposition of v, in order to
better discriminate signal from noise. In general terms, noise is supposed to spread
out into all wavelet coefficients, while signal will be concentrated in a few ones. Each
decomposition level is deconvolved using different parameters, which can indeed be
adaptive, resulting into better results in certain applications [143].

27



2.3 Multichannel Case

2.3 Multichannel Case

In the single channel case section, we have seen that the frequencies that have been
eliminated by the point spread function h can not be recovered. In the multichannel
deconvolution framework, it is expected that, from M differently degraded images, it
will be possible to recover the original signal v by combining the different parts of the
spectrum [82]. By denoting by vi the ith acquisition through the ith PSF hi, their
relationship is defined as:

vi = hi ∗ v, i = 1..M (2.19)

We will denote the set of all acquisitions vi by {vi}, and the set of filters by {hi}.
Note that there are M equations and one unknown signal, v. Some authors refer to this
scheme as superresolution [49], permitting to improve the spatial resolution beyond
the size of the PSF by combining different acquisitions.

2.3.1 Exact Deconvolution

One approach to recover v from Equation (2.19) is to find a set of filters {di} such
that:

M∑

i=1

di ∗ vi = v (2.20)

which implies
M∑

i=1

di ∗ hi = δ. (2.21)

Notice that, differently to the single channel case, the system responses {hi} are
inverted through a bank of filters and not a single one, which reduces the ill-posedness
of the system. In the z-domain, Equation (2.21) turns into Bezout’s identity [23]:

M∑

i=1

Di(z) ·Hi(z) = 1. (2.22)

For one dimensional signals, a necessary condition for Equation (2.22) to have a
solution is that {Hi} do not have common zeros, that is:

M∑

i=1

|Hi(z)|2 6= 0, ∀z. (2.23)

As long of one of the filters covers a part of the spectra, exact deconvolution is
possible in the noiseless case. Indeed, there exist {di} of compact support (FIR) if
{hi} are filters of compact support (FIR) and if there exist positive constants c1 and
c2 and a positive integer N such that [23]:

(
M∑

i=1

|Hi(z)|2
)1/2

≥ c1e
−c2|Imz| (1 + |z|)−N (2.24)
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Condition (2.24) is known as strong co-primeness between {hi}, and it is a necessary
and sufficient condition for the existence of filters {di} of compact support which are
solution of Equation (2.21). For one dimensional signals, coprimeness implies not
having zeros in common in the z plane.

For higher dimensions (two and above), the coprimeness of {hi} is a necessary and
sufficient condition for the existence of {di}, even if they do have zeros in common
in the z plane [65]. In practice, we will consider the condition of not having zeros in
common as necessary to obtain an exact deconvolution. This will be, however, a rare
case, since frequencies where filter values are low will be dominated by noise.

2.3.2 Least Squares Solution

Similarly to the single channel case, we can consider ṽ that minimizes the squared
difference between {vi} and {hi ∗ v}, such as:

ṽ = arg min
M∑

i=1

‖vi − hi ∗ ṽ‖2 (2.25)

In the Fourier domain, the minimum norm solution is given by [23]:

ṼLS =
M∑

i=1

H∗
i

∑M
j=1H

∗
jHj

· Vi (2.26)

ṼLS is only defined if {Hi} do not have zeros in common. {Di} defined as Di =
H∗

i� M
j=1 H∗

j Hj
are solution of Equation (2.22).

In order to avoid outliers, other robust norms rather than the L2 can be used on
the data fidelity term.

2.3.3 Constrained Least Squares Solution

Adding the constraint (2.10) on ṽ, the following energy expression can be derived:

E =
M∑

i=1

‖vi − hi ∗ ṽ‖2 + λ ‖C · ṽ‖2 (2.27)

For instance, if C is a perfect high-pass filter, ‖C · ṽ‖2 would be the energy of
ṽ in the band-pass of C. By introducing this term into the energy term, the high
frequency content of ṽ is limited. This is typically the case, since deconvolution tends
to over-amplify high frequencies.

For a linear C, the minimum norm solution is:

ṼRLS =
M∑

i=1

H∗
i

(
∑M

j=1H
∗
jHj

)

+ λC∗C
· Vi (2.28)
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Again, the operator C may prevent the zeros in the denominator caused by ze-
ros in the combined spectral response

∑M
j=1H

∗
jHj, preventing an undesirable noise

amplification.

2.3.4 Regularization Techniques

The choice of λ and C in Equation (2.27) represents typically a trade-off between the
amount of detail preserved and the amount of noise amplification. They can depend
on the a priori knowledge about v, on signal and noise statistics, and also on {hi} and
on the application specific needs. For instance, if the image has to segmented, a clear
separation between the different zones should be preserved.

Regularized image reconstruction has been extensively reviewed in the literature
[27, 38, 86, 29, 151, 55] and applied to many domains, such as tomography reconstruc-
tion [158].

Linear Operators

One of the most well known example of regularization term is Tikhonov [151]. In the
frequency space, it is simply an all-band pass filter, that is, C(w) = 1. This guarantees
the invertibility of the problem, since it will compensate all the spectral zeros of the
system filters. It will effectively block the amplification of high frequencies, but also it
will distort the inversion of low frequencies. Other authors [81] have suggested other
filters, such as the Laplacian or the inverse Wiener filter of the system.

The regularization term can also be expressed in a general manner in terms of
a potential function, ρ, on the differences between neighbors ∆. The regularization
energy term will be denoted as:

Jreg =
∑

pixels

ρ(∆(ṽ)) (2.29)

In three dimensions, for a 6-voxel neighborhood, the expression (2.29) would be
expanded as:

Jreg =
∑

x

∑

y

∑

z

ρ(ṽ(x, y, z)− ṽ(x− 1, y, z))+
∑

x

∑

y

∑

z

ρ(ṽ(x, y, z)− ṽ(x, y − 1, z))+
∑

x

∑

y

∑

z

ρ(ṽ(x, y, z)− ṽ(x, y, z − 1))

(2.30)

The expression for other neighborhood configurations is straight-forward.
The Tikhonov regularization term is:

JT ikhonov = ‖∆(ṽ)‖2 (2.31)

With this notation, we are explicitly describing the local relationship between the
pixels in the image. Neighbor pixels which are very different (∆(ṽ) is large) will have
a large contribution to the energy term. On the contrary, neighbors which have the
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same intensity level (∆(ṽ) = 0) will not increment the energy term. Minimizing the
Tikhonov regularization term will induce to smooth the image, make the intensity
values similar among neighbors.

Edge-preserving regularization

Typically, edges give valuable information that should be retained in the reconstructed
image. Regularization terms such as Tikhonov do not preserve those edges, since they
smooth the image regardless of the position of the pixels. For these reasons, edge-
preserving regularizing techniques have been developed [27, 38]. These techniques
include a discontinuity in the potential functions to avoid the smoothing of edges.
For instance, the Huber [25] function introduces a threshold value (α), over which
the difference between the neighbors are treated with a linear potential rather than a
quadratic one. It is defined as:

ρ(x) =

{

x2, for |x| ≤ α

2α |x| − α2, for |x| > α
(2.32)

and its derivative is:

ρ′(x) =

{

2x, for |x| ≤ α

2αsign(x), for |x| > α
(2.33)

Figure 2.2 shows some examples of potential functions ρ. Other regularization tech-
niques include total variation (TV) [130], and the more recently introduced bilateral
filter [152]. The median filter can also be used as a regularization operator. Loupas et
al. [102] proposed an adaptive median filter adapted to speckle for ultrasound imaging.

Anisotropic diffusion [122] can also be used as regularization term. Indeed, Black
et al. [26] showed the relationship between robust estimators and anisotropic diffusion,
which turns out to be equivalent for some particular potential functions. Particularly,
the diffusion equation proposed in [122], as:

∂v(x, t)

∂t
= ∇ · (g(‖∇v‖)∇v) (2.34)

where t represents the artificial time scale, ∇ · (•) the spatial divergence operator,
∇(•) the spatial gradient, ‖∇(•)‖ the gradient magnitude, and g(•) the edge-stopping
function. Using one of the functions originally proposed in [122], defined as:

g(x) =
1

1 + x2

2α2

(2.35)

is equivalent to minimize the regularization term defined in Equation (2.29) using the
Lorentzian function [26], defined as:

ρ(x) = log

[

1 +
1

2

(x

α

)2
]

(2.36)
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Figure 2.2: Some examples of robust estimators. Left: ρ function. Right: its deriv-
ative. From top to bottom: quadratic (Tikhonov) [151], truncated quadratic [115],
Geman-McLure [55], Huber [25].
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and its derivative

ρ′(x) =
2x

2α2 + x2
(2.37)

Elad [46] showed the relationship between bilateral filtering and anisotropic diffu-
sion. Farsiu et al. [49] used the bilateral filter as regularization term in the superres-
olution context. Several adaptations of anisotropic diffusion for spatial filtering have
been recently proposed for ultrasound imaging [89, 148, 110], and for synthetic aper-
ture radar (SAR) [166], which exhibits the same problems than speckle for ultrasound
imaging.

2.3.5 Iterative Optimization Algorithms

The energy in Equation (2.27) can also be minimized by iterative techniques, which
avoid to compute explicitly the inverse filters and allows the use of non linear C
operators. In this section we develop their expression for the multichannel case.

Steepest Descent

The steepest descent technique consists in modifying the estimate ṽ in the direction
of stronger variation, that is the opposite direction of the energy gradient. Denoting
by ṽk the solution ṽ at the kth iteration, and rk the residual that updates ṽ with a
step β, we have:

ṽ0 =
1

M

M∑

i=1

ṽi

rk = −1

2
∇E(ṽk)

ṽk+1 = ṽk + βrk

This technique converges toward the nearest local minimum, therefore a proper
initialization is critical. If the energy term is convex, the algorithm converges toward
the global minimum for any initialization.

For the multichannel energy defined in Equation (2.25) (without regularization),
we have, in the spectral domain:

Rk =
M∑

i=1

H∗
i

(

Vi −HiṼ
)

(2.39)

Note that the residual is a sum of terms for each acquisition, each term contributing
only to the pass-band of Hi. Therefore, all out-of-the band noise is rejected and
common band-pass frequencies are averaged. At the kth iteration, the solution Ṽ k is:

Ṽ k = β

(
M∑

i=1

H∗
i Vi

)
k∑

l=0

(

1− β
M∑

j=1

H∗
jHj

)k

(2.40)
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Ṽ k converges for k →∞ to ṼLS in Equation (2.26) if the right-hand side series of

Equation (2.40) converges. This occurs if
(

1− β
∑M

j=1H
∗
jHj

)

< 1, which happens if
∑M

j=1H
∗
jHj(w) 6= 0, ∀w ({hi} have no common zeros) and for:

0 < β <
2

max
∑M

j=1H
∗
jHj

Note that β should be M times smaller than in the single channel case.
Notice that the right hand of Equation (2.40) does not depend on the input signals

V . Therefore, for known H, this part of the filter can be computed off-line.
For the energy defined in Equation (2.27) (with regularization), we have, in the

spectral domain:

Rk =
M∑

i=1

H∗
i

(

Vi −HiṼ
)

− λC∗C (2.41)

and

Ṽ k = β

(
M∑

i=1

H∗
i Vi

)
k∑

l=0

(

1− β
(

M∑

j=1

H∗
jHj + λC∗C

))k

(2.42)

Equation (2.42) converges if
∑M

j=1H
∗
jHj+λC

∗C 6= 0, ∀w. In this case, the operator
C may prevent the common zeros in {Hi}. β should be within the range:

0 < β <
2

max
∑M

j=1H
∗
jHj + λC∗C

Conjugate Gradient Descent

The conjugate gradient method uses conjugate directions instead of the local gradient
to update the image estimation. If the energy function has the shape of a long, narrow
valley, the minimum is reached in fewer steps than would be the case using the method
of steepest descent, which exhibits a linear rate of convergence.

The solution ṽ at the kth iteration is modified in the direction pk such as [18]:

ṽ0 =
1

M

M∑

i=1

ṽi

p0 = r0

rk = −1

2
∇E(ṽk)

pk = rk +

〈
rk, rk

〉

〈rk−1, rk−1〉 · p
k−1

ṽk+1 = ṽk + αpk

Again, a proper initialization is required to avoid that the algorithm is trapped in
a local minimum.
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2.4 Multiview Case

2.4.1 Multiview Acquisitions

The multiview case is a particularization of the multichannel case, where the different
point spread functions are related geometrically. We denote by hi the point spread
function of the ith acquisition. They are related by a certain transformation T , such
as hi(x) = hj ◦ T (x). In fact, we will denote the generic point spread function by
h, and the transformation associated at each acquisition by Ti. The ith point spread
function therefore is:

hi(x) = h ◦ Ti(x) (2.44)

In practice, the geometrical transformations will typically be rotations and trans-
lations. In three dimensions, they can be conveniently expressed in homogeneous
coordinates as:

Ti =







r00
i r01

i r02
i dx

i

r10
i r11

i r12
i dy

i

r20
i r21

i r22
i dz

i

0 0 0 1







(2.45)

where Ri = {rjk} represents the centered rotation matrix, and Di = [dx, dy, dz]
T

represents the translation vector.
For purely translational transformations (Ri = I), the Fourier transform of the

point spread function hi has the same spectral power that h, but with a phase shift,
such as:

hi(x) = h(x +Di)⇒ Hi(w) = H(w)e−jDiw (2.46)

When a rotation is involved, the Fourier transform is rotated with the same angle:

hi(x) = h(Ri(x))⇒ Hi(w) = H(Ri(w)) (2.47)

This is one of the different ways to perform spatial compounding in ultrasound echog-
raphy, where the tissue is insonified with different angles [162]. In this case, while
rotating the ultrasonic probe, thus the point spread function, different parts of the
spectra will be insonified. In this way, frequencies not accessible from one acquisi-
tion will be gathered by another one. Figure 2.3 shows 2D examples of synthetic
point spread functions along with their Fourier transforms. When rotated, the Fourier
transform follows the same rotation as the space domain point spread function.

2.4.2 Spectral Coverage

The different acquisitions cover differently the spectral domain. Acquisitions will be
redundant at the frequencies which are in the bandpass of two or more views. This
redundancy will be used to reduce the noise figure of the system, exploiting the com-
plementary information of each view, since ideally noise is uncorrelated between the
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Figure 2.3: Schema of two rotated point spread functions: a) in the spatial domain
and b) their Fourier transform. A rotation in the space domain implies a rotation in
the frequency domain of the same angle.

views while signal is correlated. On the other hand, artifacts like shadowing (see
Appendix A.3.5), may induce conflictual information at these parts of the image.

Frequencies which are covered by just one of the views are subject to the same
signal to noise problems as in single channel deconvolution, thus the need of regularized
methods, at least at these frequencies.

As seen in Section 2.3.1, exact reconstruction of the original image will only be
possible if the different Hi do not have zeros in common, that is, if they cover the
whole spectral space. In other words, if there are no incomplete frequencies. Fig-
ure 2.4 illustrates this principle. In the single channel case shown at left, there are
several frequencies where the response of the point spread function is zero. On the
other and, the figure on the right shos how another different acquisition might give
complementary information at these frequencies. In this case, in the absence of noise,
exact deconvolution is possible.
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a) single-channel case b) two-channel case

Figure 2.4: a) Spectral response of a low-pass PSF, b) Spectral response of a larger
low-pass PSF, along with a). The frequencies canceled by one of the channels can be
recovered on the other channel.
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However, not always the whole spectral plane is covered. Figure 2.5 shows the orig-
inal example image along with its Fourier transform. Figure 2.6 shows four simulated
views of the original image with four point spread functions rotated by 0, 45, 90 and
135 degrees respectively. It can be seen how each of the acquisitions preserves some
of the features of the original image, which in turn can be appreciated in the part of
the spectra that it covers. For example, in the view blurred vertically (Figure 2.6.b)
the middle stick of the tripod of the cameraman is clearly visible. In the view blurred
horizontally (Figure 2.6.h), this part is hardly distinguishable. On the other hand, in
this view the roof of the tall buildings of the background can be discriminated, while
this is not possible in the vertically blurred view. The same principle applies to the
other views, such as the diagonal stick of the tripod only present at the acquisition on
135 degrees (Figure 2.6.k).

(a) (b)

Figure 2.5: a) Original image “cameraman”, and b) its Fourier transform, log-
compressed for displaying purposes.

Figure 2.7 shows a real example of 2D ultrasonic images acquired at different an-
gles. As in Figure 2.6, each acquisition retains certain features at certain angles in
function of the PSF. Also, it can be appreciated how the speckle patterning differs
between them, specially when angle differences are large. Other artifacts, such as
clutter (see Appendix A), show different patterning between the different acquisitions.
By combining these different images, a closer representation of the original tissue is
obtained. Current commercial systems, such as SonoCTtm (Philips, Best, The Nether-
lands), perform an averaging of these views to combine them, also shown in Figure
2.7.

The goal of multiview deconvolution is to restore the original image from these
acquisitions. We will evaluate the techniques presented in this chapter, reconstruction
from anisotropically degraded images, in Chapter 3. where we will introduce the
techniques to estimate the point spread function. The estimation of the point spread
function is a required step to deconvolve these images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.6: Synthetically blurred images. Left, point spread functions. Middle, blurred
images. Right, Fourier transform of blurred images. From top to bottom, simulated
acquisitions at 0, 45, 90 and 135 degrees respectively.
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(−20) (−10)

( 0 ) (+10)

(+20) (average)

Figure 2.7: In vivo ultrasonic acquisitions at different insonification angles. The dif-
ferent acquisitions show different speckle, clutter and shadow patterns. Their combi-
nation results in an improved image quality result.
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2.5 Conclusions

We reviewed the most common techniques for single channel deconvolution. In general,
deconvolution is an ill-posed problem due to spectral zeros and the presence of noise.
To overcome this difficulty, a priori information about the searched solution is provided
in form of regularization, which constrains the solution space. It has the form of a linear
operator constraint for the deterministic algorithms and the form of probability density
function in the Bayesian framework. However, exact deconvolution is limited to very
few applications for which the solution space is small and can be well characterized.
In general, at the frequencies were data have been filtered the original will not be
recovered.

In the multichannel case, the ill-posedness of the problem is reduced. In fact, as
long as one of the acquisitions contains a part of the spectrum, it can be recovered
as in the single-channel case. However, if a part of the spectrum is not covered by
any acquisition, the problem is the same as for the single-channel case. In this sense,
multichannel deconvolution deals about how to combine the different views rather to
how to deconvolve them, which is done by the same principles as in single-channel
deconvolution.

In particular, for the case where the different acquisitions are related geometrically,
that we denote as multiview case, each view covers a part of the spectrum directly
related to its geometrical transformation. In this way, acquisitions with the same
instrument but from different points of view can complement each other toward a
better image restoration. We denote as spectral coverage the part of the spectrum
insonified by the set of all acquisitions. Each acquisition captures features in a certain
orientation, and the proposed deconvolution technique captures all these features into
a single combined volume.

In all cases, regularization is needed in order to avoid noise amplification. Indeed, it
is a convenient step to introduce a priori knowledge on the signal in order to reduce the
space of solutions of the proposed inverse problem is promising. Classical regularization
techniques tend to blur edges, thus the introduction of edge-preserving regularization
operators via robust estimation. The estimation of the hyperparameters is still an open
question. Further improvements could be obtained by scale-space decomposition, e.g.
Laplacian Pyramid [34] or wavelet decomposition [105], and adapting the parameters
of regularization in function of the scale.

In this chapter, the point spread function of the system was supposed to be known.
Indeed, no specific particularization on ultrasound imaging was done. In the next chap-
ter we tackle the problem of estimating the point spread function, and demonstrate
on synthetic data the performance of the deconvolution techniques developed so far.
This allows us to choose a particular regularization approach. In Chapter 4 we give
more details on ultrasound specificities and the used noise model. Application to real
ultrasound data is left for Chapters 5 and 6.
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C H A P T E R 3

Blind Multiview Deconvolution

3.1 Introduction

In Chapter 2 we introduced the theoretical basis to deconvolve an image from differ-
ently degraded images. The point spread functions of the system were supposed to
be known. Unfortunately, this is not the case in ultrasound imaging, moreover, the
estimation of the PSF only from the data itself is not a trivial problem. Typically,
techniques that estimate the PSF in addition to the original image are called blind
deconvolution techniques. In this chapter we present a new technique to estimate the
point spread functions from the different acquisitions by using a priori information of
our system. This includes the geometrical relationship between the different PSF but
also shape constraints of these point spread functions.

As a reminder, the blind deconvolution problem consists in obtaining v from vd

without the knowledge of h, in the convolution equation:

vd = h ∗ v (3.1)

We start in Section 3.2 with a review of the state-of-the art blind deconvolution
techniques, both for single channel and for multichannel cases. The approaches are
radically different, since the multichannel strategy makes use of the diversity of the
different channels, which is not available in the single channel case. From the mul-
tichannel techniques, we chose the subspace technique as starting point in Section
3.3. The main problems of this technique are the robustness to noise and the depen-
dency on support estimation. To improve these points, we introduce the geometrical
constraints of the multiview case, where the different PSFs are rotated versions of a
common kernel. In this way, the number of unknown variables is reduced. In order to
further increase its performance, up to realistic figures of noise, shape constraints are
also introduced, thus reducing the estimation of the PSF to a parameter optimization
problem. The results of these techniques along with those of Chapter 2 are evaluated
on synthetic data to restore images from anisotropically degraded views in Section 3.4.
Finally, conclusions are discussed in Section 3.5.
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3.2 Blind Deconvolution

3.2.1 Single Channel Case

Several techniques have been developed to estimate the point spread function from an
image itself, although it is not always possible to obtain satisfactory results. Blind
deconvolution is, in general, an undetermined problem, having one equation and two
unknown images (h and v) in the noiseless case, and three in the noisy case (also n).
This leads to the need of additional constraints to recover the original image.

If some properties of the image, the point spread function, or the noise are known a
priori, these can be used to reduce the ill-posedness of the problem. Typical examples
are non-negativity or finite support. Statistical properties of the image and noise are
also used in some techniques. If the physical nature of the degradation is known,
parametric models of the PSF can be used. Some authors designate as myopic or
partially blind the techniques that use some knowledge about the PSF. We will not
use this terminology here, and we will use the term blind in all cases.

However, there are some intrinsic ambiguities in blind deconvolution systems, due
to the convolution properties. First of all, the image and the PSF must be irreducible,
which means that any of these cannot be expressed as the convolution of two or more
components. For instance, if h = h1 ∗ h2, vd = h ∗ v = h1 ∗ h2 ∗ v, an ambiguity
occurs in deciding which components belong to the image and which to the PSF. A
Gaussian PSF, for instance, is reducible, since it can be expressed as a convolution
of two Gaussians. In this case, the support estimation will be critical to capture the
correct PSF.

There is also an intrinsic shift ambiguity between the image and the PSF, since
vd(x) = h(x + ∆x) ∗ v(x) = h(x) ∗ v(x − ∆x). In other words, an arbitrary shift
in the PSF and the opposite shift in the image are undistinguishable. Therefore, a
wrong estimation of the PSF may induce a shift in the reconstructed image. Similarly,
a scaling factor is also ambiguous, since vd = h ∗ v = (1/α)h ∗ αv. Shifting and
scaling ambiguities are not typically major issues, since they might be solved with
information about the localization of the image or the PSF, and including other a
priori information, such as mean value preservation (

∑∞
−∞ h = 1) or by normalizing

the final reconstructed image. However, the support estimation of the PSF appears
typically as a critical issue. If it is underestimated, no solution is found, and if it is
overestimated, spurious effects appear.

Algorithms can be divided into two main groups, those that estimate the PSF
before performing deconvolution, and those that estimate the PSF and the original
image simultaneously. We will briefly discuss some of the algorithms here, pointing
the reader to [66, 91] for a complete review on the subject.

Stand-alone PSF Estimation

Chang et al. [37] proposed the frequency domain zeros method. Given the convolution
equation in the frequential domain, Vd = H ·V , it is easy to see that zeros in this domain
are due to H, V or both. The main idea of this technique is to identify which zeros are
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due to H, and recover H from those. To identify the zeros, the image is partitioned in
small windows, large enough to contain the support of h. Secondly, to recover H from
its zeros, typically a parametric form is needed. The main drawback of this method is
that it is not suited for degradations which do not have zeros, e.g. Gaussian functions,
which is typically the case in ultrasound echography.

If features such as points or edges can be identified in the blurred image, with
assumptions on how these features would look like in the true image, an attempt to
recover the PSF can be made [19]. Indeed, if the PSF has a known parametric form,
these features can be used to find out the parameters. Typically these techniques are
used in applications such as astronomy, where single dots with uniform background can
be easily identified. Otherwise, in other applications such as ultrasound echography,
it is difficult to guarantee the existence of sharp edges.

Simultaneous image/PSF estimation

There is another class of algorithms which evaluate the PSF and the original image at
the same time. The iterative blind deconvolution (IBD) [17] is one of the most popular
ones within this class. It is an iterative algorithm which alternates the estimation
of the PSF and the image, imposing constraints both in the spatial and frequential
domains. The initial guess for the reconstructed image is transformed to the frequency
space, where constraints are applied (e.g. band-limiting filters). In the frequency
space, the PSF is estimated from the current reconstructed image and the degraded
image, through a Wiener-like filter. The PSF is transformed into the space domain,
where constraints are applied (e.g. non-negativity, replacing negative values with
zeros). The PSF is transformed to the frequency space, constraints are applied, and
the reconstructed image is estimated. The iteration goes on until convergence or
a user-specified maximum number of iterations is reached. The algorithm has a low
computational complexity but its convergence is quite uncertain and shows a significant
dependence on parameters, turning into a lack of reliability. The “Non-negativity And
Support constraints Recursive Inverse Filter” (NAS-RIF) [92] algorithm overcomes the
convergence problems of the IBD, but at the cost of dealing with objects of known
size over uniform backgrounds.

Other approaches minimize directly an energy term (e.g. ‖h ∗ v − vd‖2), both with
respect to h and v, using different methods, such as Generalized Cross-Validation
(GCV) [127] or Simulated Annealing (SA) [107]. Besides the high computational cost
of such methods, the ill-posedness with respect to both h and v limits the reliability
of such methods.

To reduce the number of unknowns, Auto Regressive - Moving Average (ARMA)
models have been proposed. The image is modeled as an autoregressive (AR) process,
and the PSF as a moving average (MA) process. Many techniques have been proposed
to estimate the ARMA parameters, such as Maximum Likelihood [93]. However, these
models are adequate for images which are smooth and homogeneous, failing when the
original image contains edges.

The zero sheet method [95] relies on the fact that if the PSF and the image are
irreducible, the z-transform of the degraded image Vd(z) = H(z)·V (z) can be factorized
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into the PSF and the original image. Despite the conceptual interest of this method,
the computational complexity and specially the lack of robustness against noise make
this method impractical for real systems.

3.2.2 Multichannel Blind Case

The problem of blind deconvolution in the multichannel case differs completely from
the single channel case, because the different filters may be estimated from their com-
plementary information. In general, it is still however an undetermined problem,
having M equations and M + 1 unknown images (hi and v) in the noiseless case, and
2M + 1 unknown images (plus ni) in the noisy case. Assumptions such as modeling
the PSF as a FIR filter of support much smaller than the image reduces dramatically
the dimensionality of the problem.

There exist mainly three approaches for blind multichannel deconvolution:

1. estimate the blurs, then deconvolve the image (e.g. [65])

2. compute directly deconvolver filters (e.g. [56])

3. compute directly the restored image (e.g. [163, 119])

The first approach offers more control over the restoration process, due to its ill-
posed nature. It is less obvious in the second and third approaches to introduce
regularizing methods or the like. Therefore, we will focus on the first approach.

Several techniques have been proposed for PSF estimation, specially in the domain
of 1D channel identification. A review on 1D multichannel blind estimation techniques
techniques can be found in [153]. Although the borders between these techniques are
not very clear, they may be classified into Maximum Likeklihood (ML) and Moment
methods, both in deterministic or stochastic approaches, depending on the chosen
signal model. The subspace method is a subcategory of the moment methods, and
will be treated in detail within this section.

Once the filters are estimated, many techniques are possible to reconstruct the
original image, as shown in Chapter 2. If FIR deconvolvers are computed [65, 56],
deconvolution can be achieved by a single FIR filtering, which is less computationally
complex than the least-squares reconstruction, in detriment of noise robustness. An-
other important branch of approaches is to alternate the estimation of the PSF and
the reconstruction. If the estimation of the PSF depends on the reconstructed image,
this could improve the estimation as the reconstructed image converges toward the
original image. Blind multichannel deconvolution is approached in [141] as an energy
minimization of three terms, namely: data fidelity, regularization and PSF estima-
tion using subspace methods. The Bussgang algorithms (e.g. [21]) falls also within
this class of alternate algorithms. Panci et al. [121] apply different constraint filters
depending on the structure of the image (edges, points, ridges, etc.).
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Channel Disparity

In order to estimate the blurs from the different channels, they must exhibit certain
disparity. This condition is expressed [120] as factor (or weak) co-primeness between
them. A set of FIR filters Hi(z) are factor co-prime if they do not have factors in
common, that is, if and only if the greatest common divisor is a scalar, i.e., Hi(z) =
C(z)H ′

i(z),∀i = 1 . . .M is true only for C(z) a scalar factor. Weak co-primeness is
equivalent to the condition that filters are irreducible.

While in 1D factor co-primeness implies zero co-primeness (introduced in section
2.3.1, as not having a common zero), in 2D, factor co-primeness is a much less re-
strictive condition. This implies that blur identification is possible even if the filters
have common zeros. Indeed, theoretically, two 2D FIR filters are generically factor
co-prime [65], which means that blur identification is possible if only two channels are
available. Moreover, zero co-primeness is also generically satisfied if there are three
2D FIR filters [65], which leads to consider that exact deconvolution in the absence
of noise is generically possible if three channels are available. However, due to the
presence of noise and the fact that real systems may not be modeled exactly as FIR
filters, these hypotheses may be easily violated in real systems.

Subspace techniques

Considered by some authors as part of moment methods, the subspace methods have
been widely used for blind multichannel deconvolution. One of the first to introduce it
for 1D signals were Gürrelli et al. [62], proposing eigenvector-based algorithm (EVAM)
to estimate the blur functions. Many other works have been developed within the
subspace approach for 1D signals (e.g. [154, 112, 10]). Giannakis et al. [56] extended
this technique to 2D, and similar works have been presented for instance in [65, 119,
141].

Subspace methods provide a closed form for the blurs, while the ML methods have
to be solved iteratively. Indeed, in the deterministic version, subspace methods make
no assumptions about the original image. However, they are not very robust to noise
and need an accurate estimate of the PSF support, which is often difficult. We will
see in the next section how the multiview constraint improves the performance of the
algorithm with respect to these points.

Subspace methods rely on the cross-channel relationship, which states that:

hi ∗ vj − hj ∗ vi = 0 ∀i, j i 6= j (3.2)

which is easily deduced from the commutativity of the convolution operator, since
hi ∗ vj = hi ∗hj ∗ v = hj ∗hi ∗ v = hj ∗ vi. For example, v1 represents the original image
v blurred with the filter h1, and if v1 is further blurred with h2, it will be equal to v2

blurred with the filter h1.

If the co-primeness condition of filters hi are met, solutions of:

vi ∗ gj − vj ∗ gi = 0 ∀i, j i 6= j (3.3)
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have the form

gi =







hi ∗ k if mg ≥ mh ∨ ng ≥ nh,

αhi if mg = mh ∨ ng = nh,

0 if mg < mh ∧ ng < nh.

(3.4)

where (mh, nh) is the size of the support of filters hi, (mg, ng) is the size of the support
of filters gi, k is some factor of size (mg−mh +1, ng−nh +1) and α is a scalar. Notice
that Equation (3.3) does not depend on the original image but only on the acquired
images and the filters. If the filters were not co-prime, the common factor would be
canceled out in Equation (3.3).

If noise is present, the right side of Equation (3.3) is no longer zero but some
measurement of noise. Then the set of Equations (3.3) can be solved as a least-squares
minimization for gi, that is:

{gi} = arg min
∑

1≤i<j≤M

‖vi ∗ gj − vj ∗ gi‖2 (3.5)

Support Estimation

As expressed in Equation (3.4), support estimation is critical for successful blur iden-
tification, since underestimation has no solution, and overestimation exhibits spurious
effects. Harikumar et al. [65] propose the residual-based technique, based on the
idea that the residual of Equation (3.5) will be minimal for the correct support size.
An iterative approach reconstructs the blurs for different support sizes to minimize
the residual. Giannakis et al. [56] propose a technique to estimate the blur support
from the rank of {gi}. Given that the solution of Equation (3.3) is unique for the
correct support size and has no solution for underestimations of it, the rank of the so-
lution matrix is studied through eigen-vector decomposition. In the presence of noise,
a threshold is set to consider the effectively nonzero singular values to estimate the
rank. In general these algorithms depend on the noise model used and the parameter
estimations made.

Edge effects

The discussion followed up to now assumes that the complete result of the convolution
is available. This is seldom the case, since at the borders only partial information is
available. We will not discuss the issues raised by this fact (see [65] for a treatment of
this problem), and we limit ourselves to the reconstruction of images within a margin
from the edges where full data are available.

3.3 Subspace Techniques

Our interest on subspace techniques is three-fold:

1. the general principle does not depend on a particular image or noise model,
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2. the solution has a closed-form for the filters,

3. it is easy to introduce the multiview constraint.

We will detail the algorithm in two dimensions, without loss of generality. Let
prime denote transpose, lower bold case vectors and upper bold case matrices. In
order to express the relationship between hi and vi more conveniently, we will use the
matrix form, similar to [56]. Let (L1, L2) be the minimum support size of filters hi,
and (N1, N2) the size of images vi. We express the PSF in a column vector of size
(L1 + 1)(L2 + 1)× 1 as:

hi ≡ [hi(0, 0) . . . hi(0, L2); . . . ;hi(0, 0) . . . hi(L1, L2)]
′ (3.6)

which is the lexicographically ordered two dimensional PSF. Similarly, one image col-
umn of size (L2 + 1) is expressed as a row vector of size 1× (L2 + 1) as:

vj(n1;n2) ≡ [vj(n1, n2) . . . vj(n1, n2 − L2)] (3.7)

Then, the two dimensional convolution of the image vj with the PSF hi can be
expressed as:


















vj(N1 − 1;N2 − 1) · · · vj(N1 − 1− L1;N2 − 1)
...

...
...

vj(N1 − 1;L2) · · · vj(N1 − 1− L1;L2)

...
...

...

vj(L1;N2 − 1) · · · vj(0;N2 − 1)
...

...
...

vj(L1;L2) · · · vj(0;L2)



















×



















hi(0, 0)
...

hi(0, L2)

...

hi(L1, 0)
...

hi(L1, L2)



















= Vjhi (3.8)

where the matrix Vj has dimensions (N1 − L1)(N2 − L2)× (L1 + 1)(L2 + 1), and the
convolution result Vjhi is a column vector of size (N1−L1)(N2−L2)× 1, where each
row represents a pixel of the convolved image. The cross relation approach in Equation
(3.3) can be stated in this form as:

[
Vj −Vi

]
[
hi

hj

]

= 0 ∀i, j i 6= j (3.9)

For all pairs (i, j), there are M(M − 1)/2 different equations of the form of Equation
(3.9), which form a linear system of equations from which we want to obtain hi. For
example, for M = 4, we could group these equations as:











V2 −V1 0 0
V3 0 −V1 0
V4 0 0 −V1

0 V3 −V2 0
0 V4 0 −V2

0 0 V4 −V3

















h1

h2

h3

h4







= 0 (3.10)
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In general, we can rewrite these equations in the form:

Vh = 0 (3.11)

where

V =






V1
...

VM−1




 ,Vi =






0 · · · 0
...

. . .
...

0 · · · 0
︸ ︷︷ ︸

i−1 blocks

Vi+1 · · · −Vi
...

...
. . .

...
...

VM · · · · · · −Vi






︸ ︷︷ ︸

M−i+1 blocks

(3.12)

and

h =






h1
...

hM




 (3.13)

The matrix V is of size (M(M − 1)/2)(N1−L2)(N2−L2)×M(L1 +1)(L2 +1) and
h is of size M(L1 + 1)(L2 + 1)× 1.

In the presence of noise the right hand side of Equation (3.11) is no longer zero
and one possible approach is the least-squares solution of Equation (3.11), as:

h = arg min ‖Vh‖2 (3.14)

Equation (3.11), or (3.14) in the noisy channel case, states the general principle of
the subspace method. The null-vector of V is the solution h, which by Equation (3.4)
is indeed unique if the support is correctly estimated. Therefore, we are interested
in characterizing the null-space of V , which can be done through its singular value
decomposition (SVD), V = AΣBT and analyzing the vectors of BT associated with
the diagonal elements of Σ which are zero (or close to zero). The BT matrix is formed
with the eigenvectors of RV = VTV , so the solution h will be the eigenvector with
the smallest eigenvalue of RV , as proposed as the EVAM algorithm in [62] for 1D and
extended to 2D in [65]. Iterative solutions of Equation (3.14) have also been considered
for the 1D case [67], with the benefit to easily introduce regularization operators, at
the expense of higher computational cost.

3.3.1 Geometrical Constraints

Considering the multiview constraint (2.44), hi(x) = h ◦ Ti(x), we can reduce the
dimensionality of the problem 3.11 while improving its performance against noise and
support estimation. Each column in matrix V represents the values by which each row
element of h is multiplied. The multiview constraint permits to recombine the different
columns according to the relationship between the different blurs. The relationship
between the different blurs is described by Ti. For example, for two perpendicular
filters h1 and h2, assuming L1 = L2 = L, their relationship in two dimensions is
simply described as:

T2 =





0 −1 L
1 0 0
0 0 1



 , h1(x) = h2(T2x) = h1(L− y, x) (3.15)
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and Equation (3.9) can be simplified to:

[
V2 −V1

]
[

h1

h1 ◦ T2

]

=
[
V2 −V1 ◦ T2

] [
h1

]
= 0 (3.16)

where Vi ◦ Tj represents a transformation at each row of Vi. The support of the filter
h set must contain all non-zero values of all filter hi.

The same principle applies to any relationship between the different PSF, such as
the ones described in Section 2.4 for the multiview case. That is, that the different
PSF are rotated versions of a common kernel. We will denote the PSF of the first
acquisition, h1, as the common PSF kernel.

For the example with M = 4, Equation (3.11) reduces to:











V2 ◦ T2 −V1 ◦ T1

V3 ◦ T3 −V1 ◦ T1

V4 ◦ T4 −V1 ◦ T1

V3 ◦ T3 −V2 ◦ T2

V4 ◦ T4 −V2 ◦ T2

V4 ◦ T4 −V3 ◦ T3











h1 = 0 (3.17)

In the general form:
Ṽh1 = 0 (3.18)

where

Ṽ =






Ṽ1
...

ṼM−1




 , Ṽi =






Vi+1 ◦ Ti+1 −Vi ◦ Ti
...

VM ◦ TM −Vi ◦ Ti




 (3.19)

The matrix Ṽ is of size (M(M − 1)/2)(N1−L2)(N2−L2)× (L1 +1)(L2 +1), and ṼT Ṽ
is of size (L1 + 1)(L2 + 1) × (L1 + 1)(L2 + 1) which does not depend on the image
size nor the number of channels. Compared to the multichannel case, this represents
a reduction by a factor M 2.

Implementation issues

For the general multichannel case, the matrix V is of size (M(M−1)/2)(N1−L2)(N2−
L2)×M(L1+1)(L2+1), and its direct null-space characterization is typically infeasible.
For example, for a two dimensional image of size (N1, N2) = (256, 256) pixels, four
views (M = 4) with blurs of support (L1, L2) = (10, 10) pixels and image bit depth of
8 bits, the size of the matrix V is 363096 × 484 ≈ 168Mbytes. The matrix RV is of
size M(L1 + 1)(L2 + 1)×M(L1 + 1)(L2 + 1), does not depend on the image size, and
it is usually a more tractable one. For the aforementioned example, the size of RV is
484×484 ≈ 229kbytes. For the multiview case, matrix Ṽ is of size (M(M−1)/2)(N1−
L2)(N2 − L2)× (L1 + 1)(L2 + 1), that is, for this example, 363096× 121 ≈ 42Mbytes.
The matrix RṼ is of size (L1 + 1)(L2 + 1)× (L1 + 1)(L2 + 1) which does not depend
on the image size nor the number of channels. For this example, RṼ is 121 × 121 ≈
14kbytes, which is a tractable problem. The full eigenvector decomposition of a square
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matrix of size (m,m) requires O(m3) operations. Therefore, by using the multiview
constraint the computational complexity is reduced from O(M 3(L1 + 1)3(L2 + 1)3) to
O((L1 + 1)3(L2 + 1)3), that is by a factor M 3.

Even in the multiview framework, the computation of the matrix RṼ = ṼT Ṽ by
first constructing matrix Ṽ and then perform the matrix multiplication is prohibitive.
Matrix RṼ can also be expressed as:

RṼ =

(N1−L1)(N2−L2)
∑

m=1

Ṽ(m, 1..(L1 + 1)(L2 + 1))T Ṽ(m, 1..(L1 + 1)(L2 + 1)) (3.20)

where Ṽ(m, 1..n) represents the mth row of Ṽ in Equation (3.18). Therefore, RṼ can
be computed directly without the need of the whole Ṽ but only one of its rows at
each summatory term. Table 3.1 summarizes the algorithm described in this section.
Vect(•) is the operation of ordering lexicographically an image into vector form, and
Unvect(•) is the inverse operation.

{build RṼ}
RṼ ← 0
for all x ∈ (L1, N1 − L1)× (L2, N2 − L2) do

for i = 1..M − 1 do
for j = i+ 1..M do
Ṽ ← Vect(vj ◦ Tj(x..x+ L1, y..y + L2)− vi ◦ Ti(x..x+ L1, y..y + L2))
RṼ ← RṼ + ṼT Ṽ

end for
end for

end for
{compute null-space(RṼ)}
h1 ← min eigen(RṼ)
h1 ← Unvect(h1)

hi ← h1 ◦ T−1
i

Table 3.1: Geometrically-constrained PSF estimation algorithm.

3.3.2 Shape Constraints

As shown in the validation of these techniques in Section 3.4, subspace methods have
a strong sensitivity to noise and support estimation. However, by further introducing
shape constraints, satisfactory results can be obtained. The PSF can be approximated
within certain accuracy with a Gaussian shape. This knowledge can be introduced
along with the multiview geometrical constraint into the cross-channel relationship.
Therefore, the problem is reduced to find the parameters of the introduced model, as:

σ = arg min
σ

∥
∥
∥Ṽh1

∥
∥
∥

2

(3.21)
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where the point spread function kernel h1 is assumed to be Gaussian in all three
directions, as:

h1(x) = G(0, σx) ·G(0, σy) ·G(0, σz) (3.22)

Equation (3.21) is quadratic with respect to h1 and can be solved with the golden
search technique [51], as detailed in Table 3.2. Again, the matrix product Ṽh can
be obtained row-by-row, without the need to build the whole Ṽ matrix, as in Section
3.3.1.

{find σ = min f(σ)| σ ∈ [σa, σb]}
f(σ) := Ṽh(σ)

Require: σa < σc < σd < σb, f(σa) > f(σc) and f(σd) < f(σb)
repeat

if f(σc) < f(σd) then
σb ← σd

σd ← σc

σc ← σa +
√

5−1
2

(σb − σa)
else
σa ← σc

σc ← σd

σd ← σb −
√

5−1
2

(σb − σa)
end if

until (f(σc)− f(σd)) < ε

σ = min f(σ) ≈ σc ≈ σd

Table 3.2: Shape-constrained PSF estimation algorithm

3.4 Validation

In this section we will evaluate the techniques of point spread function estimation
presented in this chapter, and the deconvolution techniques presented in Chapter 2.
We will use synthetic images for their evaluation, and application to real ultrasound
medical images will be done in Chapters 5 and 6.

3.4.1 Methods

Synthetic Images

For the synthetic images, we have artificially added noise and blurred a 2D synthetic
image of a kidney [78]. In order to mimic log-compressed ultrasound speckle noise
characteristics, we have added speckle noise such as vnoisy = v + n · √v, where n
is uniformly distributed random noise with zero mean and variance σ2

n, and v the
original intensity value [88]. The noisy image was blurred with an oriented Gaussian
kernel with a variance σk pixels at 0 and 90 degrees, following the colored Gaussian
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speckle model for ultrasound log-compressed images presented by Kao et al. [79] (see
Appendix A.3.2 for details). The used values for σn and σk were {0.005, 0.05, 0.5} and
{2, 5, 8} respectively. Other authors log-decompress the image before processing it,
although this presents two main issues: level quantization and knowing the parameters
involved in the log-compression (Appendix A). Figure 3.1 shows the example images
used to present the techniques, which correspond to parameters σn = 0.05 and σk =
5. Experimentation with other parameters will be shown latter, when comparing
the methods. Figures 3.1.a and 3.1.b are the simulated views at two perpendicular
orientations, with uncorrelated speckle added noise. We will denote these simulated
views as v0 and v90. Figure 3.1.c is the original image, which we will denote as v.
Notice that horizontal details are kept and vertical details are lost in v0, and the other
way around for v90. This is better appreciated on the zoom on a region of interest
(ROI) in Figure 3.2. The goal is to fuse information from v0 (Figure 3.1.a) and v90

(Figure 3.1.b) to recover the original image v (Figure 3.1.c).

(a) (b) (c)

Figure 3.1: Synthetic images for noise variance σ2
n = 0.005 and blur variance σk = 5.

a) v0, noised and blurred image at 0 degrees (35.28 dB), b) v90, noised and blurred
image at 90 degrees (29.06 dB), c) Original image (∞ dB), with box indicating a region
of interest (ROI). The goal is to recover image c) from a) and b).

(a) (b) (c)

Figure 3.2: Zoom on a region of interest (ROI) of synthetic images. a) v0, noised and
blurred image at 0 degrees, b) v90, noised and blurred image at 90 degrees, c) original
image.
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Figures 3.3 and 3.4 show the simulated v0 and v90 respectivley, for different condi-
tions of noise and blur variance.

σk = 2, σn = 0.005 σk = 5, σn = 0.005 σk = 8, σn = 0.005

σk = 2, σn = 0.05 σk = 5, σn = 0.05 σk = 8, σn = 0.05

σk = 2, σn = 0.5 σk = 5, σn = 0.5 σk = 8, σn = 0.5

Figure 3.3: Simulated acquisition v0 for different levels of blur (σk) and noise (σn).

Metrics

It is a difficult task to quantify the performance of the different algorithms in a mean-
ingful way. To measure the difference between two images, one of most used measures
is the peak signal-to-noise ratio (PSNR) , which requires the knowledge of the original
image to be computed. The PSNR between the images A(x) and B(x), measured in
dB, is defined as:

PSNR = 20 log10

(
maxA(x)

RMSE

)

(3.23)

where RMSE is the root mean squared error. It is defined as:

RMSE =

√

1

n

∑

‖A(x)−B(x)‖2 (3.24)
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σk = 2, σn = 0.005 σk = 5, σn = 0.005 σk = 8, σn = 0.005

σk = 2, σn = 0.05 σk = 5, σn = 0.05 σk = 8, σn = 0.05

σk = 2, σn = 0.5 σk = 5, σn = 0.5 σk = 8, σn = 0.5

Figure 3.4: Simulated acquisition v90 for different levels of blur (σk) and noise (σn).

where n is the total number of pixels in the overlapping area between images A(x)
and B(x).

Other metrics are found in the literature, based on evaluating the focusing of the
image, such as the ones based on the gray-level variance [146], the energy of Laplacian
[147], wavelet focusing [84] or lateral correlation [160]. These metrics do not need the
original image to be computed.

Visual evaluation also plays a critical role on comparing image processing tech-
niques, since many parameters of interest are hardly described using these quantita-
tive measures. In some cases, specific measures can be defined for the parameters of
interest of each application. For example, tissue delineation can be measured by the
relative contrast between two tissues.

3.4.2 PSF estimation

We evaluated on the synthetic images of Figure 3.1 the presented techniques to esti-
mate the point spread function. These techniques are: unconstrained subspace tech-

54



Blind Multiview Deconvolution

niques (denoted as ss), constrained by the multiview geometrical relationship (denoted
as mv), and further constrained by a Gaussian shape (denoted as gmv).

Table 3.3 summarizes the results of this experiment. As it can be observed, in the
noiseless case all techniques successfully retrieve the original synthetic shape of the
blur, up to a great level of accuracy. However, even for the smallest level of noise, the
unconstrained subspace techniques fail to estimate the size of the blur. These cases
(indicated with “x” in Table 3.3), fail in retrieving any coherent shape for the PSF,
creating erratic results. This reveals their strong sensitivity on noise.

σ̄k

σk σn ss mv gmv
2 0 2.00 2.00 1.97
5 5.00 5.00 5.13
8 8.01 8.01 8.14
2 0.005 x 2.14 2.05
5 x 4.75 5.09
8 x 8.34 8.17
2 0.05 x x 2.21
5 x x 5.07
8 x x 8.54
2 0.5 x x 2.15
5 x x 5.32
8 x x 9.12

Table 3.3: Point spread function variance estimation (σ̄k) for different levels of noise
σn and sizes of blur σk. The different techniques are: subspace techniques (ss), using
the multiview constraint (mv), and the multiview constraint and the Gaussian shape
a priori knowledge (gmv). Experiments marked with “x” indicate that the algorithm
failed.

Introducing the multiview constraint helps improving this limit, accepting a small
quantity of noise. However, it also fails for a certain level of noise, which limits its
applicability on real data. Introducing the constraint of Gaussian shape of the kernel,
the technique successfully estimates the right size of the blur at all tested levels of
noise.

The subspace and the multiview techniques need an estimation of the size of the
support. The results reported here correspond to the best estimation of this size, done
by exhaustive search. Although there are some techniques to optimize this search, it
is not obvious to certify that the best result is obtained. When shape constraints are
introduced, there is no longer the need of estimating the support of the PSF since it
is implicitly assumed with the chosen model.
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3.4.3 Image Restoration

Using the multiview PSF estimation technique with Gaussian shape constraint, we
evaluate the deconvolution techniques presented in Chapter 2 on these synthetic im-
ages. Table 3.4 describes the results of this experiment using three different regu-
larization potential functions, namely: Tikhonov, Huber and Lorentz. As it can be
observed, the latter performs best in all cases for different levels of regularization.
Quantitatively, the non-regularized scheme (λ = 0) has a slightly lower but compa-
rable performance to the Lorentz regularization. For low and medium levels of noise,
the Tikhonov and the Huber regularization functions perform worse than the Lorentz
functions. However, for high-levels of noise Tikhonov and Huber functions slightly out-
perform Lorentz function. This is due to the fact that the Lorentz potential function
preserves most edges, but also noise patterns at a certain level of noise power.

The influence of the regularization parameter λ shows that an over-regularized
solution decreases the fidelity of the reconstruction. For Tikhonov and Huber potential
functions, better results are obtained with balanced trade-off of the data fidelity term
and the regularization term. For Lorentz potential function, results are quantitatively
similar, which might be an indication that this potential function is appropriate to
describe prior knowledge of the original image. Although this fact might be justified
by the synthetic nature of the images, such behavior is adequate also for real images.

PSNR - Tikhonov Huber Lorentz
σk σn v0 v90 λ = 0 λ = 0.5 λ = 1 λ = 0.5 λ = 1 λ = 0.5 λ = 1
2 0.005 41.40 35.51 50.64 42.20 38.89 42.97 39.33 52.11 52.16
5 36.10 29.63 41.98 37.92 35.72 38.08 35.85 42.41 42.33
8 33.14 26.60 38.92 35.96 34.03 36.05 34.04 39.16 39.10
2 0.05 39.72 34.78 43.98 40.33 37.78 40.72 38.29 45.61 46.61
5 35.28 29.06 39.79 36.98 35.02 37.07 35.20 40.59 40.67
8 32.57 26.25 37.71 35.28 33.55 35.39 33.55 38.06 38.15
2 0.5 30.36 28.06 26.92 30.77 30.53 30.77 30.67 27.27 27.35
5 29.56 25.87 29.25 30.48 29.94 30.54 30.09 29.57 29.46
8 28.20 24.02 29.69 30.05 29.34 29.90 29.26 30.01 30.14

Table 3.4: Peak Signal to Noise Ratio (dB) for blind multiview deconvolution of simula-
tion data, for degradations σk and speckle noise variance σn. Regularization methods:
none(-), Tikhonov, Huber and Lorentz, for values of λ = 0.5 and λ = 1.

Figure 3.5 shows the deconvolution results on the synthetic images for medium
levels of noise (σn = 0.05) and blur (σk = 5). A zoom on a region of interest can
be observed in Figure 3.6. It can be visually appreciated that the non-regularized
solution shows amplified noise. This puts in evidence that simple metrics as PSNR
are not sufficient to describe the performance of these algorithms. Indeed, the non-
regularized technique minimizes explicitly the squared differences with the simulated
acquisitions, therefore it makes sense that numerically it obtains satisfactory results.
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The effect of regularization can be further appreciated on the zoomed images.
While Tikhonov blurs uniformly all tissue boundaries, Huber preserves some of those,
although it created a bipolar behavior due to the abrupt change in its derivative. Edges
that are over the threshold α are preserved and those below not. Lorentz function
offers a smoother behavior than other techniques, preserving most of the visible edges
present in the original acquisitions.

(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.5: Blind multiview deconvolution for σk = 5 and σn = 0.05, using different
regularization potential functions: top, a) no regularization (λ = 0). Middle, λ = 0.5,
b) Tikhonov, c) Huber, d) Lorentz. Bottom, λ = 1, e) Tikhonov, f) Huber, g) Lorentz.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.6: Region of interest for blind multiview deconvolution for σk = 5 and σn =
0.05, using different regularization potential functions: top, a) no regularization (λ =
0). Middle, λ = 0.5, b) Tikhonov, c) Huber, d) Lorentz. Bottom, λ = 1, e) Tikhonov,
f) Huber, g) Lorentz.

3.5 Conclusions

In this chapter we developed a technique to estimate the point spread function from
anisotropically degraded acquisitions. We first reviewed the blind deconvolution tech-
niques for the single channel case, which are based solely on the intrinsic differences
between the implicit original image and the point spread function. Afterward, we re-
viewed the multichannel techniques, which use the diversity of the different channels
to estimate the different point spread functions.
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In particular, we focused on the subspace techniques, which offer a closed-form
solution of the PSF via the computation of the null-space of a matrix constructed
from the cross-channel relationship. However, this technique is quite sensitive to noise
and to the correct estimation of the support of the PSF. We then introduced the geo-
metrical relationship between the different PSF, which reduces the dimensionality of
the problem, thus improving the robustness against noise and reducing the computa-
tional time. However, these improvements may not be sufficient for real ultrasound
medical imaging. Then, we further introduced shape constraints to the PSF kernel, in
particular, a Gaussian shape. This constrained system succeeded to estimate within
reasonble tolerance the appropriate parameters of the system point spread function
from the different acquisitions.

We validated these techniques on synthetic data. The results obtained with the
shape constrained technique were used along the deconvolution methods presented in
Chapter 2 to restore the synthetic images. We tested three different regularization
functions, namely: Tikhonov, Huber and Lorentz. The latter performed best in all
cases with respect to the signa-and-noise ratio. Application to real ultrasound data is
left for Chapters 5 and 6.
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C H A P T E R 4

Multiview Fusion

4.1 Introduction

In Chapters 2 and 3, we have described the multiview deconvolution technique, which
restores the original volume by estimating the degradation process of the system. In
this chapter, we present a set of different techniques, based on a fusion approach,
consisting in building the reconstructed volume by capturing the valuable information
from each view. The goal is to preserve salient features and the best spatial resolution,
while reducing speckle patterning at the same time.

There are mainly two benefits of using such fusion approaches in comparison to
deconvolution: speed and simplicity. The presented techniques are computed in a
single step, which reduces the computational cost with respect to iterative methods.
Convergence is guaranteed by construction, since the reconstructed image is a com-
bination of the input images. There is no need for a priori information about the
system, such as the point spread function or the angle of acquisition, leading to better
robustness with respect to the estimation of these parameters. However, by not using
this information, the maximum performance of these methods is lower than the one
of deconvolution approaches. Indeed, these techniques just preserve and combine the
information from each view, but do not really reverse the degradation process.

In order to illustrate and evaluate the methods both quantitatively and qualita-
tively, we used the synthetic images presented in Section 3.4. Application to real data
will be presented in Chapters 5 and 6. Registration of the different views is assumed to
be perfect throughout the chapter. The actual registration issues and the techniques
to overcome them in different applications will also be discussed in each corresponding
chapter.

We divide the set of approaches into two classes, depending on the domain in which
they operate. Methods operating in the spatial domain are described in Section 4.2,
while those working in the spectral domain are presented in Section 4.3. A comparison
is performed in Section 4.4, and finally, conclusions are drawn in Section 4.5.
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4.2 Spatial Domain Fusion

4.2.1 Averaging

Averaging is commonly used for spatial compounding, due to the ability to reduce
uncorrelated noise from the different views [155]. Moreover, it is robust and fast.
However, the resulting images do not preserve the best spatial resolution and do not
guarantee feature preservation, that is, features present in only one of the views might
be lost. Denoting by vi each of the views, the estimated volume ṽ is defined by:

ṽ(x) =
1

M

M∑

i=1

vi(x) (4.1)

where M is the number of views, and x = [x y z]T is a point in space.
Figure 4.1 shows the averaging of the example images, along with a zoom on the

ROI defined in Figure 3.2. Both vertical and horizontal features are visible, but with
a poor contrast and tissue delineation severely affected by blurring. The difference
with the original image, measured as the PSNR (see Section 4.4) is 33.32 dB, which
is in between the PSNR of each individual view v0 and v90 (35.28 dB and 29.06 dB
respectively). In other words, quantitatively the reconstructed image differs more than
the original image than from the single view v0. This can be explained by the fact
that the original image has a high horizontal content, better preserved in v0 than in
v90.

(a) (b) (c)

Figure 4.1: a) Average image (PSNR = 33.32 dB), b) ROI on average image, c) ROI
on original image

4.2.2 Weighted averages

One approach to overcome the loss of features when performing averaging is to give
different weights to each view, depending on the presence of specific features, or its
saliency. We denote weighted averaging as:

ṽ(x) =
M∑

i=1

αi(x)vi(x) (4.2)
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where αi(x) represents the weights of each measurement. These weights are positive,
and sum up to unity (0 ≤ αi ≤ 1,

∑

i αi = 1). Simple averaging is obtained for
αi = 1

M
.

Several saliency measures have been proposed in the literature. The measures are
based on local statistics [33], such as local contrast, or use some segmentation algo-
rithms, such as a Canny edge detector (see a review in [123]). For spatial compounding,
Leotta et al.[100] proposed to use the local incidence angle of the ultrasound beam.
For the three-dimensional breast imaging case, Krucker et al.[90] showed qualitative
better results using local contrast as saliency measure. Depending on the size of the
neighborhood of local statistics, finner or larger details will be taken into account into
the saliency map. This has lead also to some multiscale approaches, which combine
saliency at different levels of detail permitting the detection of features at the desired
scale.

In our experiments, we used local contrast as saliency our measure:

sali(x) =
∣
∣vi(x)− ¯vi(x)

∣
∣ (4.3)

where ¯v(x) = 1
N

∑N
j=1 v(xj) is the local intensity mean over N neighbors.

When the size of a feature is close to the size of a speckle pattern, they are hard
to distinguish. In order to discriminate specular reflectors from speckle patterning,
noise models for speckle have been studied in the literature (e.g. on envelope image
[159, 35, 124], on log-compressed images [45, 80, 79, 9]). On the envelope image,
speckle shows a Rician distribution [159], which tends to a Rayleigh distribution for
low SNR conditions. These distribution are completely characterized by their first two
moments, mean and standard deviation. The coefficient of variation (CV) is defined
as the ratio:

CV =
σn

n̄
(4.4)

where σn is the noise standard deviation and n̄ is the noise mean on a local neighbor-
hood. The CV theoretically remains constant in uniform areas and has been widely
used in coherent imaging to discriminate speckle patterning, such as in the Lee [97]
and Frost [52] filters. A Rayleigh distribution satisfies CV −1 = 1.91, which is a typi-
cally verified in envelope images with low SNR. However, in log-compressed B-mode
ultrasonic images, speckle theoretically follows a double exponential distribution [45],
although in can be approximated by a colored Gaussian noise [79] of variance indepen-
dent of the mean. Therefore, as a speckle measure (spk) for log-compressed images we
may use, rather than the CV, the ratio of the local standard deviation from noise as:

spki(x) =
σn

σvi(x)

(4.5)

where the parameter σ2
n was estimated in flat areas of the image, where the variance

of the image was minimal. Values over unity are clipped, as to have a measure which
takes values from one, when a pixel belongs to a speckle area, to zero, when the pixel
does not correspond to a speckle area. Therefore, the measure (1− spki) measures the
non-speckleicity.
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We combined saliency and speckle measures as α
′

i = sali ∗ (1 − spki), and then

renormalized as αi =
α
′

i�
j α

′

j

.

Figure 4.2 shows the saliency maps for the synthetic image examples. Figure 4.3
shows the actual weights α(x), which combine the saliency and speckle measures.
Figure 4.4 shows the resulting image that, compared to uniform averaging, enhances
the contrast of features.

(a) (b) (c)

Figure 4.2: Saliency for synthetic example images (for clarity, black indicates high
contrast). a) v0, b) v90, c) original image.

(a) (b) (c)

Figure 4.3: Saliency combined with speckle detection for synthetic example images
(for clarity, black indicates high weight). a) v0, b) v90, c) original image.

The main problems of weighted averaging are the difficulty of feature identification
and the inability to maintain spatial resolution. The first is due to the fact that speckle
patterning and features are not easily distinguished by local statistics. As mentioned,
multiscale approaches have been suggested to overcome these problems [76], implying
new parameters which have to be tuned for each imaging application. Further analysis
of the image to find the internal structure of the image, e.g. via the Hessian of the
image [9, 161], has been suggested. The problem of feature detection in the multiview
case is simpler than in a single image, since the task is to recognize which of the views
shows an stronger feature, rather than selecting features in an absolute sense. Even
then, it is still not robust, due to the intrinsic similarity between features and speckle
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(a) (b) (c)

Figure 4.4: a) Weighted average image (34.02 dB), b) ROI on weighted average image,
c) ROI on original image.

patterning. In second place, the effects of different point spread functions for each
view are difficult to be taken into consideration within this framework.

4.2.3 Generalized averages

The presented averaging methods tend to blur the images. In fact, it would be desirable
to use different operators, function of the data characteristics in each view. Figure
4.5 shows the three main cases involved in image fusion in multiview echography
with simple pixel-based operators. In the case of pure speckle patterning, averaging
between the uncorrelated views will lead to the desired mean value [155]. In order
to keep echogenic (white) features, the maximum operator would be appropriate. To
keep the best spatial resolution, the minimum operator should be used, in order to
minimize the effects of the point spread function. For hypoechogenic (dark) features,
the functions of minimum and maximum should be interchanged. We will not discuss
this case, since we are primarily interested in echogenic features. Figure 4.6 shows
the results of using the minimum, average and maximum operators to all the example
images.

Generalized averaging provides a way to switch from minimum to average and to
maximum operators in a smooth fashion [30]. In its general form, it can be described
as:

ṽ(x) = f−1

(

1

M

M∑

i=1

f (vi(x))

)

(4.6)

where f is a monotonous function. For f(λ) = λβ, generalized averages take the
following form:

ṽ(x) =

(

1

M

M∑

i=1

vi(x)β(x)

)1/β(x)

(4.7)

For β = 1, an arithmetic average is obtained. For β = 2, a quadratic average is
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(a) (b) (c)

Figure 4.5: Data types in multiview echography and desired operation: a) data agree-
ment, but different PSF (min), b) speckle (average), c) data disagreement, features
present in only one view (max).

(a) (b) (c)

Figure 4.6: Example of min, average and max operators on synthetic images, a) min
(no blur), b) average (denoising), c) max (feature preservation).

obtained. For β → ∞, the generalized average behaves as a maximum operator, and
for β → −∞ it behaves as a minimum.

The value of β(x) should depend on the data “agreement” between the different
views rather than on the saliency of each view. Notice that, in comparison to the
weight maps, there is only one β map and not one for each view. The “agreement”, or
its contrary, “discrepancy” (dis), is measured as the variance of gray levels on a local
neighborhood against the mean compounded volume, as:

dis(x) =
∑

i

(

vi(x)−
∑

i

v̄i(x)

)2

(4.8)

The final β(x) parameter is computed, after normalization of parameters disagree-
ment (dis) and speckle (spk) as:

β(x) = dis(x) ∗ (1− 1

M

∑

i

spki(x)). (4.9)

In our experiments, in order to accommodate these values to the desired range,
a look-up table was used, which mapped the [0, 1] range to [−100, 100]. The upper
(lower) limit was chosen to have a behavior close (more than 99%) to the maximum
(minimum) operators (ideally it would be ∞).
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Figure 4.7 shows the results obtained with this technique on synthetic images. It
can be observed that edges are slightly better preserved than in the previous tech-
niques. However, as with weighted averages, discrepancy maps are not robust, due to
the difficulty to differentiate speckle from features.

(a) (b) (c)

Figure 4.7: a) Generalized average image (35.21 dB), b) ROI, c) ROI on original image.

4.3 Spectral Domain Fusion

Another possible approach to preserve the best spatial resolution is to combine the
different views in the spectral domain. Depending on the PSF of each view, we have
a different spectral coverage (Section 2.4.2), as shown in Figure 4.8 for the synthetic
example images. It can be appreciated how v0 preserves the vertical frequencies,
while v90 preserves the horizontal ones. The principle of frequency fusion consists
in preserving all spectral content, that is keeping in the fused volume the largest
components of each view. This principle is schematized in Figure 4.9.

(a) (b) (c)

Figure 4.8: Actual frequency content of example synthetic images (amplitude in log-
arithmic scale). a) V0(f), b) V90(f), c) V (f) (original).
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(a) (b) (c)

Figure 4.9: Point spread function and associated spectral coverage (plain white area).
a) horizontal PSF, vertical frequencies are preserved b) vertical PSF, horizontal fre-
quencies are preserved, c) combined spectral coverage, which should include the con-
tents of the different views.

4.3.1 Fourier Transform Fusion

A straightforward method to combine the spectral content of the different views is by
combining their Fourier Transform coefficients. Since we are interested in not using
a priori information on the PSF, a simple approach to combine these acquisitions is
by selecting the coefficient of maximum amplitude at each frequency. Denoting the
Fourier transforms of vi(x) by Vi(f) the fused volume can be written as:

Ṽ (f) = maxi {Vi(f)} (4.10)

where maxi {•} refers to selecting the Fourier component (real and imaginary parts)
with the highest absolute value (|V (f)|). The actual image is obtained by taking the
real part of the inverse Fourier Transform, as:

ṽ(x) = <
[

F−1
{

Ṽ (f)
}]

(4.11)

While keeping all spectral information, this method does not guarantee the preser-
vation of features nor the reduction of speckle. On the contrary, noise is preserved at
all frequencies. Indeed, depending on the images, the steep changes introduced by the
maximum operator in the low frequency coefficients may cause low-frequency artifacts,
and similarly, the abrupt changes in high frequency coefficients may cause ringing ar-
tifacts. Indeed, changes in one coefficient may have a global effect, and propagate to
the whole image in the spatial domain.

Figure 4.10 shows an example of result with this technique. Figure 4.11.a shows
from which view each frequency is taken, along with the final frequential content
(Figure 4.11.b). Notice how it differs from the frequential content of the original
image (Figure 4.11.c).
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(a) (b) (c)

Figure 4.10: a) Maximum Frequency fusion (37.31 dB), b) ROI, c) ROI on original
image.

(a) (b) (c)

Figure 4.11: a) Frequency mask, white corresponds to v0, black corresponds to v90 ,
b) Frequency content of the maximum frequency fusion, c) Frequency content of the
original image.

One possible performance improvement of this method is to differently treat differ-
ent parts of the spectrum. The parts covered in the different views should be averaged,
in order to reduce noise. The parts of the spectrum which are only present in only one
of the views are simply kept. No noise reduction is performed in these spectral regions,
since no complementary information is available. By introducing the assumption that
low frequencies are common to all views, the estimated volume can be described as:

Ṽ (f) =

{
1
M

∑

i Vi(f), for f ≤ f0
maxi {Vi(f)} , for f ≥ f0.

(4.12)

Figure 4.12 shows an example of result with this technique. In comparison to
applying the same operator to all the spectrum, some of the details are lost at detriment
of reducing speckle noise.

The main benefit of direct Fourier methods is its computational simplicity. How-
ever, as mentioned, the principal drawbacks of direct Fourier method are the global
effects such as low frequency oscillation and ringing. Moreover, it is not trivial to
discriminate signal from speckle in the spectral domain either, nor to guarantee the
preservation of isolated features.
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(a) (b) (c)

Figure 4.12: a) High Pass Maximum Frequency fusion image (32.66 dB), b) ROI, c)
ROI on original image.

4.3.2 Wavelet Fusion

To overcome the aforementioned problems of direct Fourier methods, we are inter-
ested in a framework that offers a better spatio-spectral trade-off. Wavelet based
fusion methods have been proposed to preserve spatial details of different acquisitions,
and also, to remove speckle noise in ultrasound images. We pretend to combine these
functionalities to both preserve details and reduce speckle, by exploiting the informa-
tion from the different acquisitions [138]. Due to the compact support of the wavelets,
strong reflectors are concentrated on few wavelet coefficients. On the contrary, noise
is spread out among several coefficients, of smaller values [43]. Therefore, the goal is
to enforce high-valued coefficients (features) and filter low-valued coefficients that are
uncorrelated between views (noise).

In the multichannel radar imaging area, wavelet based fusion methods have been
proposed to combine all spatial details of different acquisitions (e.g. [101]). Wavelet
transforms of the images are computed, coefficients are fused following a certain rule
into a single wavelet decomposition, and the fused image is obtained by taking the
inverse wavelet transform of the fused coefficients. One possible fusion rule is to
average coefficients of the approximation bands, and select the coefficients with the
maximum absolute value for the detail bands. Other authors suggested an area-based
maximum selection [33] and consistency checks to avoid spurious values [101].

Wavelet transforms have also been used to denoise images, particularly to de-
speckle ultrasound images (e.g. [61, 15]). A common technique consists in eliminating
coefficients which have values under some threshold. Due to the compact support
of the wavelets, spatially coherent signals concentrate on a limited number of coeffi-
cients, while noise spreads out. This is a commonly admitted hypothesis [87, 43, 61].
Coefficient elimination can be either via hard-thresholding (large values remain un-
changed, values below the threshold become zero) or via soft-thresholding (coefficients
are shrunk continuously, all values larger than the threshold are shifted by the thresh-
old value). Weickert et al. [145, 113] demonstrated that the different thresholding tech-
niques are actually equivalent to different diffusion-stopping functions of anisotropic
diffusion. The threshold value may depend on the decomposition level and on the noise
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and image statistics. An optimum threshold in the min-max sense for Gaussian addi-
tive white noise is proposed in [43], which is tl = σn

√

2log(l)/l, where σ2
n is the noise

variance and l the decomposition level. For speckle noise with Rayleigh distribution, it
is proposed in [60] to use this threshold on the logarithm of the images, and then take
the exponential of the fused result (homomorphic filtering). Soft-thresholding was ap-
plied among others in [61] for medical ultrasound images, adding a factor depending on
image variance σx and an empirical factor k to the threshold: tl = k

√

2 log(l)σ2
n/σx. In

general, σ2
n and σ2

x can be estimated from the image itself within a certain confidence
range.

Wavelet basis

There is a long list of choices for the wavelet basis functions [105]. Longer wavelets
tend to give a slightly better result in terms of speckle reduction, but they might
oversmooth image details [64]. The number of decomposition levels needed to separate
background texture from speckle also depends on the wavelet length, with more levels
needed when a short wavelet function is used. In addition, the computational cost
of the transform is nearly proportional to the length of the wavelet. We chose to use
Daubechies wavelets, which are orthogonal, continuous, and have a good regularity. In
particular we used length-4 Daubechies wavelet function and up to five decomposition
levels (L = 5), which is a good compromise between support length and speckle
robustness and proved to be efficient in our experiments. No major improvements
were found with other classical wavelets. Other specific bases for ultrasound imaging
could have been used, as proposed as in [15]. The comparison is left for future work.

Figure 4.13 shows the wavelet decomposition of the example images, for length-
4 Daubechies (up to two levels of decomposition, for clarity). For each image, the
upper-left quadrant represents the low-frequency image and to the right, the hori-
zontal decomposition; belw the vertical decomposition; and down-right the diagonal
decomposition. It can be seen how the different acquisitions have the significant infor-
mation in different quadrants and how the signal to noise ratio gets degraded at the
high levels of decomposition.

Fusion rules

Our objective is to fuse the different views preserving spatial resolution and denoising,
at the same time. We propose to use a combination of wavelet coefficients in order to
keep the large coefficients and to eliminate the low-valued, uncorrelated coefficients.
We define a fusion rule that fuses the coefficients along with a thresholding to reduce
speckle.

We denote the wavelet transform of vi by wi =
{
w1

i , . . . , w
l
i, bi
}

, containing the
coefficients at each level and the low-pass component bi. Our fusion approach consists
in a simple averaging of the low-pass component bi, and a maximum1 of filtered wavelet

1Actually, in our experiments we performed a generalized average of the form ã =
(
∑M

i=1

1

M a
β
i

)1/β

,

with β = 9, which behaves close to the maximum operator. This was to avoid some minor artifacts
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(a) (b) (c)

Figure 4.13: Length-4 Daubechies decomposition (2 levels) of: a) v0, b) v90, c) original
image.

coefficients as follows:

b̃(y) =
1

M

M∑

i=1

bi(y) (4.13a)

w̃l(y) = max
i

{
αi(y)wl

i(y)
}

(4.13b)

where y represents the wavelet transform coordinates. For αi = 1 (equal weights),
this rule would preserve the largest components of each acquisition, thus preserving
spatial details. In addition, in order to remove noise, we define the weight αi as:

αi(y) =

{

f
(

wl
i(y)

tl

)

, for
∣
∣wl

i(y)
∣
∣ < tl

1, otherwise.
(4.14)

where f is a monotonous function such that f(0) = 0 and f(1) = 1. We used f(x) = x2

in our tests. For Haar wavelet, such function is equivalent to a bi-weight Tukey
function as diffusion stopping function [113], which has the edge-preserving properties
described in Section 2.3.4. For Daubechies wavelet, such relationship has not been yet
established. The value tl is the threshold at level l defined in [61] as:

tl = k
√

2 log(l) σ2
n/σx (4.15)

These weights will penalize in the fusion process the low valued wavelet coefficients,
which are assumed to be noise. The parameter k controls the level of denoising,
and has been set-up experimentally (k = 3.5), as a trade-off between denoising and
detail preservation. The final image is computed by the inverse wavelet transform of

w̃i =
{

w̃1
i , . . . , w̃

l
i, b̃i

}

.

Figure 4.14 shows the wavelet coefficient fusion results described in this section.
Figure 4.15 shows the effect of the threshold level on the images. For k = 0 (Figure

caused by abrupt transitions. For the sake of clarity, we express the operation as a maximum.
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4.15 a), tl = 0 and the image is not filtered. In this case, all the spectral content
of the original images is kept, but all noise too. For higher values of k, wavelet
coefficients corresponding to speckle are filtered out while spatial structures are still
maintained if the threshold is kept within a certain range. Figure 4.16 shows the
wavelet decomposition of the fused result for different threshold levels.

(a) (b) (c)

Figure 4.14: Wavelet fusion image (35.57 dB), b) ROI, c) ROI on original image.

(a) (b) (c)

Figure 4.15: Wavelet coefficient fusion with different threshold levels. a) k = 0, no
filtering (34.33 dB), b) k = 2 (35.41 dB), c) k = 5 (35.63 dB).

4.4 Comparison of the fusion methods

To evaluate the techniques presented in this chapter, we use the synthetic images
presented in Section 3.4. Speckle noise has been added as vnoisy = v + n · √v, where
n is uniformly distributed random noise with zero mean. For this experiment, we
have used σn = {0.005, 0.05, 0.5}, having previously normalized the images. The noisy
image was blurred with an oriented Gaussian kernel with a variance σk = {2, 5, 8}
pixels at 0 and 90 degrees.

Figure 4.17 shows the fusion result of v0 and v90 with the presented methods,
namely: averaging, weighted averaging, generalized averaging, Fourier coefficient fu-
sion, wavelet coefficient fusion and, as described in Chapters 2 and 3, multiview de-
convolution. A zoomed view is shown in Figure 4.18.
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(a) (b) (c)

Figure 4.16: Length-4 Daubechies decomposition for different threshold levels: a)
k = 0, no filtering (34.33 dB), b) k = 2 (35.41 dB), c) k = 5 (35.63 dB).

Table 4.1 summarizes the quantitative results for this experiment. It contains the
differences of the original image v with the reconstructed image ṽ in terms of PSNR
(Section 3.4). Noise, in this context, is defined as the difference between the two
images, accounting both for the differences due to spatial degradation and speckle
noise.

σk σn v0 v90 avg wa ga mf wf md
2 0.005 41.40 35.51 40.02 42.17 44.12 43.88 41.22 51.10
5 36.10 29.63 34.26 37.69 38.04 39.32 38.37 42.73
8 33.14 26.60 31.35 33.81 35.47 38.03 35.18 39.23
2 0.05 39.72 34.78 38.51 39.18 39.54 39.76 39.83 43.91
5 35.28 29.06 33.32 34.02 35.21 37.21 35.57 40.13
8 32.57 26.25 30.63 31.31 32.59 33.32 31.08 37.93
2 0.5 30.36 28.06 30.78 30.92 30.51 29.98 30.67 31.17
5 29.56 25.87 28.53 28.17 28.16 28.84 29.55 30.13
8 28.20 24.02 26.84 25.21 25.18 25.71 29.03 29.53

average computing time (ms) 10 251 401 376 471 1272

Table 4.1: Peak Signal to Noise Ratio (dB) for simulation data, for degradations σk

and speckle noise standard deviation σn, and average computing time (ms). Methods:
average (avg), weighted average (wa), generalized average (ga), maximum frequency
(mf), wavelet fusion (wf) and multiview deconvolution (md).

The most important observation is that multiview deconvolution is the only out-
standing method. It shows better delineation, preserves as many features as others
and shows a relatively good noise reduction. Indeed, it quantitatively performs best
in all conditions of noise power and spatial degradation. The differences are greater in
best case conditions (low noise σn = 0.005, small blur σk = 2), but also in worst case
conditions (high noise σn = 0.5, large blur σk = 8). Note that considering the PSF
of the system automatically collects the features visible at each view. In comparison
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to other compounding strategies where the angle of incidence is considered, for this
technique it is the consideration of the PSF which makes the difference between the
contributions of each of the acquisitions.

For the methods described in this chapter, it is important to mention the de-
noising capabilities of wavelet methods. Actually, it is the only one which explicitly
filters out noise, and the results can be appreciated at the bottom of Figure 4.18.e.
While the denoising strategy of the other proposed methods consists in averaging the
different uncorrelated views, the wavelet framework enables to better isolate edges
from homogeneous areas, facilitating its elimination. Indeed, in high noise conditions
its performance is close to the regularized multiview deconvolution technique. In all
cases, it performs better than the spatial domain techniques. On the other hand, small
artifacts appear, especially close to edges in the reconstructed image.

It is also interesting to mention the performance of the generalized average tech-
nique, which shows a good spatial resolution preservation. Figure 4.18.c shows how it
slightly improves the definition of details while still keeping most of features.

Fourier coefficient fusion shows an overall performance comparable to other fu-
sion techniques, but shows a higher level of high-frequency noise. Although visually
perceptible, it is not reflected into the overall metrics.

Weighted averaging improves local contrast when compared to averaging, as per-
ceptible in Figure 4.18.b. However, spatial resolution and denoising are similar to the
simple averaging method.

(a) (b) (c)

(d) (e) (f)

Figure 4.17: Fusion of synthetic images of Figure 3.1 a and b. a) average (33.32 dB),
b) weighted average (34.02 dB), c) generalized average (35.21 dB), d) Fourier fusion
(37.31 dB), e) wavelet fusion (35.57 dB), f) multiview deconvolution (40.13 dB).
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(a) (b) (c)

(d) (e) (f)

Figure 4.18: Zoom on fusion of synthetic images of Figure 3.1 a and b. a) average
(33.32 dB), b) weighted average (34.02 dB), c) generalized average (35.21 dB), d)
Fourier fusion (37.31 dB), e) wavelet fusion (35.57 dB), f) multiview deconvolution
(40.13 dB).

Computational times for this example image (8 bits, 186x250 pixels) are also pre-
sented in Table 4.1. The average method is the fastest one (10 ms), followed by
weighted average (215 ms), wavelet fusion (471 ms) and multichannel deconvolution
(1272 ms). For the later, this time includes both the estimation of the system’s PSF
and the volume reconstruction. This computational time figures should be regarded
as relative since they depend on many parameters such as the platform and the coding
language. Therefore it is interesting to notice that taking averaging as reference (x1),
the cost of the techniques is as follows: weighted average (x22), wavelet fusion (x47)
and multichannel deconvolution (x127).

4.5 Conclusions

In this chapter, we have reviewed some methods to fuse different views of an image,
from averaging to wavelet coefficient fusion. Those were based on a fusion approach,
in the sense that the reconstructed volume is made of pieces of information from
each view. We have introduced several refinements in order to achieve our imaging
goals. However, these techniques, on synthetic images, underperformed the regularized
multiview deconvolution method. The reason is that this method actually reverts the
degradation process, compensating the effect of the PSF of the acquisition process,
while the regularization step avoids noise amplification.

76



Multiview Fusion

The methods presented in this chapter do not equalize the degradation process.
On the other hand, they are faster since they do not need to estimate the PSF, they
have a closed-form solution and in general less parameters to estimate. Indeed, they
preserve features present only in some of the views, which may be sufficient for some
applications. Spatial domain techniques show a relative low computational cost, but
they suffer from the difficulty to discriminate features form speckle. The list of methods
is not exhaustive. Notably, fusion schemes based on pyramidal decomposition [34],
such as Oriented Laplacian decomposition, are of great interest for this application.
Our results with these techniques show a performance close to those presented here,
thus they have not been included in this study.

Wavelet framework, as proved in the literature, shows to be an efficient denoising
framework. Indeed, it could be combined with the multiview deconvolution technique.
Many of the functionalities described in this chapter (measures of saliency, discrep-
ancy and speckle) could be integrated into the multiview framework to improve its
performance.

With this chapter, we finished to describe the methods we developed to combine
the different acquisitions. Next chapters are dedicated to apply this methodologies to
real data with clinical applications.
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C H A P T E R 5

3D Breast Ultrasound Imaging

5.1 Introduction

One woman in eight will develop breast cancer in her life time [4]. In year 2000, over 1
million women were diagnosed with new cases of breast cancer worldwide and 373,000
died from this disease [50]. However, if detected early, the five-year survival rate
exceeds 95%. Therefore, the importance of breast imaging systems devices capable of
diagnosing this disease is vital. Indeed, the development of medical imaging systems
has contributed to the reduction in breast cancer mortality rates in recent years [4].

X-rays mammography is among the best early detection methods and is currently
used as a screening tool in clinical routine. It permits the detection of small structures,
such as microcalifications, and can image most types of breast. However, it is invasive
due to the X-ray radiation and cannot diagnose all breast cancer pathologies. This
is specially important for breast masses, since it has a low contrast resolution which
does not permit to image fluid cysts [111]. Ultrasound echography, on the contrary, has
an excellent contrast resolution and is non-invasive. Indeed, devices are portable and
exams are relatively cheap. On the other hande, it has a limited spatial resolution [69],
it cannot detect microcalifications, it cannot image dense fat breasts and the image
quality is dependent on the practitioner’s skills [111]. Figure 5.1 shows an example of
standard X-ray mammography and ultrasound exams.

While current ultrasound clinical practice is performed with 2D imaging systems,
3D imaging systems can improve substantially the diagnosis abilities [96]. Masses
and tissues can be completely captured and shape parameters accurately quantified.
Indeed, if the whole breast is scanned, the exam is less dependent on the practitioner,
since all features are captured within examination time. However, up to date, there
are no planar array 3D acquisition systems in the market suited for imaging the whole
breast. We use a linear probe embedded in a robotic platform which scans the whole
breast tissue. Other approaches have been proposed, such as hand-held linear array
attached to a linear slider [96], or free-hand systems with a position sensor [164][129].

Obtaining 3D acquisitions of the breast is a challenging task. Due to the limited
elevational resolution of linear arrays (see Appendix A) the obtained volumes have a
highly anisotropic resolution, which limits the spatial resolution of the system. In this
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(a) (b)

Figure 5.1: Example of breast tissue exams with a) x-ray mammography and b) ul-
trasound echography, from [6]

chapter we propose a technique to improve the performances of the system [140]. By
scanning the breast tissue in different directions, views which have a different point
spread functions can be obtained. By combining them, the spatial resolution will be
improved. Moreover, these different views have uncorrelated speckle patterning. By
combining them, the SNR will be increased, improving the contrast resolution. In other
words, the acquisition of these different views permits us to perform 3D deblurring and
3D spatial compounding. This application is therefore entirely relevant with respect
to the methodological developments described in the previous chapters.

We give a brief introduction to breast cancer in Section 5.2. The acquisition proce-
dure is explained in Section 5.3. In Section 5.4 we will study the characteristics of the
data, in order to validate the models used for noise, signal and the point spread func-
tion. Non-rigid registration techniques which ensure proper alignment of the different
views are described in Section 5.5. The multiview techniques developed in Chapters 2
and 3 are applied to obtain high resolution 3D scans of the breast tissue. Results on
in vivo data are reported in Section 5.6, and conclusions drawn in Section 5.7.

5.2 Clinical needs

5.2.1 Breast cancer

The term “breast cancer” denotes a wide, heterogeneous range of malignant diseases
of breast tissues. Adenocarcinoma is a general type of cancer that starts in glandular
tissues anywhere in the body. Nearly all breast cancers start in glandular tissue of the
breast and are, therefore, adenocarcinomas. The two main types of breast adenocar-
cinomas are ductal carcinomas and lobular carcinomas. There are also several cellular
subtypes, some of which have important implications for prognosis and treatment, and
different types can coexist simultaneously. The most common breast malignancies are
summarized in Table 5.1 [137]. Figure 5.2 shows a diagram of normal breast structures.
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Figure 5.2: Diagram of normal breast structures

Classification Type Sub-type
Ductal Carcinoma In Situ (DCIS) Comedo

Non-invasive Solid
Epithelial Cribriform

Malignancies Papillary
Micropapillary

Lobular Carcinoma In Situ (LCIS)
Invasive Invasive Ductal Carcinoma(IDC) Scirrhous

Epithelial Transitional
Malignancies Cellular

IDC + DCIS
Invasive Lobular Carcinoma (ILC)

Medullary Carcinoma
Mucinous (Colloid) Carcinoma

Papillary Carcinoma
Tubular Carcinoma

Paget’s Disease
Inflammatory Carcinoma

Non-epithelial Sarcoma Cytosarcoma
Malignancies Phyllodes

Fibrosarcoma
Liposarcoma
Angiosarcoma

Lymphoma

Table 5.1: Most common malign breast pathologies [137]
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Most breast diseases are benign, and most breast symptoms are caused by fibrocys-
tic changes. Benign breast tumors such as fibroadenomas or papillomas are abnormal
growths, but are not malignant and cannot spread outside of the breast to other organs.
The most common benign breast conditions are summarized in Table 5.2 [137].

Type Sub-type
Fibrocystic Change(FCC) Cysts

Duct ectasia
Ductal hyperplasia
Lobular hyperplasia
Fibrous mastopathy

Microcystic mastopathy
Focal fibrosis

Adenosis
Fibroadenoma Fibroadenoma

Proliferative
Phyllodes

Mastitis Puerperal
Non-puerperal

Other Papilloma
Lipoma

Hamartoma
Fibromatosis

Table 5.2: Most common benign breast pathologies [137]

There exist some classification methods to assess the malignancy of breast disease.
Among others, BI-RADStm (Breast Imaging Reporting and Data System) [1] is one of
the most popular ones. Many parameters are taken into consideration to evaluate the
disease malignancy, such as size, contour shape or mass density. According to their
values and relationships, BI-RADStm classifies the lesion into five categories, from
negative finding to high confidence on malignancy (Table 5.3). Typical indications
of malignancy are spiculated and elongated masses, e.g. an invasive scirrhous ductal
carcinoma.

Category 0: Need Additional Imaging Evaluation
Category 1: Negative
Category 2: Benign Finding
Category 3: Probably Benign Finding; Short Interval Follow-Up Suggested
Category 4: Suspicious Abnormality; Biopsy Should Be Considered
Category 5: Highly Suggestive of Malignancy; Appropriate Action Should Be Taken

Table 5.3: BI-RADStm Classification.
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5.2.2 Imaging needs

The imaging system has to reveal the parameters that permit differentiating benign
and malignant diseases, following the BI-RADS classification or other.

Contrast resolution

For the breast imaging application, it is important to have a good contrast resolution.
Contrast resolution refers to the ability to distinguish a mass from its borders, or the
mean density of two masses. If the image is corrupted by noise, the density of the mass
may not be distinguished from its neighbors. Figure 5.3 illustrates this concept with
a synthetic example of two masses which have a similar density value, but are hardly
distinguishable under noise condition. The objective of our system is to improve the
SNR in order to improve the contrast resolution, to better appreciate masses.

(a) (b)
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0.5

i

p(
i)

(c) (d)

Figure 5.3: Contrast resolution is greatly reduced by noise: a) original simulated
masses, b) image with additive Gaussian noise, c) histogram of (a), d) histogram of
(b).

Spatial Resolution

Spatial resolution refers to the ability of the system to distinguish closely spaced re-
flectors. In order to appreciate mass borders and small fibers, a good spatial resolution
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is needed. Otherwise, there is a loss in details which can hide elements of diagnosis.
Figure 5.4 shows an example of a spiculated mass and a round-shaped mass, which
are hard to distinguish under blurry conditions.

(a) (b)

(a) (b)

Figure 5.4: Spatial resolution is reduced by the effect of the point spread function:
a) spiculated simulated mass of 5mm of diameter, b) spiculated mass blurred with a
Gaussian PSF (σ = 1mm), c) round-shaped simulated mass of 5mm of diameter, d)
round-shaped simulated mass blurred with Gaussian PSF (σ = 1mm).

In order to detect microcalcifications, a spatial resolution of about 50µm is needed.
This is far below the resolution of current conventional ultrasound systems, which
show a typical spatial resolution of about 300x1000x300µm in lateral, elevational and
axial dimensions. However, even if the smallest microcalifications are not visible, by
improving the spatial resolution the microcalifications will be detectable at an earlier
stage of their evolution.

Practitioner Independence

Current systems depend on the skills of the practitioner. Masses can be missed or
not acquired in its larger or right view in 2D images, which is not the case in 3D. By
using a mechanical platform, the dependency on the practitioner’s skill is greatly re-
duced. Exams are made in a systematic way which avoids missing interesting features.
Reducing variability lead to more robust performance on computer aided diagnosis.
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5.3 Data Acquisition

5.3.1 Methods

In order to obtain 3D acquisitions, a linear array was embedded in a two-dimensional
robotic platform, as schematized in Figure 5.5. The linear array layed in th xz plane,
insonifing in the y direction. The tissue was scanned by linearly translating the probe
along the plataform. Regular 2D ultrasound images were obtained at each position
of the probe, constituting a series of slices of the volume of interest. The platform
has three degrees of freedom (lateral translation x, elevation translation z and probe
rotation θ), which permit scanning the tissue in any direction. Elevational tilt of the
probe was set to 90 degrees, obtaining images exactly perpendicular to the platform
(xz plane). The breast tissue was compressed onto the scanning platform and the
patient was asked not to move during all scans.

In order to obtain different views, we scanned the breast tissue along different di-
rections, in increments of 45 degrees, as depicted in Figure 5.6. Each linear scan takes
approximately 15 seconds, resulting in a total scanning time of 1 minute. These dif-
ferent views have uncorrelated speckle patterning and rotated point spread functions,
permitting to improve the SNR and overcome the limited elevational resolution by
combining them. We will denote these views as v0, v45, v90 and v135, as short notation
for scalar-valued function v(x) : Ω → R, (Ω ⊂ R

3) where x = (x, y, z)T represents
the position in the space, with x referring to the lateral dimension, y to the axial
dimension and z to the elevational dimension.

The B-scan refers to the conventional two-dimensional ultrasound image of (xy
plane for v0), the elevation scan (E-scan) refers to the perpendicular plane to the B-
scan and parallel to the scanning direction (yz plane for v0), and the C-scan refers to
the plane perpendicular both to the B-scan and elevational planes (xz plane for all
acquisitions), as shown in Figure 5.7. Figure 5.8 shows an example on a fruit phantom
(Section B.3) of a B-scan, E-scan and C-scan for v0 and v90. Notice the different point
spread functions of these planes resulting in a larger blurring effect in the E-scan and
C-scan.

The robotic platform is currently installed at the University of Chicago Hospital,
IL, USA for clinical validation studies.

5.3.2 Ultrasound Acquisition System

The ultrasonic probe was a Philips L12-5 50 mm broadband linear array with 192
elements and operating frequency range from 5 to 12 Mhz, on a Philips HDI5000
system. Two-dimensional images were obtained each 0.2 mm, triggered by the position
encoder. Each 2D slice was acquired with spatial compounding (SonoCTtm) with three
angulations of -8.5, 0, and 8.5 degrees. The width of the region scanned was 5 cm, at
a spacing between acquisitions of 0.2 mm, the depth depended of the imaged target,
varying from 2.5 cm to 5 cm, and resolution varying from 0.05 to 0.1 mm. A final
volume was linearly interpolated onto a grid of voxel size 0.2x0.1x0.2 mm, for lateral,
axial and elevational dimensions respectively.
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Figure 5.5: Robotic platform for 3D ultrasound breast scanning, with three degrees of
freedom: lateral axis (x), elevational axis (z) and probe angulation (θ). Dimension y
represents the axial direction, the depth of the ultrasonic scan.

Figure 5.6: Multiview scanning strategy. The tissue volume within the dashed line
is scanned in four directions, at 0, 45, 90 and 135 degrees, to obtain views with
complementary point spread functions and uncorrelated speckle paterning.
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Figure 5.7: Definition of B, E and C scan for 3D breast acquisition for v0.

5.4 Data Characterization

In this Section we characterize the statistics of the signal and noise of the acquired
data, in order to validate the signal and noise models. These statistical properties will
be used as parameters in the fusion algorithms, as indicated in Section 5.6.1.

5.4.1 Point Spread Function

The point spread function of the system depends on the probe characteristics (Section
A.3.1). Briefly, the axial resolution depends on the ultrasound pulse length, and
the lateral and elevational resolutions depend in the aperture of x and z dimensions
respectively. The phantom “bubbles” (Appendix A) was used to characterize the point
spread function of the system. It is made of small isotropic small bubbles that are
close to be punctual, thus they can be considered as individual reflectors. Figure 5.9
shows the B-scan and C-scan for v0 and E-scan and C-scan for v90. Figure 5.10 shows a
zoom on the C-scan for one of these bubbles for all four acquisitions, which highlights
the anisotropy of the acquisitions due to the limited elevational resolution.

Figure 5.11 displays the profile in the lateral, axial and elevational directions for
a bubble in v0, which illustrates the worse resolution in the elevational plane, besides
the apparition of secondary lobes due to the nearly squared elevational aperture. In
the axial profile, an artifact due to the construction of the phantom can be observed.
There is a second local maximum after the main PSF, due to the clutter caused by
the bubble nature of the impulsional particle.

In order to quantify the size of the point spread function from the phantom, the full
width at half maximum (FWHM) [157] was measured for all bubbles as a function of
x, y and z. The FWHM is the distance between the points at which the PSF reaches
half its maximum value, defined as:

FWHM = |x1 − x2| , h(x1) = h(x2) = max(h(x))/2 (5.1)

The goodness-of-fit of the Gaussian model and the measured data is measured by
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Figure 5.8: Slices of fruit phantom 3D acquisition, zoom on a 3x5x3 cm area, voxel
size 0.2x0.1x0.1 mm. For v0 (upper row): a) B-scan (z = 60), b) E-scan (x = 100),
c) C-scan (y = 350). For v90 (lower row): d) E-scan (z = 60), e) B-scan (x = 100),
f) C-scan (y = 350). Due to the point spread function of the system, the best spatial
resolution is achieved in the B-scan, which corresponds to the xy plane for v0 and
to the zy plane for v90. The objective of the mutliview restoration algorithm is to
combine these different views to obtain a high-resolution volume.

the ρ2 metric, defined as:

ρ2(A,B) =
cov(A,B)

σ(A)σ(B)
(5.2)

where cov(A,B) is the covariance between the two data sets, and σ(•) is the standard
deviation of a particular data set. This metric takes the value 1 for a perfect fit and
decreases toward zero as the fit gets worse. Although there might be more appropriate
fitting tests for this kind of data (e.g. Kolmogorov-Smirnov [36]), we chose this method
because it gives a normalized result.
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Figure 5.9: Bubble phantom to measure the point spread function: a) B-scan(x = 80)
of v0, b) C-scan(y = 400) of v0, c) E-scan(x = 80) of v90, d) C-scan(y = 400) of v90.
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Figure 5.10: C-scan slice of the point spread function, for a) v0, b) v45, c) v90 and d)
v135 (pixel size 0.2x0.2mm).
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Figure 5.11: Point spread function profile of v0 for bubble centered at (x=10.40,
y=26.39, z=5.40 mm). a) Lateral, b) axial, c) elevational profiles. Notice the sec-
ondary peak in the axial profile due to clutter, and the secondary lobes in the eleva-
tional profile.

Table 5.4 reports the results for this metric. As expected, the PSF is largest in
the elevational plane (2.34 mm), followed by the lateral plane (1.10 mm) and the axial
plane (0.61 mm). Table 5.4 also shows the fit (ρ2) of the PSF to a Gaussian model,
showing a good fit overall. The lateral profile shows the best fit to a Gaussian model
(0.9884), followed by the elevational profile (0.9606) and the axial profile (0.9441).
This mismatch is due to the presence of clutter and the secondary lobes. If these
parts were not considered, the goodness-of-fit would improve to 0.9711 and 0.9763 for
the elevational and axial dimensions respectively. Also, there is a slight discrepancy
between the values obtained by the Gaussian fit and the FWHM metric, which should
be related as FWHM = 2

√
2 ln 2σ = 2.3548σ. Due to the clutter artifact and the

secondary lobes, the Gaussian fit tends to overestimate the size of the PSF.

FWHM (mm) σ 2
√

2 ln 2σ ρ2

lateral 1.10±0.29 0.55±0.16 1.30 0.9884
axial 0.61±0.12 0.28±0.51 0.66 0.9441
elevational 2.34±0.60 1.32±0.31 3.11 0.9606

Table 5.4: Point spread function size (FWHM in mm), for lateral, axial and elevational
directions on bubble phantom, and fitted Gaussian model, σ (mm), and goodness-to-fit
(ρ2).

Figure 5.12 shows the dependency of the size of the point spread function with the
depth (y axis), especially for the elevational plane. This is due to the fixed focalization
of the acoustic lens of the probe. The dependency on depth of the PSF in the lateral
and axial planes is smaller. The goodness of fit of the Gaussian model was uniform
for all depths.
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Figure 5.12: Point spread function size (σ) as a function of depth, for lateral (red),
axial (green) and elevational (blue) directions. Points represent individual bubble
sizes, solid line represent quadratic fit.

5.4.2 Speckle Statistics

In this section we examine the hypothesis that speckle in log-compressed ultrasound
images follows a colored Gaussian additive noise model [79].

Intensity Distribution

We examined the intensity distribution of speckle in order to understand its statistical
behavior and verify our model. Uniform areas, where supposedly variations are caused
only by speckle patterning, were selected as areas where gradient magnitude is the
lowest. Figure 5.13 shows the three main areas used in the fruit phantom, where three
regions can be clearly differentiated. Figure 5.14 shows a uniform area of speckle along
with its histogram and its Gaussian fit - in a maximum-likelihood sense.

Table 5.5 shows the fitted parameters for B-scan planes, C-scan planes, E-scan
planes and the 3D volume. Results showed an extremely good fit with Gaussian
distribution, ρ2 > 0.99 for µ = 110 and µ = 150. The average fit for µ = 35 is lower,
ρ2 = 0.89, because as the mean average value is closer to zero, its distribution gets
closer to a Rayleigh distribution. The variance of the noise power for this phantom
is larger for lower values since their area is smaller than others. The variance is
larger in all cases for the C-scan plane, due to the blurring effect of the point spread
function. From this data, we can make a rough estimation for at which point the noise

91



5.4 Data Characterization

20 40 60 80 100 120 140

50

100

150

200

250

300

350

400

450

500

20 40 60 80 100 120 140

50

100

150

200

250

300

350

400

450

500

(a) (b)

Figure 5.13: a) B-scan plane of fruit phantom, b) colored local mean of a), where three
main areas can be differentiated as red (µ = 145), green (µ = 110) and blue (µ = 35).
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Figure 5.14: a) Uniform area corrupted with speckle (µ = 110) and b) its histogram
(points, blue) and Gaussian fit (solid, red, ρ2=0.9942)
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distribution is no longer Gaussian. Considering the variance of the noise, the lower
tail of the distribution will be higher than zero for values of µ ≥ 50, which represents a
80% of the gray scale range. For lower values, the fit is worse. This result is consistent
to assume a Rician model for the speckle intensity distribution (Appendix A) - for low
levels of signal, the distribution is Rayleigh, and for higher, is close to Gaussian.

σ̄B σ̄E σ̄C σ3D ρ̄2
B ρ̄2

E ρ̄2
C ρ2

3D

µ = 35 3.43±1.5 3.32±1.5 3.21±1.9 3.31±1.7 0.918 0.850 0.875 0.891
µ = 110 3.99±0.6 3.87±0.7 3.90±1.3 3.92±0.9 0.994 0.995 0.985 0.992
µ = 145 4.22±0.4 4.17±0.3 3.76±1.6 4.13±1.2 0.997 0.997 0.995 0.995
average 3.88 3.78 3.65 3.76 - - - -

Table 5.5: Speckle intensity standard deviation for v0 on the fruit phantom, along B,
E and C planes, and fit to Gaussian distribution.

Relationship between Mean and Standard deviation

The relationship between mean and standard deviation was evaluated for all mean
gray-values in uniform areas on phantom and in vivo data. The standard deviation
was found almost constant for all mean values, with a slight linear dependency. In
other words, the noise variance is constant throughout all the range of values of log-
compressed ultrasonic B-scan, E-scan, C-scan and 3D ultrasound data as acquired
in our application. This justifies the use of an additive noise model rather than a
multiplicative one.

Figure 5.15 shows this dependency for phantom data. Notice that the variance on
the standard deviation estimate is quite high, which is due to the fact that for some
mean values there are very few samples.

Figure 5.16 shows the coefficient of variation (µ
σ
, see Section 4.2.2), which is in-

tented to be constant throughout the range of mean values for other coherent imaging
modalities. It is shown that it is not constant for log-compressed ultrasound images,
thus not adequate as detector of uniform areas. These results suggest the adequacy
of using only the local variance as uniform area detector and not the coefficient of
variation.

Autocovariance

Figure 5.17 shows the autocovariance profile in the lateral, axial and elevational direc-
tions, evaluated in uniform areas on the fruit phantom. Table 5.6 summarizes their
numerical values. It can be observed that the autocovariance values follow the point
spread function characterized in the previous section, that is, the biggest values are
observed in the elevational direction, followed by the lateral and the axial directions.

The results presented in this section verify the simplified model of speckle in log-
compressed ultrasound images proposed by [79] as colored Gaussian noise.
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(a)

(b)

Figure 5.15: Relationship between mean and standard deviation on a) phantom data
(mean of std = 3.8±1.1), b) in vivo data (mean of std = 4.3±1.7).
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(a)

(b)

Figure 5.16: Coefficient of variation for log-compressed images on a) phantom data
and b) in vivo data, showing it is not constant throughout all mean values.
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Figure 5.17: Speckle autocorrelation profile for fruit phantom on uniform areas, in
the a) lateral, b) axial and c) elevational directions. This metric shows the spatial
statistical dependency.
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FWHM (mm) σ 2
√

2 ln 2σ ρ2

lateral 0.59±0.29 0.29±0.21 0.68 0.9786
axial 0.30±0.09 0.12±0.04 0.28 0.9569
elevational 1.14±0.42 0.61±0.23 1.44 0.8076

Table 5.6: Estimation of the autocovariance of speckle, measured with the FHWM
metric.

5.5 Registration

The different views need to be registered before combining them. Otherwise, the
structures would appear at different positions, creating blurring artifacts. There are
many factors which may contribute to the misalignment of the different views, such
as mechanical misalignments, ultrasound imaging formation aberrations and patient
movement during the scan.

Mechanical positioning errors may induce misalignment between the different views,
due to uncalibrated offset and probe tilt between the different views. The mechanical
precision of the linear encoders is of the order of 1 µm, much smaller than the resolu-
tion of the system. However, the position of the probe relative to the encoders needs
to be calibrated in order to ensure the proper correspondence between the different
acquisitions.

In second place, the formation of ultrasound images depends on the speed of sound
(SoS), which indeed may not be constant. For this application, since all views are
perpendicular to the breast tissue, a global misestimation from the true SoS is not
significant since it will affect equally all views. Typical values of variation of SoS
within breast tissue are small:

• Standard soft tissue, c0 =1540 ms−1

• Fat tissue, c =1450 ms−1 (- 6%)

• Muscle, c =1580 ms−1 (+ 3%)

The ratio of variation of the SoS is directly proportional to the produced misalign-
ment, such as c0

c
. In other words, the worst case to misalignment would be about 3

mm at 5 cm of depth. However, this would be an extremely rare case where one view
found only fat tissue and the others did not. In typical breast tissue, the expected
variation between the different views is below the size of PSF.

In addition, tissue inhomogeneities may cause defocusing of the beamforming. This
will not be corrected by the registration algorithm, and will have an effect of blurring
the image, although it will be the same for all views.

At last, the movement of the patient can change the position of the breast tissue
from their initial position. This movement can be due to breathing, cough, involuntary
movement or repositioning in the scanning machine. We will develop a technique to
compensate for such potential misalignment.
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For all experiments, v0 was chosen as the reference volume and the other views
were registered against it.

5.5.1 Platform calibration

In order to calibrate the position of the probe with the mechanical encoders, a proce-
dure was performed using the phantom “bubbles” (Section B.2), consisting of a set of
individual reflectors. These reflectors should be at the same place in all acquisitions.
The procedure consists in maximizing the cross correlation between the acquisitions
in order to find the optimal offsets between the views. The search was done exhaus-
tively in an interval of ±0.4mm in lateral and elevational directions, with a step of
±0.02mm. The offsets were found to be ∆x = 0.22mm in the lateral dimension and
∆z = −0.18mm in the elevational dimension, which correspond to approximately 1
pixel in each dimension. The same procedure was tested with the in vivo data, obtain-
ing values which are close to those obtained with the phantom data, ∆x = 0.26mm in
the lateral dimension and ∆z = −0.24mm. This could be useful in clinical routine if
slight mechanical variations took place due to temperature changes or the like.

Table 5.7 summarizes the values of these experiments. The difference between
offsets obtained on the phantom data or on the in vivo data where 0.04 mm and 0.06
mm in the lateral and elevational planes respectively, which is approximately 1/4 of
pixel. In the axial dimension there was practically no difference.

dx dy dz ∆x ∆y ∆z
phantom 0.22 0.07 -0.18
in vivo 0.26 0.07 -0.24 0.04 0.001 0.06

Table 5.7: Registration offsets (mm)

These values were evaluated along the axial dimension(y), showing no dependency
(σ = 0.006 mm) on depth. This indicates that the probe tilt, which was manually
calibrated, was correctly set to 90 degrees.

Figure 5.18 shows an example of offset registration on a fruit phantom, showing
three slices (B-scan, E-scan, C-scan) of averaged volumes with and without offset
compensation. Some structures, especially small fibers on the boundary of the fruit,
are better delineated on the compensated data set.

5.5.2 In vivo data registration

In order to compensate both patient movements and deviations due to a speed of
sound misestimation, a non-rigid registration procedure was applied. Rueckert et
al. [131] reported the need of non-rigid registration for breast tissue on contrast-
enhanced MR data, even with a coarser spatial resolution (about 1.5 mm). The method
they proposed was based on a constrained free-form deformation (FFD)[98], using
normalized mutual information as similarity metric [103]. For 3D breast ultrasound,
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(a)

(b)

Figure 5.18: Average of four views: a) without offset compensation, and b) with offset
compensation. Small structures are better preserved on the corrected data set.
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for acquisitions with a linear array on a linear slicer obtained with different probe
tilts, Krüker et al. [90] proposed a method of non-linear registration, based on: (i)
performing a block matching using mutual information as similarity metric between
the different views, (ii) selecting the blocks with the most significant shift and (iii)
using the centers of these blocks as landmarks, transform the volume using a Thin-
plate Spline interpolation [31]. On synthetically deformed data, this system improved
deviations up to a mean deviation of 0.23 mm. On phantom measures, acquired
with an aberrating layer to simulate beam deformations, and comparing the manually
selected landmarks, the mean residual deviation was 0.30 mm.

Based on these works, we developed the technique that follows.

Similarity metric

We used a block-matching algorithm with sum of squared differences (SSD) as sim-
ilarity metric. The acquisitions are obtained with the same machine, with the same
imaging settings, therefore the relationship between the intensity levels is expected to
be the identity. In this case, the SSD metric should work as well as any other metric,
including the correlation coefficient or mutual information. Moreover, it has a lower
computational cost, and the basin of attraction is typically larger [133], which permits
a faster and more robust optimization of the criteria.

The size of the block is a critical parameter. Since the views are corrupted with
speckle, the block has to be large enough for the matching to be robust with respect
to speckle. Indeed, if no features are present in the block a noisy measurement will
be obtained. Also, the point spread function is different in the different views, thus a
perfect match between the different blocks cannot be expected. A possible approach
to overcome this problem is proposed by Sroubek et al. [142], who perform registration
and deconvolution at the same time, by estimating the point spread function along
with its displacement. They also suppose a space-invariant point spread function. In
our experiments, we used a size of 5x5x5 mm which turned out to be robust enough
for the aforementioned problems. The search space was limited to ±2 mm, and the
total number of control points was a grid of 8x8x8mm (6x6x6 points).

Geometrical Transformation

To extend the displacements found by the block matching, we used a B-spline free-form
deformation (FFD) transformation. The advantage of using FFD to other methods
such as Thin-plate splines is that the deformation is locally controlled and they are
computationally more advantageous. Indeed, breast tissue does not necessarily follow
the implicit model of the Thin-plate spline transformation [131].

The FFD defines the transformation T(x), based on the deformation found by the
block matching algorithm at each point of the uniform control grid. By denoting these
control points as φi,j,k, the transformation is defined for each point as [131]:

T(x) =
3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (5.3)
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where i = bx/nxc − 1, j = by/nyc − 1, k = bz/nzc − 1, u = x/nx − bx/nxc, v =
y/ny − by/nyc, w = z/nz − bz/nzc and where Bl represents the lth B-spline basis
function [98]:

B0(u) = (1− u)3/6
B1(u) = (3u3 − 6u2 + 4)/6
B2(u) = (−3u3 + 3u2 + 3u+ 1)/6
B3(u) = u3/6

(5.4)

At each point x, T(x) depends only on the closest four control points in each
dimension. The points outside the domain of the image are considered to be fixed.

Registration Evaluation

Figure 5.19 shows the averaging of four views with and without the non-rigid transfor-
mation. Differences can be appreciated on the zoomed areas, where tissue delineation
has been improved. It is expected that in clinical routine further potential displace-
ments will occur, thus the need of this non-rigid registration step.

It is not obvious to evaluate the performance of elastic registration on in vivo data.
Methods based on similarity metrics may be tendentious, since typically these metrics
have been used to find the solution that makes them minimal. Other validation tech-
niques, such as comparison based on manually selected landmarks are not applicable
due to the very small displacements. The variability on manual clicks was found to be
larger than the displacements. For ultrasound imaging of the breast, synthetic simu-
lations with known elastic transforms, and measurements on phantom data measured
with aberrated layers which simulate a non-linear deformation have prove to be quite
effective in the literature [90].

To evaluate how large the displacements induced by the interpolated field T(x)
are, we define the total mean displacement d as:

d =
1

N

∑

∀x∈Ω

‖T(x)‖ (5.5)

For each direction x, y, z, we compute the directional mean displacement du as:

du =
1

N

∑

∀x∈Ω

‖T(x) · u‖ (5.6)

We compute the root mean squared error (RMSE) between the reference volume
v0 and the other volumes before and after the non-rigid registration. This gives us an
idea of the overall similarity improvement obtained by the registration process. The
RMSE is defined as:

RMSE =

√

1

n

∑

∀x∈Ω

(v0(x)− vi(T(x)))2 (5.7)

Table 5.8 summarizes these metrics for the different four views on in vivo data.
The results show that the displacements are typically small, in the order of 200 µm for
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(a) (b)

(c) (d)

Figure 5.19: Example of non-rigid registration on in vivo data: a) average of views
without registration, b) average of views with non-rigid registration, c) zoom on non
registered view (a), d) zoom on registered view (b). For instance, the separation of
the fibers below the breast mass can be better observed on the registered data set.

lateral and elevational directions, and in the order of 100 µm for the axial direction.
These differences are equivalent, in average, to about one pixel. However, there are
certain regions where the displacements are larger, up to 1 mm, thus the interest of
using non-linear registration. This point is even confirmed by high variability obtained
on the deformation field, which indicates that the field is not uniform. Larger devia-
tions are also obtained in the elevational direction of each view, which may be due to
the larger point spread function in this dimension. Overall, the RMSE between the
reference image and the registered image is reduced by 1 level over 255 intensity levels,
which is equivalent to 0.5%. This measure, while not quantitatively significant, shows
that the overall similarity between the different views is improved by the registration
process.
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d(µm) dx dy dz RMSEreg RMSEini ∆RMSE
v45 215± 271 120± 192 51± 41 102± 232 19.63 20.42 -0.79
v90 383± 223 169± 181 94± 69 289± 198 19.27 20.87 -1.60
v135 419± 240 258± 271 68± 64 245± 159 20.14 21.17 -1.03

avg 339 182 71 212 19.68 20.82 -1.14

Table 5.8: Mean displacement (µm) and RMSE for in vivo data. The reference volume
is v0.

5.6 Restoration Results

In this section we present the results of the developed techniques on phantom and in
vivo data acquired with the multiview strategy. Quantitative results on spatial and
contrast resolution, critical parameters for medical diagnosis, are evaluated on the fruit
and bubble phantom. Data acquired on patients are evaluated qualitatively.

5.6.1 Restoration Parameters

Table 5.9 gives an overview of the developed techniques to combine the different ac-
quisitions. In this subsection we detail the computation of the parameters for each
of the techniques according to the breast imaging application. For all techniques, M
represents the number of views.

Noise power

Noise power parameter σ2
n, or its standard deviation σn, is obtained from the image

itself, as the mean of standard deviation in areas where the gradient magnitude is
minimal. Local statistics are computed by convolving the signal with a Gaussian
kernel. The size of this kernel should be large enough to contain the mean speckle
size, in order to avoid noisy estimates within speckle homogeneous areas. The size of
this kernel is estimated using the autocorrelation functions described in Section 5.4.2.

For case 1 of in vivo data, the autocorrelation values where σs = (0.39, 0.21, 0.89)
for lateral, axial and elevational directions, which corresponds to approximately 2, 3
and 4 pixels. Noise standard deviation was found to be 4.3±1.1, and in order to avoid
spurious artifacts an additional margin of three times the standard deviation of the
estimate was used within the algorithm, giving final value of 7.6 gray levels.

Point spread function

The point spread functions hi are assumed to be spatially variant Gaussian in all three
directions, with the elevational (z) variance dependent on depth (y). These hypothesis
were validated in section 5.4.1. The PSF of v0 can be expressed as:

h0(x, y, z) = G(0, σx) ·G(0, σy) ·G(0, σz(y) (5.8)
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Method Equation Section Parameters

Average (avg) vavg(x) = 1
M

M∑

i=1

vi(x) 4.2.1 -

Weighted Average (wa) vwa(x) =
M∑

i=1

αi(x)vi(x) 4.2.2 αi, σn, σs

Generalized Average (ga) vga(x) =
(

1
M

∑M
i=1 vi(x)β(x)

)1/β(x)

4.2.3 β(x), σn, σs, γ

Maximum Frequency (mf) Vmf (f) = maxi {Vi(f)} 4.3.1 -

Wavelet Fusion (wf) w̃l(y) = maxi

{
αi(y)wl

i(y)
}

4.3.2 αi, σn, k

Multiview Deconvolution (md) vmd = arg minvmd

[

(1− λ)
∑M

i=1 ‖vi − hi ∗ vmd‖2 + λΨ(vmd)
]

3 h, σn, σs, λ

Table 5.9: Restoration Methods for 3D breast imaging

1
0
4



3D Breast Ultrasound Imaging

Given the nature of the acquisitions, the different point spread functions are rotated
versions of h0 at 45, 90 and 135 degrees in the lateral and elevational planes. The axial
plane is the same for all acquisitions. We can express this relationship as:

hθ(x, y, z) = h0(x cos θ + y sin θ,−x sin θ + y cos θ, z) (5.9)

In practice, we divided the image in different slices of 5 mm of thickness and
considered the PSF spatially invariant within this area, where the variances σ2

x, σ
2
y

and σ2
z were estimated. The optimization of each of the parameters was performed

with the golden search technique [51]. Figure 5.20 shows the estimation of the size of
the PSF on in vivo data, compared with the one measured directly on the phantom
data. It can be seen that overall there is a good match, although the size of the
estimated PSF is always smaller for in vivo data. This may be due to two facts. First,
the cross-channel relationship relies on the weak coprimeness of the different PSFs. In
other words, if the PSF were strictly Gaussian, it would only measure the difference
on their variances. And in second place, the size of bubbles of the phantom may also
enlarge the size of the PSF measured directly on the phantom.
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Figure 5.20: Elevational point spread function variance for bubble phantom (solid)
and an in-vivo data set (dashed).

Regularization

The regularization term Ψ constrains the smoothness of the final solution. It is based
on the norm of some function ψ applied over the neighbor difference operator ∆i along
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each dimension. In 3D, for a 6-neighborhood scheme it takes the form:

Ψ =
∑

x

∑

y

∑

z

ψ(ṽ(x, y, z)− ṽ(x− 1, y, z))+
∑

x

∑

y

∑

z

ψ(ṽ(x, y, z)− ṽ(x, y − 1, z))+
∑

x

∑

y

∑

z

ψ(ṽ(x, y, z)− ṽ(x, y, z − 1))

(5.10)

or in shorter notation,

Ψ = ‖ψ(∆xṽ)‖1 + ‖ψ(∆yṽ)‖1 + ‖ψ(∆zṽ)‖1 (5.11)

where ‖•‖1 represents the norm L1.
We used a Lorentzian function [26], in order to smooth homogeneous areas while

preserving edges. This function was first defined in the framework of anisotropic
diffusion by Perona et al. [122]. Its definition can be found in Section 2.3.4.

The regularization parameter σ controls at which point the local averaging is
stopped. In our case, we used the noise power as computed for the weighted av-
eraging technique. Figure 5.21 shows the attractor of the regularization term alone
(λ = 1), that is, without considering the deconvolution part for different values of the
parameter σ. The hyperparameter λ determines the trade-off between edge restora-
tion and image denoising. It was chosen manually to give equal weights to both data
fidelity and regularization terms (λ = 0.5).

Iterative minimization of the energy was performed with the steepest descent ap-
proach. The used regularization term is not convex, and convergence is prone to be
trapped into a local minimum. Therefore, it is important to properly initialize the
estimated volume ṽ. We have chosen to initialize the system with the average of the
four views, which turns out to be robust and leads to satisfying results. Using other
initializing volumes, such as a zero volume or one of the views, gives different but
similar results. The iterative procedure is stopped when the variation in the solution
falls below a certain threshold.

5.6.2 Phantom

Spatial resolution

Figure 5.22 shows the resulting PSFs obtained by combining the different views of the
bubbles phantom, using the different presented techniques.

Table 5.10 reports the size of these PSFs as of the FWHM for a particular depth
of 25 mm.

It can be appreciated that the average (Figure 5.22.b) of the different PSFs is
much more isotropic than the PSF of a single acquisition, such as v0. The size in the
direction with coarse resolution, the elevational one, is greatly reduced by a factor
of about three. However, the secondary lobes of the elevational plane from each
view are present in the compounded point spread function. The weighted average
(Figure 5.22.c) shows an identical behavior, since it is not intended to improve the
spatial resolution. Generalized average (Figure 5.22.d) does improve the size of the
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Figure 5.21: Assymptotic behavior of the regularization term (λ = 1) for different
values of parameter σ: a) original view v0, b) σ = 3, c) σ = 7, d) σ = 15.

FWHM (mm) v0 avg wa ga mf wf md
lateral 1.10±0.3 1.47±0.2 1.72±0.2 0.95±0.2 1.08±0.3 2.17±1.0 0.75±0.1
axial 0.61±0.1 0.59±0.1 0.62±0.1 0.54±0.1 0.62±0.3 0.88±0.7 0.31±0.1
elevational 2.34±0.6 1.46±0.1 1.71±0.2 0.98±0.2 1.05±0.3 1.27±1.9 0.79±0.1

Table 5.10: Point spread function size (FWHM) at medium depth (y=25 mm) for lat-
eral, axial and elevational directions on bubble phantom, for v0 and methods: average
(avg), weighted average (wa), generalized average (ga), maximum frequency (mf),
wavelet fusion (wf) and multiview deconvolution (md). The anisotropic shape of the
PSF is compensated by combining views from different angles.
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Figure 5.22: C-scan slice of the point spread function, for a) v0 and combined views:
b) average, c) weighted average , d) generalized average, e) maximum frequency, f)
wavelet fusion, g) multiview deconvolution (pixel size: 0.2x0.2mm).

point spread function, since in the case of complementary information it behaves as
a minimum operator. Maximum frequency fusion technique (Figure 5.22.e) shows a
reduced PSF kernel as well, although some artifacts that appear around the outer part
of the central point. Wavelet fusion (Figure 5.22.f) does reduce the size of the PSF
but some artifacts appear, creating a non-symmetric PSF. Finally, the blind multiview
deconvolution (Figure 5.22.g) succeeds in reducing the size of the point spread function,
although minor secondary lobes are still present.

Figure 5.23 shows the lateral, axial and elevational profiles of the multiview decon-
volution method for the bubble shown in Figure 5.22. It can be appreciated that the
most significant improvement of spatial resolution, with respect to a single acquisition,
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is in the elevational dimension from 2.34 to 0.79 mm. Notice also that in the axial
profile, clutter artifacts are a bit enhanced as if it were signal.
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Figure 5.23: Point spread function profiles of combined views with the blind multi-
view deconvolution technique (solid) and original v0 (dashed) for bubble centered at
(x=10.40, y=26.39, z=5.40 mm). a) Lateral, b) axial, c) elevational profiles. There
is a clear improvement of spatial resolution, especially in the elevational direction.
Notice secondary bump in the axial profile due to clutter, which has been accentuated
by the algorithm. Also, secondary lobes in the elevational profile have not been totally
eliminated.

Contrast resolution

Noise power was evaluated on uniform areas on the fruit phantom. Table 5.11 de-
scribes the reduction of noise power for the different techniques. It can be seen how
all techniques but maximum frequency significantly reduce the amount of noise. All
spatial domain averaging (average, weighted average and generalized average) behave
similarly (+2 dB), as expected in purely uniform areas corrupted with speckle. Wavelet
fusion improves the noise power due to its de-noising stage, which acts as a local av-
eraging (+3.62 dB). Similarly, the regularization term of the multiview deconvolution
approach averages the voxel values with its neighbors, improving most notably the
signal-to-noise ratio (+4.57 dB)

Figure 5.24 shows an uniform area on the original view and with the combined
views. Figure 5.25 shows the intensity distribution of speckle in the original view v0 and
the combined one with the average, wavelet fusion and blind multiview deconvolution
techniques. It can be appreciated how these techniques stretch the noise distribution,
thus improving the contrast resolution.

5.6.3 In vivo data

Exams on three benignant patients were done. Three slices of the original volume
v0 are shown in Figure 5.26. The first slice is a C-scan plane, where the anisotropic
degradation due to the limited elevational resolution can be observed. Notice also how
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v0 avg wa ga mf wf md
std 3.78 3.08 3.09 3.10 4.71 2.59 2.25

∆SNR 0 +2.09 +2.08 +2.04 -1.60 +3.62 +4.57

Table 5.11: Speckle standard deviation and ∆SNR (in dB) by combining different
views with the following techniques: average (avg), weighted average (wa), generalized
average (ga), maximum frequency (mf), wavelet fusion (wf), multiview deconvolution
(md).
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Figure 5.24: C-scan of uniform area contained with speckle, for a) v0 and combining
methods: b) average (+2.09 dB), c) weighted average (+2.08 dB), d) generalized
average (+2.04 dB), e) maximum frequency (-1.60 dB), f) wavelet fusion (+3.62 dB)
and g) multiview deconvolution (+4.57 dB).
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Figure 5.25: Speckle intensity distribution on uniform areas of Figure 5.24 for v0 (red,
solid), average (blue, dashed, +2.09 dB), wavelet fusion (blue, point line, +3.62 dB)
and multiview deconvolution (blue, solid, +4.57 dB)

speckle patterning is present everywhere. The second slice (Figure 5.26.c) represents
the B-scan, which corresponds to a standard two-dimensional ultrasound scan. This
is the best resolution that can be obtained with this probe at the given frequency of
operation. Notice how the size of speckle patterns is much smaller, showing a narrower
distribution. Finally, the third slice (Figure 5.26.e) represents the E-scan plane, which
is obtained by concatenating several B-scan planes. It can be seen that the resolution
is lower, showing an overall smoothing aspect. Also speckle patterning is smoothed by
the effect of the point spread function.

Figure 5.27 shows the C-scan of the combination of the four views v0, v45, v90 and
v135. The first image (Figure 5.27.a) shows the averaging of these views. Comparing to
the original image v0 (Figure 5.26.a), it can be observed that speckle has been notably
reduced and that fibers are more clearly delineated. Most small structures, which in
the original image are hard to distinguish between noise and signal, have disappeared,
which indicates that those where not correlated within the different views. On the
other hand, some fine details and small spots appear, which indicate their consistent
presence in other views. Figure 5.27.b shows the results of using the weighted average
technique. It can be observed that, in comparison to the averaged volume, the contrast
of the structures has been enhanced, making little details more visible. This also
helps distinguishing small fibers from the background. This is due to the fact that
the technique preserves the views which show the highest signal-to-noise ratio of a
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Figure 5.26: Original view of 3D breast tissue. Left, scanned at 0 degree (v0). Right,
scanned at 90 degree (v90) . a, b) C-scan, c, d) B-scan, e, f) E-scan.
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Figure 5.27: C-scan of combined views for in vivo data. a) Average, b) weighted
average, c) generalized average, d) maximum frequency, e) wavelet fusion, f) multiview
deconvolution.
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Figure 5.28: B-scan of combined views for in vivo data. a) Average, b) weighted
average, c) generalized average, d) maximum frequency, e) wavelet fusion, f) multiview
deconvolution.
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Figure 5.29: E-scan of combined views for in vivo data. a) Average, b) weighted
average, c) generalized average, d) maximum frequency, e) wavelet fusion, f) multiview
deconvolution.
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given feature. The enhancement of small features appears irregular, which creates
some visible artifacts throughout all the image. This is due to the fact that the
saliency and speckle maps are a bit inexact at distinguishing small structures from
speckle patterning. Figure 5.27.c shows the results for generalized averaging. Minor
differences can be observed with respect to averaging, but for some specific areas at
the edges of the fibers are better detailed. In the neighborhood of small spots, a
halo effect appears due to the use of the maximum operator in this area. Although
this ensures the presence of this kind of feature in the combined volume, it creates
an artificial effect. Figure 5.27.d shows the results of maximum frequency technique.
Speckle power has been increased in relationship to averaging, which makes difficult
the evaluation of the image. However, all features present in the original views have
been preserved, and the resulting volume is quite isotropic. Figure 5.27.e shows the
results for the wavelet fusion approach. Similarly to maximum frequency approach,
all features are present. However, the noise power is quite elevated, which induces to
think that the denoising parameters have been underestimated. Some artifacts due to
the thresholding of the wavelet coefficients are present, which could be accentuated if
a wavelet coefficient threshold was augmented. Finally, Figure 5.27.f shows the results
for the multiview deconvolution technique. Comparing to the average, it can be seen
that a better contrast is obtained in structured elements, and that edges are better
defined. Small fibers seem to be thickened by the effect of regularization.

Figure 5.28 shows the B-scan for the combined volumes. In comparison to the
original view v0, the averaging method has lost lots of details, but it has been greatly
denoised. The reason is that the other views have a lower resolution in this plane. The
weighted averaging technique does preserve some of these details, but many artifacts
appear as well. Again, this is due to the difficult differentiation of small structures
from speckle, needed within this algorithm. Generalized averaging does improve the
contrast on some of the minor structures, although the overall effect is similar to
averaging. The maximum frequency method is very similar to the original B-scan,
which indicates that the best resolution is maintained. However, the noise power
increase with respect to averaging is also visible in this plane. Wavelet fusion gives
similar results, although tissues are better delineated in the smallest parts. Finally,
multiview deconvolution gives the better resolved structures, showing all the details
present in the original view but with a reduced speckle patterning. It must be noted
that some of the spots present in the original B-scan were actually due to presence of
spots in other parallel B-scan planes. Due to the effect of the point spread function,
these appear in other B-scan planes, but are not necessarily present in the original
image.

Figure 5.29 shows the E-scan for the combined volumes. In comparison to v0,
the averaged volume slightly improves the spatial resolution and reduces the speckle
power. However, it does not reach the level of detail of v90 in this plane. Similar to
the B-scan, weighted averaging shows better spatial resolution but at the cost of some
artifacts. Generalized averaging behaves very similarly to averaging, showing a higher
contrast on some fine structures and in areas where shadows are present. In this case,
it behaves as a maximum operator that keeps any signal present. Maximum frequency
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and wavelet fusion show a noisy behavior while the resolution is as good as the B-scan
of v0. Multiview deconvolution shows an increased contrast on small features and a
good tissue delineation, although the level of noise looks higher than in the averaged
view.

On the scanned patients there were no malignant cases, which does not permit to
obtain solid conclusions on the utility of the system to discriminate malignant cases.
However, the results obtained show that the critical parameters used for diagnosing
such diseases have been improved, therefore it is reasonable to think it would make a
significant difference with real cases.

5.7 Conclusions

We presented a system to obtain three-dimensional echography scans of the breast
tissue. To improve important parameters for clinical diagnosis such as spatial and
contrast resolution, we scanned the tissue with four different angles. In this way,
the different views have differently orientated point spread functions and uncorrelated
speckle patterning. By combining them, we obtain a volume which has an isotropic
response, which means that we obtain the best resolution in every slice of the volume,
contrary to a single acquisition, which has the best resolution only in the B-scan cut
plane. Also, we obtained C-scan views that overcome the problem of the limited
elevational resolution of 1D linear arrays.

To combine the different views, we used the techniques proposed in this thesis,
namely: averaging, weighted averaging, generalized averaging, maximum frequency,
wavelet fusion and multiview deconvolution. Multiview deconvolution performed best
both quantitatively on phantom data and qualitatively on in vivo data. The size and
anisotropy of the point spread function was greatly reduced with the deconvolution
method, which improved the ability of image finner details of the system. In order
to perform the deconvolution process, the point spread function is estimated using
the cross-channel relationship developed in Chapter 3, which gave a good estimate
according to measurements performed on phantom data. However, it tends to amplify
artifacts which is not well modeled, such as clutter, which can create spiky artifacts
that could mislead the radiologist. This can be solved by using more conservative
parameters than the optimal ones as defined by SNR, for instance. The regularization
term stabilizes the solution and reduces the speckle noise power in uniform areas.
The needed parameters are estimated from the data itself, from the speckle intensity
standard deviation and autocovariance. The deconvolution and regularization terms
were equally weighted, although the trade-off parameter requires further study. The
achieved improvements leaded to a better tissue delineation, clearer mass margins and
a better mass contrast, which could potentially lead to better diagnosis. Pathologic
cases were not present in the study with in vivo data, which does not permit to extract
solid conclusions on the diagnosis abilities of the system.

Alternative techniques offered a good compromise between performance and sim-
plicity. Wavelet fusion showed a good compromise between increase of spatial reso-
lution and noise power reduction, although it exhibits some artifacts due to the non-
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linear threshold process. This could be potentially overcome by the use of spatially
adapting wavelets, such as curvelets [105]. Maximum frequency does preserve spatial
resolution but does not reduce noise power. Averaging, on the contrary, does reduce
noise power but does not preserve edges. It could be envisaged to combine these two
techniques which showed complementary results and do not need any parameter. At
last, weighted averaging and generalized averaging showed slight improvements over
the averaging technique.

Here we presented the results with the parameters automatically estimated from
data itself. Although these are close to optimal, in some cases better results could
be obtained by manually tunning these parameters. This fact suggests that more
advanced techniques to automatically find these parameters could be considered. Al-
ternatively, advanced users could fine tune the parameters for a specific application
(e.g. for a given ultrasound probe).

In general, the results were better for synthetic images or phantom images than for
in vivo images. This is due to the fact the deviation of the real measurements from
the used models, but also because in in vivo images all imaging needs are present at
the same time; in other words, to better see a tiny fiber the algorithm has to preserve
fine details and denoise at the same time at the same spot. This differs from the case
in phantom data where we studied each factor at a time (i.e. point spread function
size and speckle reduction). Prior to combining the different views, the different data
sets were registered. The most contributing factor was found to be the calibration of
the ultrasound probe with respect to the mechanical device. A non-rigid procedure to
compensate patient movements within the scan was developed. Given the small size
of the scanned tissue and the controlled environment, the detected movements were
below the size of the point spread function, on the order of one pixel. However, it
is expected that in clinical practice these movements could be increased and lead to
blurring artifacts if not corrected.

We characterized the ultrasound data statistics of our system. We found that
for a large range of intensity values, speckle intensity distribution is well fitted by a
Gaussian distribution. The fit is worse for intensity values close to zero, where it fits
better a Rayleigh distribution. Also, the correlation between the local signal mean
and noise variance was found to be low, which validates the use of an additive noise
model rather than a multiplicative one. The autocovariance of the noise was found
to be related to the point spread function of the system, which validates the colored
Gaussian model of speckle [79]. Finally, the point spread function of the system was
also characterized, and found to be reasonably well fitted with a Gaussian curve of
variance dependant on depth. Secondary lobes on the elevational plane violate this
assumption, but experimental measures showed it was not relevant.

Future work lines may include integrating the deconvolution and registration process,
since the registration process could potentially benefit of crisper image, as suggested
by Sroubek et al. [142]. It could also include introducing the knowledge of the point
spread function into the regularization term, in order to adapt better to the directions
where there is more confidence on the data. Similarly, the knowledge of the point
spread function could be introduced into the fusion techniques to better adapt to the

118



3D Breast Ultrasound Imaging

data characteristics. For instance, the maximum frequency technique would capture
only the part of the spectra corresponding to each point spread function, averaging
parts which are common, and similarly for the wavelet fusion or other decomposition
(such as oriented laplacian pyramids) schemes.

Application-wise, the recent technological advances in planar arrays may also be
benefitial for breast ultrasound imaging. In the next chapter we will deal with probes
capable of obtaining real 3D data. However, given the size of the tissue, it looks like
difficult that in the near future such kind of probe can be used without the help of
mechanical platform to ensure a scanning of the whole tissue. Indeed, the spatial
resolution of planar arrays so far is below of the linear ones. Therefore, the techniques
developed in this chapter may also be applicable for these kind of probes.
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C H A P T E R 6

3D+T Cardiac Ultrasound Imaging

6.1 Introduction

Cardiovascular diseases (CVD) are the number one cause of death in the world. Only
in Europe, they are responsible of nearly half of mortality, causing over 4.35 million
deaths each year (as of 2005 [2]); on average, a person every 7 seconds dies from
CVD in Europe. In the world, CVD are estimed to be responsible for one in every
three deaths, affecting women and men of all geographic or economic conditions [7].
Many factors play a role in the development of CVD, such as smoking, diets, physical
activity, diabetes or obesity. The two most common causes of death within CVD are
coronary heart diseases and stroke. Medical imaging systems help the diagnosis of
these diseases and empower doctors to conveniently deliver appropriate treatment to
patients.

Ultrasound echography of the heart, also known as echocardiography, offers many
advantages compared to other imaging modalities [104]. Principally, it is non-invasive,
permits real-time acquisitions and it is relatively cost-effective. On the other hand, it
suffers from some imaging limitations: (i) a restricted field of view, (ii) wall contrast
dependency on insonifing angle, (iii) a coarse spatial resolution and (iv) a poor signal
to noise ratio. Indeed, it is patient and operator dependent. Recently introduced
into the market, real-time 3D (RT3D) echocardiography systems permit imaging tis-
sue volumes, which enable new diagnostic applications, more accurate quantification
methods and reduced time exam compared to 2D imaging (see Appendix A). On the
other hand, it shows an even coarser resolution and a slower frame rate than standard
echographic 2D imaging.

In this chapter we apply the multiview echography techniques to enhance imaging
capabilities of 3D echocardiography systems [139]. Our goals are to (i) extend the field
of view, (ii) capture features present in each view, (iii) improve the spatial resolution
and (iv) improve the signal-to-noise ratio. Improving these image quality factors can
lead to improved pathology diagnosis and more accurate quantification of cardiac func-
tion such as left ventricular volume. The proposed method consists in fusing several
views from different acoustic windows. Acoustic windows refer to the external part on
the body from where the heart can be imaged, because ultrasound cannot propagate
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through lungs and the rib cage. In particular, we will focus on acquisitions from dis-
placed apical windows. Figure 6.1 shows an example of two acquisitions from different
apical acquisitions. The proposed method consists in registering these different views
and fusing their intensity values into a single volume.

(a) (b) (c)

Figure 6.1: a) Schema of two different apical window probe positioning, b) slice of
RT3D standard apical view, c) slice of RT3D displaced apical view. The goal of our
method is to combine views b) and c) to increase the field of view, improve wall
contrast and attenuate artifacts.

The combination of echocardiographic acquisitions from different acoustic windows
has been addressed in the literature for linear arrays. Legget et al. [99] used a free-
hand 2D system, consisting in a linear probe with a magnetic-positioning sensor. The
LV surface was reconstructed using features extracted from the different views. Ye et
al. [165] used a rotational 3D probe (a 2D probe that acquires slices at fixed angle
increments), which on the one hand gives a higher resolution image at each slice but on
the other hand generates a sparse volume of data that is prone to temporal artifacts.
To register the views, an external optical sensor tracked the position of the probe.
Features were extracted by a phased-method based algorithm called Feature Asym-
metry [114] and was used to refine the registration. The fused image is constructed by
combining these features, weighted by the viewing geometry [100]. Recently, Grau et
al. [59] tackled the problem for RT3D echocardiography, using an estimate of phase
and orientation to define the weights or the fusion step, but no reference is made on
how images are registered. The significant overlap of the different volumes enables
their registration without the need of an external positioning probe.

This chapter is divided as follows. We start introducing the imaging needs from
the clinical perspective in Section 6.2, in order to understand which are the imaging
parameters of importance. Data acquisition materials and protocols are described in
Section 6.3. Registration techniques, which are needed to put in correspondence the
different views, are described in Section 6.4. Results of combining those acquisitions,
are given in Section 6.5. And finally, conclusions are drawn in Section 6.6.
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6.2 Clinical Needs

6.2.1 The Heart [3]

There are two sides of the heart. The right side of the heart pumps deoxygenated
blood from the body veins to the lungs, where the blood picks up oxygen. Then the
oxygenated blood returns to the left side of the heart, which pumps the blood out to
the body arteries. There are five main areas in and around the heart :

• The atria, which collect the blood returning to the heart. The right atrium (RA)
collects the blood from the body, and the left atrium (LA) from the lungs.

• The ventricles, which receive the blood from the atria and pump the blood out
of the heart; the right ventricle (RV) to the lungs and the left ventricle (LV) the
circulation system.

• The four valves of the heart. These valves allow blood to move only in the
proper direction in the heart without allowing any blood to leak back in the
other direction. These four valves are the tricuspid valve (TV), between the
right atrium and ventricle; the pulmonary valve (PV), between the right ventricle
and the pulmonary artery to the lungs; the mitral valve (MV), between the left
atrium and the left ventricle; and the aortic valve (AV) between the left ventricle
and the aorta to the body.

• The veins that carry the blood back to the heart from the body and the lungs.

• The arteries, the aorta (which carries oxygen-rich blood from the left ventricle
to the rest of the body) and the pulmonary artery (which carries oxygen-poor
blood from the right ventricle to the lungs).

Figure 6.2 shows an illustration of the heart, with the aforementioned areas, and
Figure 6.3 shows how the heart is seen in a echocardiography exam for an apical view.
Table 6.1 summarizes the abbreviations used throughout this chapter.

RA right atrium
LA left atrium
RV right ventricle
LV left ventricle
AO aorta
PA pulmonary artery
MV mitral valve
TV tricuspid valve

Table 6.1: Common abbreviations of heart parts.
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Figure 6.2: Heart Anatomy [8].

6.2.2 Common diseases [3]

We give a brief overview on some of the most common diseases detectable with echocar-
diography, and particularly, with dilated hearts, which is one of the main applications
of the presented technique. The complete list of heart diseases is out of the scope of
this document.

Arrhythmias

An arrhythmia is an abnormal heartbeat that may be unusually fast (tachycardia)
or unusually slow (bradycardia). It may be related to a previous heart condition
(e.g., previous damage from a heart attack) or to other factors (e.g., caffeine, stress,
medications). Diagnosing an arrhythmia is very important, because the longer an
arrhythmia lasts without detection or treatment, the greater the chances of permanent
damage and additional heart dysfunction. Severe arrhythmias may lead to fainting or
even sudden cardiac death.

Cardiomyopathy

Cardiomyopathy is a type of heart disease in which the heart becomes abnormally
enlarged (enlarged heart), thickened and/or stiffened. As a result, the heart muscle’s
ability to pump blood is usually weakened. This condition is generally progressive and
may lead to heart failure. Cardiomyopathies cause symptoms including shortness of
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Figure 6.3: Heart Anatomy as seen in a 2D apical echocardiographic exam [8]

breath, chest pain, fainting, dizziness and a reduced ability to exercise. The muscle
damage that develops with all types of nonischemic cardiomyopathies can lead to
arrhythmias.

Cardiomyopathies may be caused by a wide range of conditions, including chronic
diseases, alcoholism, viral diseases, heart attacks and many others. An affected heart
may grow larger either by dilatation, thickening hypertrophy or both. Additionally,
the heart may suffer from a reduced ability to relax. Abnormalities found in cardiomy-
opathy include:

• Thickened and/or dilated ventricles, especially the left ventricle. The upper
chambers (atria) may also be involved and enlarged.

• Scar tissue, possibly left over after a heart attack.

• Overall enlargement of the heart.

Cardiomyopathies are often considered ischemic (resulting from a lack of oxygen)
and nonischemic.

Ischemic cardiomyopathy is a chronic disorder caused by either recurrent heart
attacks or coronary artery disease (CAD) - a disease in which there is hardening
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(atherosclerosis) of the arteries on the surface of the heart. CAD often leads to episodes
of cardiac ischemia, in which the heart muscle is not receiving enough oxygen-rich
blood. Additionally, as a result of one or more large heart attacks, the heart enlarges,
reducing the heart muscle pumping function.

Nonischemic cardiomyopathies are less common, progressive diseases. Unlike is-
chemic cardiomyopathies, which tend to develop in older adults, nonischemic car-
diomyopathies frequently occur in young people. Nonischemic cardiomyopathies can
be difficult to diagnose because many are idiopathic (i.e., their cause is unknown).
However, known causes include genetic factors, viral infection, build-up of fat and
proteins (amyloidosis) in the heart muscle, or an excess of iron (hemochromatosis) in
organs such as the heart. The excessive use of alcohol or other substances can also
play a role in the development of the disease.

There are three main types of nonischemic cardiomyopathies:

• Dilated cardiomyopathy (including peripartum cardiomyopathy and alcoholic
cardiomyopathy), which involves dilation or enlargement of the heart’s ventricles
and is usually accompanied by an increase in cardiac mass. This often affects
young people. Although ischemic cardiomyopathy physically resembles dilated
cardiomyopathy, many physicians separate ischemic cardiomyopathy caused by
CAD into its own class.

• Hypertrophic cardiomyopathy, which involves an abnormal growth of muscle
fibers in the heart muscle, usually in the left ventricle. In this case, the volume
of the left ventricle is normal or reduced, but the additional muscle fibers prevent
the chamber from relaxing completely after contraction (diastole), making it a
diastolic dysfunction. This is usually considered a genetic disorder.

• Restrictive cardiomyopathy, which means the heart muscle cannot adequately
relax after contraction, making it unable to fill completely with blood. This con-
dition is distinguished from some forms of hypertrophic cardiomyopathy because
the left ventricle is frequently normal sized. This cardiomyopathy is more com-
mon in the tropics that other forms of cardiomyopathy. Less common types of
nonischemic cardiomyopathy include arrhythmogenic right ventricular dysplasia
(ARVD).

Other

Valvular heart disease is the name given to any dysfunction or abnormality of one
or more of the heart’s four valves, including the mitral valve and aortic valve on the
left side, and the tricuspid valve and pulmonic valve on the right side. In a normally
functioning heart, the four valves (flaps made of tissue) keep blood flowing in one
direction and only at the right time. They act as gates that swing open to allow blood
to flow through and then tightly shut until the next cycle begins.

Congenital heart disease (CHD) is a heart-related problem that is present since
birth. There are many different kinds of specific congenital heart defects. They may
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affect various heart structures, such as the valves, the veins leading to the heart, the
arteries leaving the heart or the connections among these various parts.

6.2.3 Imaging Goals

Ultrasound imaging has been widely used to diagnose heart pathologies. It permits the
evaluation of many of the parameters of interest, including: (i) the size of the chambers,
including their volume and the thickness of the walls, (ii) the local pumping function,
measured typically by assement of local displacement and deformation of the cardiac
muscle, (iii) wall synchronicity, measured by analyzing the movement of each of the
wall segments, or (iv) valve function. These parameters are critical to diagnose the
aforementioned heart pathologies, such as cardiomyopathies. Echocardiology offers a
simple way to obtain quantitative measurements for those parameters. The objectives
of our method are to improve the imaging capabilities of echocardiographic systems
in order to help doctors to better evaluate the mentioned diseases.

Field of View

In order to properly evaluate the synchronization of all parts of the heart, it would be
desirable to have into a single view the four heart cavities and the main walls. However,
a limited field of view is obtained with transthoracic acquisitions. This is because
ultrasound waves cannot penetrate hard tissues, such as bones or ribs, nor lungs,
creating shadows on the image. Therefore, the size of the probe, which must be small
enough to fit in between the ribs, limits the field of view. Ultrasonographers “search”
through the different acoustic windows in order to capture the needed information for
their diagnostic. Typically, in a standard apical view, named because the probe is
placed on the chest close to the apex of the heart, the apex and the right ventricle are
difficult to see at the same time. By placing the probe sightly to the sides, the apex
and the right ventricle will be visible, but other parts of the left ventricle might be cut
off. By fusing the different views, an extended field of view can be obtained. This is
of critical importance in certain cardiomyopathies were the heart is dilated.

Wall Contrast

Tissue contrast depends on the insonification angle. If tissue interface and ultrasound
beam are parallel, weak echo amplitudes will result in poor contrast. This effect is
specially noticeable when insonifing through the different acoustic windows, since the
insonification angle largely vary between the views. Also within each acoustic window
some walls are more visible than others due to this effect. In fact, it requires a great
expertise to the ultrasonographer to find an appropriate angle. Even then, not all
interesting features are captured in a single view. Besides the simple fact of not
seeing the walls, this actually implies that quantification tools, such as automatically
detecting the contours of the left ventricle, will not have enough information to succeed.

If a wall or a part of a wall is missing, besides not being able to evaluate its syn-
chronicity, many other parameters might be difficult to obtain. for instance, to cal-
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culate the ventricular volume, the doctor or the automatic procedure has to “guess”
where the wall is, yielding into a lack of accuracy. Indeed, many automatic algorithms
may simply fail to obtain a reliable shape of the ventricle if walls are not completely
visible. Actually, automatic segmentation of LV is still an open problem, which typi-
cally does work reasonably well for images of good to medium quality. If all walls are
present, presumably the performance of those algorithms will improve.

In order to evaluate certain cardiomyopathies, it is important to measure the thick-
ness of the endocardium. The contrast of the endocardium may be quite low in some
of the patients, being difficult to distinguish from the interior of the cavity. This low
contrast may be improved by superimposing the different views, thus better evaluating
the local function.

Spatial Resolution

The need for high frame rates does not permit the use of sophisticated beamforming
techniques which would improve spatial resolution. Instead, plane wave techniques
are used and beamforming is performed only at reception, resulting in a coarse spatial
resolution. Indeed, spatial resolution is irregularly distributed, getting sparser as the
distance to the focal points increases.

Accuracy of LV quantification also depends on tissue delineation, as blurred borders
may induce false measurements. Views with different angles have a different PSF, and
the spatial characterization diversity may be used to obtain better delineated tissues.

Signal-to-noise Ratio

As with any coherent imaging system, ultrasound echographic images are degraded
by speckle noise (see Sec. A.3.2). This may obscure some small features, and also
make harder the task of automatic quantification algorithms, such as left ventricle
segmentation. If the spatial diversity is large enough, the views will have uncorrelated
speckle, enabling denoising of the imaged tissues.

Patient and Practitioner Independency

Factors such as smoking or obesity heavily impact the echogenecity of the patient,
making the diagnosis harder. When transthoracic acquisition do not provide suffi-
cient image quality, transesophageal acquisitions are performed, where the echographic
transducer is placed within the esophagus. Currently, there are no transesophageal
planar arrays, so this imaging modality is limited to 2D, so no real-time 3D imaging
is possible on this modality.

Ultrasonographer skills also play an important role in the quality of the echography
image. It would be desirable to improve the image quality even in the poor echogenic
cases. Potentially, from several low-quality exams a better image quality exam could
be reconstructed.
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6.3 Data Acquisition

6.3.1 Materials

RT3D data were acquired with a Philips Sonos 7500 system with Live3D Echo, using
a x3-1 matrix array. Each acquisition is completed within four consecutive cardiac
cycles, triggered by the electrocardiogram (ECG). The frame rate was of 25 ms, which
implies that the total number of frames per cycle depends on the patient’s beating
rate. Indeed, this may vary between different cardiac cycles, e.g. due to variations on
breathing. Typically, there are between 15 and 25 frames per cardiac cycle.

Data were resampled from the original line data to Cartesian coordinates through
a scan conversion process. The final size of the volume depends on the depth set-
tings used, and a typical volume is of 136x130x123 mm3 in lateral, elevational and
axial dimensions respectively. The pixel size depends on the scan conversion process,
with typical size of of 0.6x0.6x0.5 mm3 in lateral, elevational and axial dimensions
respectively.

No external position-encoder device was used.

6.3.2 Method

The acoustic windows used were a standard apical (approximately between the fourth
and fifth rib, about 5 cm to the esternon), and two displaced apical by approximately
2 centimeters to the left and right within the same intercostals window. One of the
planes of the 3D volume was coincident with a standard 2D apical four-chamber view.
Patients were asked not to breath in order to avoid motion artifacts during the ac-
quisition, and to obtain a regular cardiac cycle. Other regular acquisitions through
standard acoustic windows, such as parasternal and subcostal, were also performed.

The task of registering the images is easier if the acquisition process follows some
rules. Gain should be set so that image contrast is regular throughout the image.
Special attention should be paid not to oversaturate deep areas, where the signal-to-
noise ratio is low. Also, the different angular sectors should have the same contrast,
e.g. avoiding a higher gain in the central area.

The acquisitions were performed on 31 regular patients at the CHU in Caen, France,
by Dr. Eric Saloux. Figure 6.4 shows a 3D view of one of these acquisitions.

6.4 Registration

Automatic registration is required before the combination step. Registering two (or
more) images means finding the geometric transformation T that puts them in corre-
spondence, which can be expressed as the minimisation problem:

T = min
T
µ (v1(x), v2 ◦ T (x)) (6.1)

where v1 and v2 are the views to be registered and µ is a metric. In the cases were
more than two images are to be registered, the standard apical acquisition will be
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Figure 6.4: Example of a 3D echocardiographic apical acquisition.

used as the target image and all other views will be registered over it. We divide the
registration problem into three main components: metric, geometrical transformation
and optimization, which we discuss within this section.

6.4.1 Metric

The metric µ in Equation (6.1) has to account for the interesting features to be in
correspondence and ignore the rest. The ideal µ function has its peak when images
are in correspondence, and gradually lowers its output when images become different.
The transition from high to low values depends both on the chosen function and the
images, particularly when measuring the correlation between neighbor pixels. For the
registration of 3D echocardiographic views, the following points have to be considered:

• Incomplete features. As already mentioned, the walls present in one view may
not be visible in the others, due to shadowing or drop-out.

• Imaging artifacts. Close to the probe, important clutter artifacts are present.
Also, the SNR gets degraded away from the probe.

• Moving support. The pyramidal shaped domain of the different views makes
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the overlapping volume -where µ is measured- very sensitive to the geometrical
transformation T .

• Imaging parameters. If the local gains are not properly set (e.g. high gain in the
central area), local differences of contrast may mislead the registration.

• Speckle. The presence of speckle makes the direct comparison of the images
difficult.

Indeed, registration algorithms need to iterate several times across the transfor-
mation space to find the optimal solution. Given the 3D data size, the computational
cost of the function is an important parameter.

Another possible approach is to automatically extract segments or landmarks in
the image and compute the best transformation between them. The benefits of this
technique would be a fast registration algorithm, which focuses on the points of in-
terest, for the same problems that affect iconic registration. Therefore, we focus on
iconic methods.

Incomplete features

To avoid over-penalizing for incomplete parts in the different acquisitions, we need
a metric that avoids outliers. Many robust estimators (such as maximum likelihood
estimators, or M-estimators) have been introduced in the literature (e.g. [126]) for this
purpose. Roche et al. [128] proposed the generalized correlation ratio with a Geman-
McClure M-estimator to register ultrasound and CT images. This ρ-function showed
to lead accurate results but poor convergence properties, due to its non-convexity. We
propose to use the Huber ρ-function, which gives a good trade off between outlier
rejection and convergence. We make the assumption that the intensity levels are the
same from the different views, therefore, there is no need to use multimodal similarity
metrics such as mutual information or the generalized correlation ratio. We define the
metric as:

µ(v1, v2 ◦ T ) =
1

n(T )

∑

x∈X(T )

ρ (v1(x)− v2 ◦ T (x)) (6.2)

where X(T ) = D(v1)∩D(v2 ◦ T ) are the points within the intersection of the domains
of the two volumes, n(T ) = card(X) is the number of pixels in the intersection and the
ρ-function is chosen to be the Huber function defined in Equation (2.33). It behaves
as a quadratic difference below the threshold α and linearly for higher values. In this
way, its derivative is bounded over α, limiting the influence of very different features
such as wall and cavity. The α value was chosen to be half way between the maximum
and minimum gray level values in X(T ).

Notice also that the difference between the images is weighted by the number of
pixels overlapping. Since the support depends on the transformation, this factor is
important to avoid trivial solutions such as a null overlap. Indeed, it normalizes the
values of µ so that are comparable between different support sizes.
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Masks

Since the difference between the images is computed with the intensity values, it is
important not to consider image artifacts, especially, in the upper part of the images,
close to the probe, where some clutter artifacts appear. Also, at the bottom of the
images, further from the probe, the gain is usually amplified in order to visualize
features, with the inconvenient that signal gets saturated. In order not to take those
into account, the actual domain of the images is reduced to the inner part of the
acquisition.

To determine the appropriate limits, the radial profile, computed as:

m(r) =
1

card(S(r))

∑

x∈S(r)

v(x) (6.3)

where S(r) is the subset of points that are at a distance r from the probe position p,
within a certain margin ε, S(r) = {x| r − ε < d(x,p) < r + ε}. The two peaks on the
radial profile caused by clutter and saturation determine the actual support used for
registration.

Figure 6.5.a illustrates the clutter and saturation effects, Figure 6.5.b shows the ra-
dial intensity profile m(r) with the two peaks corresponding to clutter and saturation,
and Figure 6.5.c shows the actual considered zone.

(a) (b) (c)

Figure 6.5: a) Original image, b) Radial profile of mean value (red line indicates
selected domain), c) Image domain used for registration (within dashed line), avoiding
clutter and saturation.

6.4.2 Geometrical Transformation

A rigid transformation was chosen according to the following criteria:

• The registration process needs to compensate for the probe motion between
the different acquisitions through the different acoustic windows, which can be
considered as purely rigid.
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• Non-linear deformations might induce “false” motions of the heart walls, which
could mislead the diagnosis.

• Different features are present in the different views, therefore non-linear regis-
tration would be prone to error in this areas. For instance, if a part of the wall
is missing, non-linear registration would enlarge the wall of one view to match
the other one.

• A rigid transformation is more stable than affine or non-linear ones.

• Computation of a rigid transformation is much more time efficient due to the
limited number of parameters.

• A rigid transformation is enough for the same organ; we can consider that there
will not be a significant difference due to a misestimation of the speed of sound
because views are close.

A rigid transform can be expressed as a unit quaternion (or versor) q = a + bi +
cj+dk, |q| = 1 and a translation vector t = (tx, ty, tz). The associated rotation matrix
can be expressed as:

T =







a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd tx
2ad+ 2bc a2 − b2 + c2 − d2 2cd− 2ab ty
2bd− 2ac 2ab+ 2cd a2 − b2 − c2 + d2 tz

0 0 0 1







(6.4)

Using the versor form, the search space is reduced to six parameters, which are
directly related to translation and rotation. Compared to the twelve parameters needed
for the affine transformation, this guarantees a faster and more robust convergence
towards a global minimum.

Data Resampling

In order to evaluate the metric at each step of the transformation, the moving image
has to be resampled. We used tri-linear interpolation on the scan converted data.
The original data are in polar coordinates, and the scan conversion process consists in
resampling them into a Cartesian coordinates. There is a certain degradation in this
process, and ideally, each transformation would be performed by a conversion from
the original data in order to avoid interpolation artifacts. This would, however, slow
down the process.

It is actually the inverse transformation T−1, from the fixed dataset v0 to the
moving image that is computed. This is done to avoid holes in the resampling from
the moving image domain to the fixed image domain.
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6.4.3 Optimization

We use a gradient descent algorithm to minimize the energy in Equation (6.1). The
goal is to find the set of parameters γ = {a, b, c, d, tx, ty, tz} of the transformation T
which minimize the measure µ. Parameters γ are updated in the direction of the
steepest gradient as:

γ0 =
{
a0, b0, c0, d0, t0x, t

0
y, t

0
z

}

γt+1 = γt − λ ∂
∂γ
µ(v1, v2 ◦ T )

(6.5)

Descent direction

The derivation of µ with respect to γ is as follows:

∂

∂γ
µ(v1, v2 ◦ T ) =

∂

∂γ




1

n(T )

∑

x∈X(T )

ρ (v1(x)− v2 ◦ T (x))



 (6.6a)

=

−∂
∂γ
n(T )

n2(T )




∑

x∈X(T )

ρ (v1(x)− v2 ◦ T (x))



+
1

n(T )

∂

∂γ




∑

x∈X(T )

ρ (v1(x)− v2 ◦ T (x))





(6.6b)

Some approximations can be made to simplify this solution. Note that the left term
of Equation (6.6b) includes the term ∂

∂γ
n(T ) in the numerator, which accounts for the

variation of the overlapping area in function of the transformation parameters. This
value is typically small, especially when compared to the square of the total number
of pixels n(T )2 if the images are significantly overlapped. Indeed, it may be difficult
to obtain the term ∂

∂γ
n(T ) for a generic image domain. To compare the importance

of the left and right terms of Equation (6.6b), the left term (LT) can be rewritten as:

LT =
−1

n(T )

∂n(T )

∂γ
µ(v1, v2 ◦ T ) (6.7)

And the right term (RT) as:

RT =
1

n(T )

∂

∂γ
(n(T )µ(v1, v2 ◦ T )) =

1

n(T )

(
∂n(T )

∂γ
µ(v1, v2 ◦ T ) + n(T )

∂

∂γ
µ(v1, v2 ◦ T )

)

(6.8)
To evaluate their relative importance, we can develop their ratio as:

∣
∣
∣
∣

RT

LT

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n(T )
∂
∂γ
n(T )

∂
∂γ
µ(v1, v2 ◦ T )

µ(v1, v2 ◦ T )
− 1

∣
∣
∣
∣
∣

(6.9)
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The left term can be ignored if:

• n(T ), the number of pixels in the overlap area, is large.

• ∂
∂γ
n(T ), the variation of the number of pixels in the overlapping area, is small.

• ∂
∂γ
µ(v1, v2 ◦ T ), the variation of the metric µ, is large.

• µ(v1, v2 ◦ T ), the metric µ between the two volumes, is small.

The first two conditions are met if the overlap between the two data sets is large.
If the third condition is not met, the gradient of µ will be small anyhow. the fourth
condition is typically met when the transformation parameters are close to the final
solution. On the contrary, in extreme cases where the overlapping area is extremely
reduced, the left term could not be ignored. An example would be if the original
position of the images overlap for very few pixels; the variation of the weighing term
should then be considered.

The right term can be further developed. The characteristic function of the support
is defined as:

Dv(x) =

{

1 if x ∈ D(v),

0 if x /∈ D(v).
(6.10)

which takes the value 1 inside D(v), the support of volume v, and 0 outside. The
overlapping support of the M images to register is defined as:

D(x) =
∏

i=1..M

Dvi◦Ti
(x) =

{

1 if x ∈ ∩i=1..MD(vi ◦ Ti),

0 if x /∈ ∩i=1..MD(vi ◦ Ti).
(6.11)

We can rewrite and develop the right term of Equation (6.6b) as:

RT =
1

n(T )

∂

∂γ

∑

x∈X(T )

ρ (v1(x)− v2 ◦ T (x))

=
1

n(T )

∂

∂γ

∑

x∈U

ρ (v1(x)− v2 ◦ T (x))D(x)

=
1

n(T )

∑

x∈U

∂

∂γ
[ρ (v1(x)− v2 ◦ T (x))D(x)]

=
1

n(T )

∑

x∈U

∂

∂γ
[ρ (v1(x)− v2 ◦ T (x))]D(x) + ρ (v1(x)− v2 ◦ T (x))

∂

∂γ
D(x)

=
1

n(T )

∑

x∈X(T )

∂

∂γ
ρ (v1(x)− v2 ◦ T (x)) +

∑

x∈U

ρ (v1(x)− v2 ◦ T (x))
∂

∂γ
D(x)

(6.12)

where U is the universe of all pixels, and does not depend on T . Assuming that images
are registered by pairs, that is, that there is only one moving image, the term ∂

∂γ
D(x)

135



6.4 Registration

can be further developed as:

∂

∂γ
D(x) =

∂

∂γ
Dv1(x)Dv2(T (x)) = Dv1(x)∇Dv2(T (x))

∂

∂γ
T (x) (6.13)

The gradient ∇Dv2(T (x)) only takes different values form zero at the boundaries of
D(v2). Therefore, the right term of Equation (6.12) is only evaluated at the points
x ∈ D(v1) ∩ F(D(v2 ◦ T )) where F(•) represents the points on the boundary. We can
now rewrite RT as:

RT =
1

n(T )

∑

x∈X(T )

∂

∂γ
ρ (v1(x)− v2 ◦ T (x)) +

∑

x∈D(v1)∩F(D(v2◦T ))

ρ (v1(x)− v2 ◦ T (x))∇Dv2(T (x))
∂

∂γ
T (x) (6.14)

Again, if we consider that card(D(v1) ∩ F(D(v2 ◦ T )) � n(T ), that is, that the
number of points within the border of the support of the moving image and within the
support of points of the fixed image is much smaller than the total overlapping points,
we can neglect this second summation term. Therefore, the direction of the gradient
is simplified to:

∂

∂γ
µ(v1, v2 ◦ T ) ≈ 1

n(T )

∑

x∈X(T )

ρ′ (v1(x)− v2 ◦ T (x))∇(v2 ◦ T (x)) · J(T ) (6.15)

where ρ′(•) is the derivative of the ρ(•) function, ∇(•) the gradient vector and J(•)
the Jacobian matrix. In fact, with these approximations we are not considering the
effect that the overlapping area changes in function of the transformation, which is
reasonable if the overlapping area is large enough and parameters of the transformation
changes are small.

Initialization

Gradient descent algorithms converge to local minima. Since the metric µ cannot
be guaranteed to be convex with respect to the transformation parameters, a proper
initialization is needed to reach the global minimum corresponding to the solution
of Equation (6.1). Indeed, initialization will ensure a sufficient overlap between the
different volumes which permits to use the aforementioned simplifications.

To obtain a robust initialization, it is necessary to know some correspondance
between the different views. However, it is actually quite difficult to locate precisely,
in a repeatable way, the same anatomical positions in the different volumes. This is due
to several reasons, including the presence of noise and the similarity of the different cuts
due to the rotational symmetry of the internal heart structures. Therefore, we chose
another way to initialize, by making use of an automatic border detection method in
each view. Five points were manually selected on each view: two in the mitral annulus
in the four-chamber short-axis view, two in the mitral annulus in the two-chamber
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view and one on the apex. From this points, a segmentation of the left ventricule
is generated. This segmentation does not need to be perfect; it serves as starting
point to perform a precise registration. The segmentation was performed with the
commercial software QLab (Philips, Best, The Netherlands), generating a mesh of
about 600 points. The optimal rigid transformation between two meshes was then
found by minimizing the summed squared distance between all point coordinates. We
denote this procedure as mesh-based initialization.

The correspondence between the points is known. Denoting by Rini the initial
rotational matrix, by Tini the translational part, p = {pj} the reference set of points,
p′ =

{
p′j
}

the set of points of the moving image and N the number of points in the
mesh, we want to minimize the following expression:

(Rini,Tini) = min
Rini,Tini

N∑

j=1

∥
∥pj − (Rinip

′
j + Tini)

∥
∥

2
(6.16)

By defining q ≡ p− pc = p− 1
N

∑

j pj and q′ ≡ p′ − p′c = p′ − 1
N

∑

j p
′
j as the mesh

points subtracting their center of masses (pc and p′c respectively), we can develop
Equation (6.16) as:

Rini = min
Rini

N∑

j=1

∥
∥qj −Riniq

′
j

∥
∥

2

Tini = pc −Rinip
′
c (6.17)

where the rotation matrix Rini can be obtained through singular value decomposition
(SVD) or using the quaternion approach.

Figure 6.7 shows the points where the user is asked to click. Both views should be
aligned so that the points are approximately in correspondence. Figure 6.6.a shows an
example of a segmented ventricle on the intensity image, along with two segmented
ventricles at their original locations (Figure 6.6.b) and after their registration (Figure
6.6.c). Other approaches, such as iterative closest point (ICP) [24] could be used with
the benefit that there is no need to know in advance the correspondence between the
points on the meshes. The egg-shape of the ventricle may induce unwanted rotations,
which we want to explicitly avoid by making use of the one-to-one correspondence
between the points of the mesh. The transformation obtained from the meshes is used
as initialization of the transformation between the two acquisitions, as starting point
for the automatic gradient descent.

Multi-resolution Approach

In order to avoid local minima and to speed up computation time, a multiresolu-
tion scheme is used. It consists in blurring -to avoid aliasing- and downsampling the
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(a) (b) (c)

Figure 6.6: a) Example of segmented left ventricle, b) meshes at their original location,
c) after initial registration.

(a) (b)

Figure 6.7: Points to click by the user. a) four chamber short-axis view, b) Two-
chamber view.

different views at different levels l as:

σl =

(
l

2

)2

vl(x) = v(lx) ∗ 1

σl

√
2π
e−(lx)2/(2σ2

l
) (6.18)

where the convolution process takes place before the downsampling. The number of
voxels of the volumes is reduced by a factor of l3 assuming that the initial scale is l = 1.
Typically the levels are taken as powers of 2, l = 2s. Figure 6.8 shows a cut plane
at different resolution levels. The registration process starts at the coarser level, and
uses the found transformation as starting point for the next level. Figure 6.9 shows
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the evolution of the metric µ along the iterations.

(a) (b) (c)

Figure 6.8: Four chamber view at different multi-resolution levels. a) l = 1 (original
resolution), b) l = 4, c) l = 8.

Figure 6.9: Evolution of the µ metric along the iterations. Red lines indicate a change
in scale.

Temporal Alignment

Registration of different views acquired through different cardiac cycles relies on the
hypothesis that the heart movements are consistently periodic. This is a strong hy-
pothesis, which does not hold in all the cases; but it is reasonable. First of all, with the
current 3D echocardiographic technology, each “full volume” acquisition is obtained
through four consecutive cardiac cycles; one fourth of the whole sector being acquired
during each cardiac cycle. If the heart is not stable enough through these four cycles,
artifacts will appear and the acquisition will be rejected. During the exam, patients
are asked not to breath, in order to minimize movement artifacts. Acquisitions used
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in our experiments showed a consistent movement within acquisition time. A second
consideration that needs to be taken into account is that pathologies may potentially
show motion irregularities through the different cycles (e.g. arrhythmias), can be
triggered by pacemaker and/or relaxed with beta blockers. Therefore, even if the
non-periodicity of heart motion is a potential issue, it is controllable within bounded
limits. The different acquisitions are triggered by the electrocardiogram, which en-
sures the temporal synchronization of at least the initial frame. Shekhar et al. [134],
in the context of stress echocardiography, propose a piecewise linear temporal scaling
to align pre-stress and post-stress acquisitions, with a linear scaling of the systole cycle
and another linear scaling of the diastole cycle. The end diastole is determined by the
ECG, and the end-systole frame was determined with the user intervention. In our
study, we supposed that the cardiac cycle was constant.

The registration process was performed for the first frame of the sequence (end-
diastole, triggered by the ECG), and the same T was then used for the whole cardiac
cycle. This showed to be a reasonable approximation. Further refinnement could be
obtained by performing the registration process at each frame.

6.4.4 Registration Validation

To validate the accuracy of the registration method, we have compared the obtained
transformation with (i) a known transformation on phantom measurements, (ii) vi-
sually on regular in vivo exams and (iii) a transformation measured with an optical
position sensor on human patients.

Phantom data

The ATS 539 tissue-mimicking phantom (see appendix B) was scanned with a mechan-
ical arm each 2 cm through the scanning surface #1. The precision of the mechanical
arm is on the order of 1 µm, significantly below the resolution of the images. Measure-
ments with different angulations in the lateral plane were also performed, and aligned
manually afterward. To evaluate the precision achieved by the registration algorithm,
the final transformation was compared to the measured one. Transformations ∆t were
computed between 10 consecutive acquisitions that were laterally translated with a 2
cm step, and ∆α between 3 acquisitions for angular displacement of 15 degree. Ta-
ble 6.2 reports error measurements on these phantom data, for lateral displacements
∆t and angular displacements ∆α. No mesh-based initialization was performed on
phantom data. Figure 6.10 shows the phantom volumes before and after registration.

∆t 0.68mm± 0.18
∆αx 2.29◦ ± 0.82

Table 6.2: Registration errors on tissue-mimic phantom data.

It must be considered that the phantom has large tubular structures, which are dif-
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ferent from the heart anatomy. These values are an upper bound of the achievable
performance on in vivo data.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.10: Phantom registration of translated acquisition. Reference volume: a)
B-scan, b) E-scan , c) C-scan. Initial phantom position (right - green) and reference
volume (left - gray): d) B-scan, e) E-scan , f) C-scan. Automatically registered volume
(right - green) and reference volume (left - gray): g) B-scan, h) E-scan , i) C-scan.

Visual evaluation

Figure 6.11 illustrates the registration results for one in vivo data set. It can be
seen how the septum wall, misaligned in the original volumes, is better aligned in the
initialized volumes, but with a considerable rotation difference in the short axis view.
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Similarly, other areas not shown in these figures are misaligned 1. When the volumes
are automatically registered, most deviations are corrected. The same transformation
is then applied to the whole cardiac cycle.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.11: Registration initialization example. Reference volume: a) B-scan, b)
E-scan , c) C-scan. Manually initialized volume (bottom - green) and reference vol-
ume (top - gray): d) B-scan, e) E-scan , f) C-scan. Automatically registered volume
(bottom - green) and reference volume (top - gray): g) B-scan, h) E-scan , i) C-scan.

1Consider the difficulty of displaying three dimensional volumes on paper.
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Optical Tracker

Acquisitions on regular human patients were obtained with two different probes mounted
with an optical marker to track their position. The relative position of the probes was
recorded by an external Polaris(R) optical sensor, with an accuracy precision 0.35
mm RMS. Acquisitions were made from the apical windows, separated approximately
by two centimeters. The data for these experiments was obtained on two different
patients at the Massachusetts General Hospital of Boston, MA, USA.

Table 6.3 summarizes the differences between the transformation from the sensor
and those obtained with the registration algorithm, in terms of translation (∆t) and
rotation in the lateral (∆αx), axial (∆αy) and elevational (∆αz) dimensions. As
observed, the accuracy is lower than in the phantom experimentation. The worse
accuracy was obtained in the axial rotation axis, probably due to the auto-similarity
of the heart cavities within this axis.

∆t 3.18mm± 0.94
∆αx 3.38◦ ± 0.57
∆αy 10.94◦ ± 1.12
∆αz 8.16◦ ± 1.85

Table 6.3: Versor difference between the transformation obtained with an optical
tracker and the registration algorithm. Translation (∆t) and rotation in the lateral
(∆αx), axial (∆αy) and elevational (∆αz) dimensions.

6.5 Restoration Results

In this Section we describe the results on dataset acquired on patients using the tech-
niques commented so far. Particularities on these techniques will be described in the
first subsection. To facilitate the description, Figure 6.12 shows the used nomenclature
for the different heart segments.

6.5.1 Multiview Restoration Methods

In this Section we summarize the restoration techniques used to combine the different
cardiac views. No modifications were introduced in the generalized averages, maxi-
mum frequency and wavelet fusion techniques introduced in Chapter 4. On the other
hand, in this section we describe the modifications that apply to weighted averaging
and multiview deconvolution due to the different needs of the application. Table 6.4
summarizes the presented techniques.

Maximum

Since the main objective of this application is to keep all heart walls, which appear as
bright areas on the images, we found it convenient to evaluate the performance of the
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Method Equation Section Parameters

Maximum (mx) vmax(x) = max (v1(x), . . . , vM(x)) 6.5.1 -

Weighted Average (wa) vwa(x) =
M∑

i=1

αi(x) 4.2.2 αi, σn, σs

Generalized Average (ga) vga(x) =
(

1
M

∑M
i=1 vi(x)β(x)

)1/β(x)

4.2.3 β(x), σn, σs, γ

Maximum Frequency (mf) Vmf (f) = maxi {Vi(f)} 4.3.1 -

Wavelet Fusion (wf) w̃l(y) = maxi

{
αi(y)wl

i(y)
}

4.3.2 αi, σn, k

Multiview Deconvolution (md) vmd = arg minvmd

[

(1− λ)
∑M

i=1 αi ‖vi − hi ∗ vmd‖2 + λΨ(vmd)
]

3 h, σn, σs, λ

Table 6.4: Restoration Methods for cardiac imaging.
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Figure 6.12: Heart Segment description[8].

maximum operator. The maximum volume is defined as the maximum value at each
pixel:

vmax(x) = max (v1(x), . . . , vM(x)) (6.19)

Weighted Averaging

A more adapted saliency measure can be used for detecting heart walls than was
needed for the breast application. Since walls are typically much larger than speckle
patterning, we relaxed the saliency measure to simply detect the image areas with
high intensity, using directly its intensity value, as:

α
′

i(x) = sali(x) = v̄i (6.20)

where •̄ represents a local mean. The final volume is computed as:

αi =
α

′

i
∑

i α
′

i

(6.21a)

vwa(x) =
M∑

i=1

αi(x)vi(x) (6.21b)
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Multiview deconvolution

Given the size of the features of interest, its presence or absence may be due to shad-
owing rather than to the spatial sensitivity of the acquisition system. To compensate
for this effect, we introduce the saliency measure used in the weighted averaging into
the multichannel deconvolution framework, as:

vmd = arg min
vmd

[

(1− λ)
M∑

i=1

αi ‖vi − hi ∗ vmd‖2 + λΨ(vmd)

]

(6.22)

With respect to the estimation of the point spread function, some further con-
straints have been introduced. The reason is that there is not much diversity between
the different views, which in some cases are almost parallel, and indeed, the obtained
images are very noisy. The different hi are assumed to be Gaussian, with variance
linearly depending on the distance to the probe r:

hi = G(0, a · r(x)) (6.23)

In practice, the volume was separated in slices of 1 cm of thickness, where the point
spread function h was supposed to be constant. The parameter a was estimated using
the cross-channel relationship as:

a = arg min ‖h1 ∗ v2 − h2 ∗ v1‖2 (6.24)

6.5.2 Multiple Apical Acquisitions

From the acquired data, exams on eight different patients were chosen as representative
set of this application, with average echographic quality and complementarity between
the views. The goals, as mentioned, are to increase the border visibility, the signal-to-
noise ratio and the spatial resolution.

Quantification

To quantitatively evaluate the restoration processes, we defined the myocardium con-
trast increase as:

∆C =

(∣
∣
∣
∣

M̄f − B̄f

M̄1 − B̄1

∣
∣
∣
∣
− 1

)

· 100 (6.25)

where M̄ is the mean value in a manually defined window on the lateral, anterior and
posterior myocardium walls, and B̄ the mean value in a manually defined window in
the LV cavity. The improvement of signal-to-noise ratio is defined as:

∆SNR = 20 log
σ1

σf

(6.26)

where σ is the noise standard deviation in manually defined windows in the LV cav-
ity, which is supposed to have a constant value. Table 6.5 shows the value of these
parameters with the proposed fusion techniques.
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mx wa ga mf wf md
∆C +39.0% +37.3% +45.3% +45.6% +47.0% +49.7%
∆SNR +3.87 +4.91 +4.74 -1.11 +4.67 +4.61

Table 6.5: Image quality improvement parameters for the different fusion techniques,
maximum (mx), weighted average (wa), generalized average (ga), maximum frequency
(mf), wavelet fusion (wf) and multiview deconvolution (md).

The field of view, measured as:

FOV =

(
nf

n1

− 1

)

· 100 (6.27)

was improved by +18% on average for two acquisitions. This value depends uniquely
on the position of the probe, thus, it is independent of the fusion technique.

Visual evaluation

Figure 6.13 shows two apical windows, a standard (named v0), and one displaced by
about 2 cm to the lateral side, towards the patient’s left arm (named v1). The mid and
apical lateral segments fall nearly outside the field of view of the standard acquisition.
The second acquisition exhibits better contrast in those areas. However, the apex falls
outside the field of view of this second acquisition. As appreciated in the short-axis
view (Figure 6.13 e and f), the mid septal anterior segment shows a poor contrast in
v0 and better in v1. The endocardium is difficult to distinguish in all views, although
that is somewhat clearer in v0 in the four-chamber and two-chamber views, next to
the lateral wall.

Figures 6.14, 6.15 and 6.16 show the result of fusion on three different slices
(four-chamber, two-chamber and short axis) for the following techniques: maximum,
weighted average, generalized average, maximum frequency, wavelet fusion and mul-
tiview deconvolution. In general lines, maximum, weighted averaging and generalized
averaging behave quite similarly, although the second shows smoothed patterns in the
blood pool. Since the views are very different in terms of spatial resolution, it is not
possible to improve it by means of generalized averaging. Maximum frequency shows
lots of artifacts, although walls show a strong contrast. Wavelet fusion and multiview
deconvolution also show a very similar behavior in all planes, although the contrast of
features is slightly higher for the multiview deconvolution. However, the noise patterns
appear more accentuated in these two techniques, as well as wall borders, which appear
smoother in the averaging techniques. From now on, we will focus our description on
the maximum, which is the simplest technique, and the multichannel deconvolution
techniques, which performs best.

Figure 6.17 shows a zoom on an arbitrary oblique plane, showing the improvement
in the visibility of the septum and the lateral wall. Also notice how the maximum tech-
nique tends to enlarge the walls, and how the multichannel deconvolution technique
stays closer to the original size. Figure 6.18 and 6.19 show similar results on a zoom
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(a) (b)

(c) (d)

(e) (f)

Figure 6.13: Original apical views. Left, standard apical v0 from top to bottom: a)
four-chamber view, c) two chamber view, e) short-axis view. Right, exterior apical v1

from top to bottom: b) four-chamber view, d) two chamber view, f) short-axis view.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.14: Four-chamber apical view of combined views for in vivo data. a) Maxi-
mum, b) weighted average, c) generalized average, d) maximum frequency, e) wavelet
fusion, f) multiview deconvolution.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.15: Two-chamber apical view of combined views for in vivo data. a) Maxi-
mum, b) weighted average, c) generalized average, d) maximum frequency, e) wavelet
fusion, f) multiview deconvolution.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.16: Short-axis apical view of combined views for in vivo data: a) maximum,
b) weighted average, c) generalized average, d) maximum frequency, e) wavelet fusion,
f) multiview deconvolution.
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on the left ventricle and a short axis view. In the latter, notice how the wall contrast
of the right ventricle has been improved. Again, note how the maximum technique
enlarges the walls in comparison to others.

(a) (b) (c)

Figure 6.17: Zoom on the left ventricle on an arbitrary oblique plane, with partic-
ular interest on the septum and the lateral walls: a) v0, b) maximum, c) multiview
deconvolution.

(a) (b) (c)

Figure 6.18: Zoom on the left ventricle on an arbitrary oblique plane, with particular
interest on the delimitation of the left ventricle. a) v0, b) maximum, c) multiview
deconvolution.

Figure 6.20 shows a three-dimensional reconstruction of a standard apical acqui-
sition and combined views with multiview deconvolution technique. Notice how my-
ocardium walls are more visible on combined views, especially at the apex and the
lateral wall.
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(a) (b) (c)

Figure 6.19: Zoom on a mid short axis view with particular interest on the right
ventricle. a) v0, b) maximum, c) multiview deconvolution.

(a) (b)

Figure 6.20: Three-dimensional visualization of cardiac data acquisitions: a) standard
apical view, b) combined apical view. Notice how myocardium walls are more visible
on combined view.

From another patient, Figure 6.21 shows another two apical windows, a standard
v0 and, in this case, an interior displaced apical view, v1. It can be seen how this
second view, due to its inclination, has a better contrast on the mid posterior and
posterior-lateral walls, as better appreciated in the short-view axis. Also notice how
the delineation of the LV for the apical lateral segment is better on v0, and for the
mid lateral is better on v1. Figure 6.22 shows the combination of these acquisitions.

Figures 6.23 to 6.25 show the temporal dynamics of heart walls. Note how the
lateral wall contrast varies during the cardiac cycle, due to the different angles of
insonification.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.21: Original apical views. Left, v0 from top to bottom: a) four-chamber
view, c) two chamber view, e) short-axis view. Right, v1 from top to bottom: b)
four-chamber view, d) two chamber view, f) short-axis view.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.22: Combined apical views. Left, Maximum from top to bottom: a) four-
chamber view, c) two chamber view, e) short-axis view. Right, multiview deconvo-
lution from top to bottom: b)four-chamber view, d) two chamber view, f) short-axis
view.
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(a) 0ms (b) 0ms

(c) 100ms (d) 100ms

(e) 200ms (f) 200ms

Figure 6.23: Four-chamber view of apical acquisitions at different frames of the cardiac
cycle. Left, standard apical. Right, combination with external apical.
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(g) 300ms (h) 300ms

(i) 400ms (j) 400ms

(k) 500ms (l) 500ms

Figure 6.24: (cont.) Four-chamber view of apical acquisitions at different frames of
the cardiac cycle. Left, standard apical. Right, combination with external apical.
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(m) 600ms (n) 600ms

(o) 700ms (p) 700ms

(q) 800ms (r) 800ms

Figure 6.25: (cont.) Four-chamber view of apical acquisitions at different frames of
the cardiac cycle. Left, standard apical. Right, combination with external apical.
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6.5.3 Apical-Parasternal Acquisitions

Potentially, views with more different positioning are more interesting to combine. In
some patients the apical window shows a clearer view of the heart walls, while in others,
it is the parasternal window which shows better results. These two windows are very
complementary in the sense that the ultrasound beam follows almost a perpendicular
trajectory, therefore the walls that are most visible in one view are least visible in the
other one and viceversa. Indeed, patients may have different image quality in apical
and parasternal windows, and typically, both views are acquired.

Figure 6.26 shows the original acquisitions from apical and parasternal windows.
It can be noticed that in difference to the apical acquisition, the parasternal one shows
a better image quality in general, particularly noticeable on tissue delineation and
wall contrast, e.g. in the lateral wall. However, the parasternal acquisition lacks
some important areas, such as the apex, which will be hardly ever captured given
the position of the probe and the angle of vision of current ultrasound probes. This
information is present in the apical acquisition.

Initial results with apical to parasternal experiments are presented in this section.
As visible on the images, some registration issues are still present. Those were reg-
istered only with the mesh-based approach, since the automatic procedure did not
converge. One possible explanation is the small overlap between the two data sets,
even after the mesh-based initialization as explained in Section 6.4.3. Note, however,
that the differences between the initialization meshes in the apical and parasternal
views may be also larger than in the case of only apical displaced views. This fact
makes that the automatic algorithm starts further away from the optimal position and
is not able to reach it.

Figure 6.27 shows the fusion of these two acquisitions. We can notice the errors
in misalignment in the area of the mitral valve. However, the apical segments show a
good continuity, especially the septal and lateral walls. Given the difference of the two
data sets, the maximum operator tends to create a rather confusing image with many
bright elements. The multichannel deconvolution makes walls thinner, especially on
the apical view, as visible in the mid and basal lateral segments. This result, along
with the ones seen in the multiple apical section, suggests that the technique works
best when the acquisitions have an accentuated different point spread function. In
comparison to simpler techniques, the diversity between the different views makes a
larger difference on the results.

Figure 6.28 shows a simple experiment where the parasternal view is integrally
kept, and is complemented outside its domain the apical view is, such as the apical
region. In this way, the quantification of the left ventricle volume may be feasible
using the better border definition of the parasternal window. Although this is a simple
technique, which needs only the registration step, this complementary of data can be
benefitial for clinical diagnosis purposes.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.26: Original apical and registered parasternal view. Left, apical, from top
to bottom: a) four-chamber view, c) two chamber view, e) short-axis view. Right,
registered parasternal, from top to bottom: b) four-chamber view, d) two chamber
view, f) short-axis view.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.27: Maximum and multiview deconvolution of apical and registered paraster-
nal view. Left, maximum technique, from top to bottom: a) four-chamber view, c)
two chamber view, e) short-axis view. Right, multiview deconvolution, from top to
bottom: b) four-chamber view, d) two chamber view, f) short-axis view.
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(a)

(b)

(c)

Figure 6.28: Parasternal view complemented outside its domain with the apical view:
a) four-chamber view, b) two chamber view, c) short-axis view.
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6.6 Conclusions

We developed and implemented a technique to combine acquisitions from the heart
from different acoustic windows, with the aim to increase the field of view, the visibility
of the walls, reduce noise and improve the spatial resolution. The first two goals were
notably achieved. From the clinical perspective, this is interesting because it enables
examining the whole heart in a single dataset, which is of special importance in dilated
hearts. Indeed, the presented fusion techniques may permit improving the performance
of automatic quantification algorithms.

Spatial resolution, which showed to be best in multichannel deconvolution, did not
show the same degree of improvement as in Chapter 5 for the breast application. The
requirements for cardiac applications, the limited spatial resolution of the original ac-
quisition, the free-hand nature of the acquisition that limits the registration between
the different views and the lack of diversity between the different views are the causes
of this fact. Initial tests for the combination between parasternal and apical win-
dows show how multiview restoration can help combining those data sets, although
the poor quality of registration limits the performance of the restoration algorithms.
Noise within cavity was reduced in some techniques, although this showed to have less
relevance for clinical practice than border delineation.

There are additional limitations of the system. It relies on the periodicity of the
cardiac cycle, which showed to be a reasonable hypothesis in most of experiments. For
a more general application of the technology, a temporal alignment within the cardiac
cycle should be envisaged. Indeed, as conceived, the system does not work in real
time, in the sense that it works with stored data. If the registration process could
be sped up, it may be possible to store a first view and complement it with other
views in real time, as the current panoramic systems in two-dimensions. At last, the
fusion of the different views unfortunately also fuses some artifacts, such as clutter.
These factors should be considered in future investigations. Moreover, the availability
of several views could indeed help removing these artifacts out.

Further work includes improving the registration robustness. For instance, the
metric could include the saliency measure in order to weight the most important
areas to be registered. The need of a reference mesh for initialization is somehow
a limiting factor we encountered, since it is not always possible to obtain a reliable
segmentation in arbitrary views. Also the temporal dimension could be integrated into
the registration step in order to make it more robust. Indeed, the temporal diversity
could also help the fusion process to denoise, as in temporal compounding techniques
(e.g. [15]). Other improvements include model-based fusion techniques, such as using
an implicit model of walls to ensure their continuity, capturing elements of the wall
both in the spatial and temporal dimensions. Elements of further work include ongoing
validation with dilated heart patients.
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Conclusions and Future Work

In this thesis, we tackled the problem of restoring ultrasound echographic imaging
from different acquisitions. This approach has shown great success in 2D imaging in
the recent years with simply averaging the different views. We developed several new
advanced techniques that, in addition to improve the signal-to-noise ratio, are able
to improve the spatial resolution. This is particularly important in the addressed 3D
applications, due to the anisotropy of the point spread function of the system.

We introduced the concept of multiview deconvolution. To develop it, we first
reviewed the deconvolution methods to understand the limitations of inverting the
degradation of a linear system. In general lines, frequencies eliminated by the imaging
system are not recovered, needing a regularized solution to cope with the ill-posedness
of the problem. We then introduced the generalization to multichannel deconvolution,
where several acquisitions are available. In this case, the ill-posedness of the problem
is reduced, since each view restricts the space of solutions. In the particular case
where the different acquisitions are done with the same system but from different
positions, which we denote as multiview, each acquisition permits to recover a part
of the spectrum. Each view contains the features in a certain orientation, and the
presented techniques permit to combine them into a single volume.

To estimate the PSF, we focused on multichannel PSF estimation techniques, par-
ticularly on subspace techniques. While theoretically the blind multichannel deconvo-
lution problem is overdetermined and the PSF and the original volume can be obtained
from the data channels only, in practice the system is very sensitive to noise and the a
priori knowledge of the size of PSF. At this point, we introduced the multiview con-
straint, where the solution space is reduced by adding some a priori constraints about
the geometrical relationship between the different views. However, this constraint
does not guarantee the performance of the system within reasonable limits for real
applications. Therefore we introduce realistic constraints about the shape of the PSF
(three-dimensional Gaussian) to further increase the robustness to noise and support.
We verified that the hypothesis of Gaussianity is well adapted for our acquisitions,
obtaining a satisfying estimation of the PSF.

Deconvolution methods had been priorly developed for ultrasound systems, but
specially in the domain of the RF signals. In the domain of the envelope signals, the
most important problem was to not enhance speckle edges. We solve this issue by the
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use in the deconvolution process of several acquisitions which have uncorrelated speckle
patterning, and with the use of edge-preserving regularization terms. In this way,
strong reflectors coherent with the system degradation are enhanced, while random
patterning is attenuated.

At a second stage, we introduced another approach to combine the different views.
This second approach, which we denominate multiview fusion, consists in building a
fused volume by detecting the features of interest on each of the acquisitions. To this
goal, we propose two new techniques in the spatial domain, weighted and generalized
averaging, and two new techniques in a transformed domain, maximum frequency and
wavelet fusion.

• Weighted Averaging consists in assigning a different weight to each view, locally,
in order to capture the features of interest. We defined a saliency measure,
according to each application, and filtered by a speckle detector in order not
to consider speckle patterning. The distinction of speckle from features is not
always possible. However, the fact of using multiple views makes this well-known
problem easier, in the sense that it is not the absolute presence of features
that matters but its relative presence. In practice this works relatively well,
better preserving features of interest than simple averaging. However, weighted
averaging does not guarantee the preservation of the best spatial resolution.

• We introduced generalized averaging in order to keep the advantages of weighted
averaging while better preserving the spatial resolution. It is based on the dis-
crepancy of the data sets, switching from the minimum operator to averaging
to the maximum by the generalized averaging. The idea is to use the minimum
when data are consistent, average in the case of speckle and maximum in case
of inconsistency. Although it allows to obtain better results on synthetic data,
the data discrepancy metric is difficult to be obtained. Maybe it would be more
desirable to compute the min, average and max operators and combine them in
a more controllable fashion (e.g. weighted average) than generalized average.

• In the transformed domain, we proposed the maximum frequency technique.
Given the fact that each view contains a sector of the spectrum, the idea behind
this technique is to build a fused volume by those coefficients of maximum am-
plitude. This technique does not depend on any parameter and therefore does
not need any kind of estimation. Indeed, it succeeds to gather most of different
features from each acquisition. However, all noise is also maintained, improving
to a smaller extent the signal-to-noise ratio than other techniques.

• This research line evolved to use a wavelet approach with the same objectives
but with a better spatio-frequential control. This permitted to avoid some low-
frequency artefacts present with the maximum frequency technique. Indeed, the
wavelet decomposition enabled to introduce coefficient shrinking algorithms in
order to control the amount of noise present in the final fused volume.

Tests on synthetic data showed the clear superiority of blind multiview deconvolu-
tion techniques over the fusion techniques. The reason is that deconvolution methods
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Conclusions and Future Work

revert the degradation of the system, while fusion techniques only preserve the dif-
ferent information content of each view. Within the fusion techniques, the different
spatial domain techniques showed a similar behavior, significantly better than averag-
ing. While feature preservation is achieved by all techniques, generalized averaging and
spectral techniques show a slightly better preservation of spatial resolution. However,
in some cases this is at the price of reducing slightly less the signal-to-noise figure.
To solve this, the denoising stage available with wavelet fusion offers an interesting
approach.

We used all this novel techniques in two new applications, 3D ultrasound breast
and cardiac imaging. These applications are a technological breakthrough on their
own, and the multiview restoration techniques represent even an improvement of their
performance. Alternatively, the mutliview techniques could be an opportunity to
reduce the number of acquisitions, thus the time of examination.

For breast imaging, the most important goal was to overcome the anisotropic res-
olution of linear arrays. By obtaining scans at different angles, this goal was achieved
with all techniques, including averaging. Blind multiview deconvolution techniques
showed the best quantitative results on phantom data and probably the best results
in in vivo data, improving: tissue delineation, which permits pathologic boundary
discrimination; contrast resolution, which helps in discriminating masses; and spatial
resolution, which may potentially help in diagnosing microcalfications. We also stud-
ied the speckle model on 3D log-compressed ultrasound images, which was found to
be close to additive colored Gaussian noise, and the shape of the PSF, which was well
described by a Gaussian shape.

For cardiac imaging, the most important benefits are to improve the field of view
and the tissue contrast. Enlarging the field of view is important for patients with
dilated hearts, which are typical cases for some cardiomyopathies. Heart walls have
typically some missing segments, which difficult their analysis both qualitatively and
quantitatively. Improving the tissue contrast improves their analysis. A registration
method of the different views was developed. With the help of a manual initialization,
it can successfully put different apical acquisitions in correspondence. Indeed, multi-
view restoration techniques improved endocardium delineation and the signal-to-noise
ratio. Deconvolution techniques showed an increase of spatial resolution by the combi-
nation of different apical windows, although it was not very significant. Initial studies
with the combination of apical and parasternal indicate that with acquisitions with
PSF that differ more, spatial resolution can be further improved.

Many extensions and improvements arise from this work. For the PSF estimation,
the subspace techniques showed to be sensitive to noise and support estimation. Fu-
ture work includes comparing our approach to other estimation techniques, notably
alternate maximization (AM) [141], where the point spread function is estimated and
the image is restored alternatively. Other techniques, maybe not based on the channel
disparity, could be envisaged. Particularly, given the colored nature of speckle, esti-
mate the PSF from the autocovariance of homogeneous areas would be in principle
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possible [79].
Other authors propose to log-decompress the images in order to use more accurate

speckle models, although this presents some problems. For instance, the need to
know the constants involved in the process and the quantization effects due to the
non availability of the 16 bit data from the machine. Regarding the regularization
techniques, these models could be introduced in this term. Moreover, it could be
envisaged to consider the multiple views within the regularization term rather than
the reconstructed volume only.

The treatment of the raw scan lines rather than the scan conversed ones could im-
prove the performance of the algorithm, since no interpolation effects would be present
in the treated images. Indeed, for the cardiac application, due to the sparsity of the
data, a great improvement could be obtained by during the scan conversion from the
two (or more) datasets into the cartesian axes. The temporal dimension could also be
taken into account for denoising purposes [15].

The multiview techniques could be extended to other applications, including ob-
stetrics, where the market is more and more demanding on high quality images and
liver imaging, where there is a need for an extended field of view. They could also be
extended to other ultrasound modalities, such as frequency compounding, in order to
better exploit the point spread function diversity present in the different acquisitions,
and even to other fields, such as synthetic aperture radar, where different looks are
also obtained to reduce the speckle patterning.
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A P P E N D I X A

Ultrasound Echography

In this appendix we present the basic principles of ultrasound echography imaging for
medical purposes. Many excellent references can be found on this subject, such as
[167].

A.1 Medical Ultrasound Imaging

Ultrasound echograhy imaging is one of the most widely used since it permits to
observe all kind of soft tissues in a non-invasive way. It is particularly useful for
delineating the interfaces between solid and fluid-filled spaces. It permits to obtain
real-time images, where the operator can select the most useful section for diagnosis
and set the imaging parameters during the exam, often enabling rapid diagnoses. It
shows the structure as well as some aspects of the function of organs. It is used
for almost all soft tissue organs, including: heart, kidney, liver, vascular system and
neonatal brain. In more than 50 years of use, no long-term side effects have been
reported, and rarely causes any discomfort to the patient. Equipment is available
almost everywhere; easy to carry, examinations can be performed at the patient’s room.
Indeed, it is relatively inexpensive compared to other medical imaging modalities, such
as X-ray or magnetic resonance imaging (MRI). Given its real-time and non-invasive
characteristics, it is widely used during surgical operations, often in combination with
other imaging modalities such as pre-operative MRI.

However, ultrasound shows several limitations. Ultrasound waves can not propa-
gate trough excessive impedance changes, such as penetrating bones, nor gases, like
air in the lungs. This limits their application to “protected” organs such as the brain,
or, to a less extent, the heart. Even in the absence of bone or air, the depth penetra-
tion of ultrasound is limited, making it difficult to image structures that are far away
from the probe. This point is critical for obese patients, for instance. In fact, the
image quality is very much dependant on the patient. And also on the practitioner. A
high level of skill and experience is needed to acquire good-quality images and make
accurate diagnoses.

We list the most common ultrasound imaging modalities used in medical practice.
Figure A.1 shows an example of an ultrasound exam.
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A.1 Medical Ultrasound Imaging

Figure A.1: Ultrasound echography is real-time, non-invasive, portable and relatively
inexpensive medical imaging modality [6].

A.1.1 B-mode

B-mode imaging refers to 2D ultrasound images. This imaging modality will be de-
scribed in Section A.2. Figure A.2 shows an exam of the breast tissue.

Figure A.2: Breast-tissue B-mode ultrasound echography exam [6].
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A.1.2 3D

Recently introduced into the market, real-time three-dimensional (RT3D) echocar-
diography systems use a fully sampled matrix array to image volumes in a single
acquisition. This allows for precise quantification of masses volume, since no hypoth-
esis must be made from single slices of data. Currently, the applications which take
more profit of this invention are obstetrics and cardiac applications. Figure A.3 shows
an exemple of the use of the 3D technology for an obstetric application.

Figure A.3: Three-dimensional obstetric imaging [6].

A.1.3 Harmonic Imaging

Harmonic imaging consists in exploiting the non-linearities of the acoustic wave prop-
agation. As the fundamental frequency wave is propagates, it is distorted creating
harmonics. These harmonics are created at the tissue itself, showing the following
benefits with respect to the fundamental frequency:

• higher frequency (typically x2, the second harmonic), thus better spatial resolu-
tion;

• lower attenuation, since it only travels from the tissue to the probe;

• less reverberation;

• smaller side lobes.

Areas of the image that are far away from the probe benefit most of harmonic imaging,
due to the fact that the wave needs to propagate for a certain distance to get distorted.
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A.1 Medical Ultrasound Imaging

Therefore, at the generation point they are less attenuated and less affected by phase-
aberration. However, at reception the second harmonic has to be filtered from the
fundamental wave signal, which may reduce the effectiveness of harmonic imaging.

There exist other techniques which take profit of the non linearity of the medium,
such as pulse inversion [85]. This technique consists in sending two consecutive ul-
trasound pulses, the second pulse being an inverted copy of the first one. Linear
scattering of the two pulses will give two echoes which are inverted copies of each
other, and these echoes will therefore cancel out when added at reception. On the
other hand, non-linear scattering, e.g. from bubbles, will give different responses. The
harmonic components add, and the signal intensity difference between non-linear and
linear scatterers is therefore increased.

A.1.4 Doppler

One of the benefits of ultrasound imaging is the ability to measure the velocity and
direction of flows and tissues. The Doppler principle states that the reflected frequency
changes proportionally to velocity of the imaged body [48]. Therefore, velocities of
the blood flow will be detected as changes in the ultrasound wave frequency. High-
amplitude, low frequency signals from moving tissues are typically filtered away to
detect blood flows.

Two different kinds of Doppler techniques are available:

• Continuous Wave Doppler corresponds to the direct application of the Doppler
principle with a sinusoidal wave. It is rarely used since it does not provide
information about the position of the target.

• Pulsed Doppler evaluates the movement of the tissue by analyzing the differences
of different acoustic pulses. The user must define a region where the Doppler
image has to be computed.

When Doppler information is displayed as colored images over the regular B-mode
echography, it is named as color Doppler. Figure A.4 shows two examples of this
modality.

Power Doppler [106], or Spectral Doppler, refers to the display of the power of the
Doppler signal instead of the frequency shift. In this way, the system is sensitive to
the amount of flow rather than its direction. In comparison to color doppler, power
doppler has higher sensitivity to flow, better edge definition and depiction of continuity
of flow.

Tissue Doppler imaging [42] consists in filtering the low amplitude, high frequency
signal to detect the tissue movements such as myocardial contractions.

A.1.5 Stress Echocardiography

This modality of echocardiography consists in evaluating the heart in stress conditions.
In this way, it might be easier to detect parts of the heart that may not be receiving
enough blood or oxygen because of blocked arteries. Stress can be induced either via
medicals (e.g. dobutamine) or via physical exercise (e.g. static bicycle).
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(a) (b)

Figure A.4: Examples of color Doppler imaging: a) blood flow turbulences in the
carotid vein, b) mitral regurgitation [6].

A.1.6 Contrast Agents

Cardiac ultrasound images can be improved by the use of contrast agents. Those
are typically tiny air bubbles (less than 10 µm) in a biodegradable shell, that are
introduced in the blood torrent. Due to the different acoustical impedance of air and
blood, these elements greatly increase the contrast of the ultrasound image, permitting
a better discrimination of the blood pool and the myocardium wall, the study of
perfusion and capillary blood-flow.

Due to the non-linear reflectivity of the bubbles, harmonic imaging takes impor-
tance with contrast agents. The second and further harmonics are greatly reflected by
the microbubbles, while the tissue does not.

A.1.7 Elastography

Cancer tissue elasticity can be used for discrimination from other tissues such as fat
or benign lesions. Elastography [118] consists in creating a map of the elasticity of the
tissue. There are manily two approaches:

• quasi-static [117], where a compression is appied and the resulting components
of the strain tensor estimated via autocorrelation,

• low-frequency vibrational (50 - 500 Hz) [54], where the movement of tissues is
evaluated with Doppler imaging. The vibration can be induced manually by the
practioner, by the patient, with external vibrators attached to the body or with
acoustic transducers.

Due to the elasticity of non-pathologic tissues, these move under the vibration and
appear colored. On the contrary, malignant tissue remains uncolored since they are
firm.
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A.2 Image Formation

Recently, Bercoff et al. [22] propose the supersonic shear imaging technique which
consists in creating focused shear waves with the ultrasound probe and image those
at high frame-rate. This technique permits to obtain the elasticity map of the tissue,
thus determining the nature of the observed lesions.

A.2 Image Formation

A.2.1 Beamforming

In order to focus the energy at a certain focal distance, different delays are applied to
each of the elements of the transducer. In this way, ultrasound waves sum their energy
constructively at the focal point. This process is known as beamforming. Transducers
that operate in this way are named phased arrays, for their ability to control the phase
of the acoustic pulses of each of their elements.

The delay τ applied to each element is easily computed, from the distance from
the transducer to the focal point d(x), as:

τ(x) =
1

c
d(x) =

1

c

√

(xf − x)2 + (yf )2 (A.1)

where c is the speed of sound, x is the position in the linear transducer, (xf , yf ) is the
position of the focal point. The speed of sound is used in this computation; therefore,
a misestimation of its value will lead to beam defocalization.

Similarly, the reflected waves arrive with different delays to the transducer, enabling
their localization in space. Following the same law expressed in Equation (A.2.1), a
different delay is applied to each element to detect the reflections at a certain focal
point. The resulting signal is known as the RF signal.

Figure A.5 shows a diagram of the beamforming operation. Typically, transmission
beamforming is performed at one to four focal zones, and reception beamforming is
performed for all points of the image.

A.2.2 Propagation

Ultrasound imaging is based on the propagation of the acoustic waves through the
human body. It allows the propagation of pressure wave, since it has elasticity and
compressibility of a fluid [72]. In the context of linear acoustics, pressure wave fields
are assumed to represent solutions of the linear wave equation. In one dimension, it
can be expressed as:

∂2p

∂z2
= ρ0κ

∂2p

∂t2
(A.2)

where p is pressure, ρ0 is the medium density at equilibrium, κ is its compressibility,
and z and t are the spatial and temporal dimensions respectively. This is a reasonable
approximation for ultrasound imaging, although as mentioned in Section A.1.3 non-
linear effects actually happen in real tissue propagation.
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Figure A.5: Different delays are applied tp each transducer elements in order to vary
the phase of the acoustic pulses. This operation is performed at emission (top) and at
reception (bottom) [13].

A.2.3 Reflection and Scattering

Ultrasound echography is based on the echoes generated by the tissues from the inci-
dent acoustic wave. Reflection refers to the interaction of sound waves and particles
which are much larger than the imaging wavelength; scattering refers to the interaction
with particles which are comparable or smaller. The behavior is different. Reflection
leads to specular echoes, which direction follows the Snell’s laws of optics. Scattering
consists in radiating in all directions. For particles much smaller than the wavelength,
which are known as Rayleigh scatters, the radiation is isotropic.

A.2.4 Image Pipeline

Once the reflected echoes have been detected and beamformed, there is a series of
operations done to accommodate this data for display. The envelope of the RF signal
is taken, in order to avoid filter oscillations of the ultrasound wave and keep the
envelope pulse. The time-gain-curve (TGC) is applied in order to compensate for the
variation of attenuation with depth. Raw lines are converted to Cartesian data in the
case of curved, sector or steered transducers. This signal is named as envelope-detected
image. Due to the high range of echo intensities, images are log-compressed in order
to be displayed in current monitors. This signal is named as the log-compressed image.
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A.3 Performance Limits

A.3.1 Spatial Resolution

Spatial resolution refers to the ability of the system to discriminate closely spaced
scatters. The shape of the point spread function (PSF), is determined by the Fraun-
hofer approximation. Briefly, this well-known expression from the optics literature
states that the far-field complex amplitude pattern produced by a complex aperture
amplitude function is approximately equal to 2-D Fourier transform of that function
[58]:

PSF (x) = F {A(x)} (A.3)

where F {•} represents the Fourier transform, and A(x) the aperture function.
Applied to ultrasound, this approximation states that the ultrasound beam pressure

amplitude pattern can be estimated by the 2-D Fourier transform of the transducer
aperture. In the lateral and elevational dimensions, this means that a rectangular
aperture leads to a sinc function as PSF, with size inversely proportional to the size
of the aperture. In other words, the bigger the aperture, the smaller the PSF. In order
to avoid the secondary lobes of the sinc function, apodization functions are applied to
the amplitude of the emitted pulses, such as the Hanning window [13].

The same rationale applies to the axial dimension, but in this case it is the shape
of the ultrasound pulse which plays the role of the aperture. Typically a raised cosine
modulates the ultrasound carrier. Both the frequency of the ultrasound wave and the
length of the pulse will limit the spatial resolution on the axial dimension. However,
these parameters are limited by the attenuation of tissues.

There is a trade-off between lateral resolution and depth-of-field (DOF). The DOF
determines the length in the axial dimension at which the beam stays focused. It is
[13]:

DOF = 8f 2
#λ (A.4)

where f# = z/d (z is the depth, and d is the size of the aperture) and λ is the ultrasound
wavelength. The larger the aperture, the smaller the DOF. In other words, for small
PSF (large aperture), multiple focalization points will be needed to compensate the
decrease of DOF. This will indeed impact on the frame rate.

Conventional ultrasound systems show a typical spatial resolution of about 300x1000x300
µm3 in lateral, elevational and axial dimensions.

A.3.2 Speckle

The presence of scatterers smaller than the wavelength creates the so-called speckle
noise. It is a random, deterministic, image patterning caused by the interference of
the sub-resolution scatterer echoes. Its texture does not contain information about
the underlaying tissue; its mean brightness does, in principle, reflect the brightness of
the tissue.

Speckle has been widely studied in the literature. The pioneer works are from
Goodman [58]. The first discussion of ultrasound speckle using statistical optics is in
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Burckhardt [32]. A classic paper on the second-order statistics of speckle is by Wagner
et al. [159]. A discussion of Rician statistics in tissue characterization is in Insana et
al. [72]. We breifly describe these results in this section.

Assuming that the statistics of the RF signal are White Gaussian[58], that is, that
the scatters are independent, the envelope-detected signal follow a Rice distribution

p(a) =
a

σ2
exp

(

−a
2 + s2

2σ2

)

I0
as

σ2
, a ≥ 0 (A.5)

where a is the mean scatter spacing, s is the strength of a specular reflector, σ is the
standard deviation of noise and I0 is the incomplete Bessel function of order zero. The
Rician PDF is parameterized by a single parameter k, which is defined as:

k = s/σ (A.6)

The Rician distribution reduces to the Rayleigh distribution for the special case s
= 0, that is, when there are no bright scatters. Then, the image consists in purely
speckle patterning due to sub-resolution scatters. The Rayleigh distribution is defined
as [159]:

p(a) =
a

σ2
exp

(

− a2

2σ2

)

, a ≥ 0 (A.7)

However, log-compression changes the characteristics of the signal probability dis-
tribution. In particular, it affects the high intensity tail of the Rayleigh and Rician
PDFs more than the low intensity part. Strictly, the log-compression on Rician PDFs
is a Fisher-Tippett distribution [80, 45], expressed as:

p(a) =
exp(−z)z

β
(A.8a)

z = exp

[

−a− µ
β

]

(A.8b)

However, some approximations can be made. If the PSF is considered as Gaussian,
Kao et al. [79] demonstrate that speckle noise distribution can be approximated as a
additive colored Gaussian PDF. Abd-Elmoniem et al. [9] assume that in a reasonably
high number of scatters, that is, not too low SNR, additive white Gaussian noise is
a good approximation. From our experiments, the additive colored Gaussian noise is
the most satisfying model.

Many techniques have been proposed to reduce speckle, including spatial filtering
[64, 88, 44, 61, 11], temporal integration [47], frequency compounding [40] and spatial
compounding [155, 116].

A.3.3 Depth

High-frequencies suffer much more attenuation than low frequency ones. Table A.1
shows the attenuation values for different kinds of human tissue. The upper acoustic
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power limit is bounded in order to not burn the tissues (FDA limit = 100mW/cm2).
Therefore, there is limitation in frequency which limits the spatial resolution and the
presence of speckle patterning.

Typical frequencies are 3.5 to 10 MHz, for depths from 15 to 7.5 cm.

Type of Tissue Attenuation (dB/MHz · cm)
Liver 0.6 - 0.9

Kidney 0.8 - 1.0
Fat 0.5 - 1.0

Blood 0.17 - 0.24
Plasma 0.01
Bone 16.0 - 23.0

Table A.1: Attenuation values for different human tissues [77]

There exist high-resolution devices. They operate at frequencies form 20 to 50
MHz, and penetration depth go from about 10 mm to 5 mm respectively. Therefore,
their application is limited to sub-cuteanous imaging and small animals.

A.3.4 Clutter

Clutter artifact is due to the reverberation of ultrasonic waves between tissue inter-
faces. Instead of a single clean echo, waves keep bouncing back and forth between
the different interfaces. This is particularly visible near the edges of masses or other
clearly definite interfaces such as inside the heart.

This artifact is specially important in Doppler imaging and in bubble specific imag-
ing.

A.3.5 Shadows

Shadows occur below objects that reflect or absorb a greater portion of energy. There-
fore, there is no transmitted energy and tissues that are further away are not insonified
at all. This effect is completely blocking in the case of bones (e.g. ribs) or gas (e.g.
air in the lungs). The difference of impedance between soft tissues and these elements
is so large, that no energy at all is transmitted to tissues below them.

Shadows may be an indication of malignancy in breast cancer.

A.3.6 Drop-out

The reflected wave follows the Snell’s law. Therefore, if the angle of the incidence of
the emitted wave is perpendicular to the tissue, the reflected wave will also be. In
this case, a strong echo will be received. On the contrary, when the tissue is almost
parallel to the beam, most of the reflected energy will not return to the probe.
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A.3.7 Field of View

The field of view depends on the size of the available acoustic window. According
to this, different probes will be used. Transducers may be linear, sector or curved
arrays. Linear array transducers produce rectangular images and offer the best overall
image quality. Sector array transducers are appropriate to image larger organs from
a small acoustic window, such as in between the ribs. Curved array transducers offer
a compromise between these two kinds, and are optimal when the acoustic window is
large.
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Phantoms

In this appendix we briefly describe the composition of the phantoms used in our
experiments.

B.1 ATS 539[5]

The Model 539 Multipurpose phantom is an easy, comprehensive means of evaluating
imaging systems with an operating frequency range of 2.25 to 7.5 MHz. The phantom
is designed with a combination of monofilament line targets for distance measurements
and tissue mimicking target structures of varying sizes and contrasts. Cystic-like target
structures are positioned in-line vertically, thereby permitting an entire target group
to be displayed in one view. Due to the acoustic similarity of the background material
and the target structures, artifacts caused by distortion, shadowing or enhancement
have been eliminated. Six gray scale targets ranging in contrast from +15 to - 15
dB are provided to evaluate the system’s displayed dynamic range and gray scale
processing performance.

Figure B.1 shows a schematic illustration of the parts that contain this phantom.

B.2 Bubbles

In order to measure the point spread fucntion of the system a phantom was constructed
with small air bubbles on a saline solution. No scatters are present within the saline
solution. The diameter of the air bubbles is about 10 µ m.

This phantom was build by Rob Entrekin, from Philips Ultrasound Bothell, USA.

B.3 Grape Fruit

In order to measure the the spatial and contrast resolution of the three-dimensional
breast imaging device, some grapes were suspended in gelatine.

This phantom was build by Rob Entrekin, from Philips Ultrasound Bothell, USA.
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B.3 Grape Fruit

Figure B.1: ATS 539 phantom. Material: Urethane rubber, Sound speed: 1450 m/s,
Absorption: 0.5 dB/cm/MHz. Left hand side: Line Targets (Monofilament Nylon,
Diameter: 0.12 mm). Centre section: Anechoic Targets (Cylindrical in shape filled
with homogenous (nonscattering) material. Diameter: 2 to 8 mm. Right hand side:
Gray Scale Targets (Cylindrical in shape filled with scattering material. Diameter: 10
mm, Contrast is backscatter relative to background material.)
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Figure B.2: Bubble phantom to measure the point spread function: a) B-scan(x = 80)
of v0, b) C-scan(y = 400) of v0, c) E-scan(x = 80) of v90, d) C-scan(y = 400) of v90.
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Figure B.3: Slices of fruit phantom 3D acquisition, zoom on a 3x5x3 cm area, voxel
size 0.2x0.1x0.1 mm. For v0 (upper row): a) B-scan (z = 60), b) E-scan (x = 100),
c) C-scan (y = 350). For v90 (lower row): d) E-scan (z = 60), e) B-scan (x = 100),
f) C-scan (y = 350). Due to the point spread function of the system, the best spatial
resolution is achieved in the B-scan, which corresponds to the xy plane for v0 and to
the zy plane for v90.
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