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Application of Dempster–Shafer Evidence
Theory to Unsupervised Classification

in Multisource Remote Sensing
Sylvie Le H́egarat-Mascle, Isabelle Bloch, and D. Vidal-Madjar

Abstract— The aim of this paper is to show that Demp-
ster–Shafer evidence theory may be successfully applied to un-
supervised classification in multisource remote sensing. Demp-
ster–Shafer formulation allows to consider unions of classes,
and to represent both imprecision and uncertainty, through the
definition of belief and plausibility functions. These two functions,
derived from mass function, are generally chosen in a supervised
way. In this paper, we describe an unsupervised method, based
on the comparison of monosource classification results, to select
the classes necessary for Dempster–Shafer evidence combination
and to define their mass functions. Data fusion is then performed,
discarding invalid clusters (e.g., corresponding to conflicting in-
formation) thank to an iterative process.

Unsupervised multisource classification algorithm is applied to
MAC-Europe’91 multisensor airborne campaign data collected
over the Orgeval French site. Classification results using different
combinations of sensors (TMS and AirSAR) or wavelengths (L
and C bands) are compared. Performance of data fusion is
evaluated in terms of identification of land cover types. The
best results are obtained when all three data sets are used.
Furthermore, some other combinations of data are tried, and
their ability to discriminate between the different land cover types
is quantified.

I. INTRODUCTION

I MAGES acquired over the same site by different sensors
are generally partially redundant, as they represent the same

scene, and partially complementary, since the sensors have
different characteristics and physical interaction mechanisms
are different. For many applications of image classification
problems, the information provided by a single sensor is in-
complete resulting in misclassification. Fusion with redundant
data can help reduce imprecision, and fusion with complemen-
tary data can provide a more complete description. In both
cases, classification results should be better.

Data fusion may be performed at different stages [1]:
pixel, feature, and decision level. At decision level, first
monosource classification results are combined in the last step,
generally in a supervised approach. At pixel level, many data
fusion methods have been proposed. The simplest approach
is to concatenate the data from the different sensors as if

Manuscript received April 3, 1996; revised September 24, 1996. This work
was supported in part by the French Space Agency (CNES) and Matra Cap
Syst́emes company. The participation to the NASA MAC-Europe deployment
was made possible by support from the French National Programme for
Remote Sensing from Space (PNTS).

S. Le H́egarat-Mascale and D. Vidal-Madjar are with CETP, 78140 Vélizy,
France (e-mail: sylvie.mascle@cetp.ipsl.fr).

I. Bloch is with ENST, 75013 Paris, France.
Publisher Item Identifier S 0196-2892(97)03677-2.

they were measurements from one single sensor [11]. In
that case, establishing a good model for multisource data is
the difficult part. More sophisticated methods of statistical
multisource classification have been proposed [3], [10], [16],
[17]. However, they require knowledge of a considerable
amount of information on the measurement physics of sensors,
and their applications are usually supervised.

Mathematical theory of evidence was first introduced by
Dempster in the 1960’s, and later extended by Shafer [18].
This theory, which allows to represent both imprecision and
uncertainty, appears as a more flexible and general approach
than the Bayesian one. Another of its advantages is its ability
to consider not only single (or individual) classes, but also
unions of classes. Applications were developed in medical
imaging [5], object detection [7], [14], and remote sensing
classification [12]. However, even if the authors generally
underline the advantages of Dempster–Shafer approach, the
studied applications are either theoretical or using small data
sets, and we did not find any application of Dempster–Shafer
theory to unsupervised classification problem.

In remote sensing applications, the expected number of
classes may be large, in particular for agricultural areas.
Therefore, an accurate estimation of the class characteris-
tics from the training areas is tedious and time consuming.
Moreover, even when supervised methods are able to show
the existence ofa priori unknown classes (for instance, by
introduction of a rejection class), they are generally unable
to separate thesea priori unknown classes and to estimate
their characteristics. Finally, for some applications, such as
the MARS project [6], an unsupervised classification is first
performed to identify image classes. Comparison with ground
truth is then accomplished. In such a case, the advantage to
operate in an unsupervised way is that it allows to identify
the actual feature of each of the supervised classes. Therefore,
even if unsupervised classifications are generally known to
be more computationally expensive (in particular, they gen-
erally require a greater number of classes) than supervised
classifications, there is an interest to develop unsupervised
techniques. The aim of this paper is to propose a unsupervised
multisource classification method based on Dempster–Shafer
evidence theory.

The data set used for this study was acquired over the
Orgeval agricultural site ([13]), located about 20 km east of
Paris, during the MAC-Europe’91 campaign. Multifrequency
polarimetric radar images and multi-spectral optical images

0196–2892/97$10.00 1997 IEEE
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Fig. 1. Three classes example: distinctions between classes in images 1 and
2.

were respectively, recorded by AirSAR [21] and TMS (The-
matic Mapper Simulator), both from NASA/JPL.

The remainder of the paper is organized as follows. In
Section II, some advantages of Dempster–Shafer approach for
data fusion are presented, and a simple example is introduced
that will be discussed throughout the paper to illustrate how
this theory can be applied to multisource classification. In
Section III, main aspects of the Dempster–Shafer evidence the-
ory are summarized. In Section IV, multisource unsupervised
classification is discussed. In Section V, classification results,
using different combinations of sensors or wavelengths, are
analyzed in terms of land cover identification. Section VI is
our conclusion.

II. A DVANTAGES OF DEMPSTER–SHAFER

EVIDENCE THEORY FOR DATA FUSION

Let us first introduce a simple example to illustrate the
interest of data fusion: consider the simple case of three classes

, and , and two different sources and which
are respectively able to distinguish from the two other
classes but not from , and from the two other classes
but not from . Fig. 1 shows a representation of the
classes which can be identified in images 1 and 2 (respectively
provided by and ). In this figure, we clearly see that
complementary information may be used to detect new classes,
such as (see Fig. 1) which was indistinguishable using
image 1 (e.g., Fig. 4 in the application of Section V) alone
or image 2 (e.g., Fig. 5) alone, or to obtain a nonambiguous
description of the targets when data collected by a single sensor
fail to discriminate between two particular targets of interest.

The three main numerical approaches to data fusion are the
probabilistic methods, fuzzy set theory, and Dempster–Shafer
evidence theory. The main advantage of fuzzy fusion approach
is that the fuzzy set framework provides a lot of combination
operators, which allows the user to adapt the fusion scheme to
the specificity of the data at hand. However, to our knowledge,
the operators are always selected in a supervised way.

The main limitation of Bayesian inference is that it cannot
model imprecision about uncertainty measurement. An event

is said to be uncertain if its probability is not equal to one
(or zero, in which case it is certain to be false). However,
there may be an imprecision on probability measurement (a
measurement can be said imprecise if there is a non null error
bar on its value). A first advantage of Dempster–Shafer evi-
dence theory is its ability to deal with ignorance and missing
information. In particular, it provides explicit estimations of
imprecision and conflict between information from different
sources. Indeed, probability theory may be seen as a limit
of Dempster–Shafer evidence theory when it is assumed that
there is no imprecision, and that only uncertainty has to be
taken into account.

Another major advantage of Dempster–Shafer theory is it
can deal with any union of classes. This is particularly useful
to represent “mixed” pixels in classification problems. Besides
the case of mixed pixels due to coarse spatial resolution, mixed
pixels are present in monosource image modeling every time
the source is unable to distinguish two classes, such asand

in image 1 of the previous example.
Because of these advantages, we will focus on Demp-

ster–Shafer method in the following sections.

III. B ASIC PRINCIPLES OF

DEMPSTER–SHAFER EVIDENCE THEORY

We denote the space of hypotheses. In image classifi-
cation applications, is the set of hypotheses about pixel
class. Dempster–Shafer theory allows to consider any subset
of . In the following, we denote the set of the subsets of

. Applied to classification problems, it means that not only
single classes (also called singletons) but also any union of
classes can be represented. In the following, hypotheses about
singletons and hypotheses about unions of classes are respec-
tively called simple hypotheses and compound hypotheses.

By extension of the notations of the set theory, inclusion,
intersection, and union between two hypothesesand are
defined and denoted as follows:

for a given event

if is true, then is true
is true is true and is true
is true is true or is true.

A. Representation of Evidence

The Dempster–Shafer evidence theory provides a repre-
sentation of both imprecision and uncertainty through the
definition of two functions: plausibility ( ) and belief ( ),
which are both derived from a mass function (). is defined
for every element of , such that the mass value
belongs to the [0, 1] interval and

(1)

where is the empty set.
When the mass affected to a compound hypothesis

is nonzero, it means that we have an option not to make the
decision between or but rather leave the pixel in the
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class. In particular, assigning a non null mass toallows to
not classify some pixels, for which there is a global ignorance.

The belief and plausibility functions, derived from, are
respectively defined from to [0, 1]:

(2)

(3)

These two functions, which have been sometimes referred to
as lower and upper probability functions, have the following
properties:

(4)

(5)

where is the complementary hypothesis of A:
and .

In the case of Bayes theory, uncertainty about an event is
measured by a single value (probability) and imprecision about
uncertainty measurement is assumed to be null. In the case
of Dempster–Shafer theory, the belief value of hypothesis
may be interpreted as the minimum uncertainty value about

, and its plausibility value, which is also the “unbelief”
value of the complementary hypothesis[see (5)], may be
interpreted as the maximum uncertainty value of. Thus,
uncertainty about is represented by the values of the interval
[ ], which is called the “belief interval” and
the length of this belief interval gives a measurement of the
imprecision about the uncertainty value.

B. Evidence Combination

Dempster–Shafer theory provides a method to combine
the previous measures of evidence of different sources. If

is the basic probability assignment provided by source
, the combination: , also

called orthogonal sum, is defined, according to the Dempster’s
combination rule [18], by

if

where

(6)

(7)

From (7), we see that represents the mass
which would be assigned to the empty set, after combination,
in the absence of normalization [division by ( ) in
(6)]. Thus, is often interpreted as a measure of conflict
between the different sources and it is introduced in (6) as
a normalization factor. The larger is (with ),
the more the sources are conflicting and the less sense has
their combination. Finally, the orthogonal sum does not exist

when is equal to 1. In this case, the sources are said to be
totally or flatly contradictory, and it is no longer possible to
combine them.

More details about Dempster–Shafer algebraic properties
can be found in [9]. In particular, it is shown that the Demp-
ster’s rule of combination is commutative and associative.

C. Decision Making

Having computed the mass, plausibility and belief values
for each simple and compound hypothesis of the multisource
model, we need a criterion, which is called “decision rule,” to
decide which hypothesis is the more “realistic.” Nowadays,
the choice of this criterion remains application dependent.
The three most popular decision rules are ([9], [18]): 1)
maximum of plausibility, 2) maximum of belief, and 3)
maximum of belief without overlapping of belief intervals.
Rule 1) is judged as the best by some authors [2]; maximum
belief over the simple hypotheses is the most used; rule
3), called absolute decision rule, is very strict. Other rules
such as [which may also be written

] are compromises.

IV. A PPLICATION TO UNSUPERVISED

MULTISOURCE CLASSIFICATION

A. Mass Function Definition

There is no general answer to the problem of the mass
function definition. In image processing, the most widely used
mass functions are directly derived, at the pixel level, from the
probabilities [12], [14], or from the distance to class centers
[5]. In most cases, no other compound hypothesis butis
considered. This approach may be well adapted in cases where
the information from the different sources is mainly redundant
(same classes in the images), and data fusion is only used to
confirm the decision taken from the data of a single source.
Here we consider the case where the information provided by
the different sources is mainly complementary.

First, we consider the example (presented in Section II and
Fig. 1) of three classes , and . The hypotheses to
be considered in Dempster–Shafer formulation are:(whose
mass is null, according to (1), and therefore, it is no longer
considered), simple hypotheses: (for notation convenience,
we denote the hypothesis about the membership of a pixel
to class ), , and compound hypotheses: ,

, , .
If there is no ambiguity between two classes (i.e., we assume

there is no ignorance about these two classes), affecting a null
mass to their union seems relevant. Conversely, when two
classes and are not distinguishable by a sensor, it seems
reasonable to give a non null mass to their union . For
the choice of the mass functions of and , two basic
strategies may be chosen:

• affecting a null mass to these two classes:
, and ;

• affecting the same mass to these two classes and to their
union: .
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The former assumes that the ignorance about the member-
ship of a pixel to or is total. In the latter, the mass is
arbitrary distributed among and a part of the ignorance
represented by . Therefore, the second strategy
is intermediate between the model of total ignorance about

or relative to and the Bayesian modeling,
where ignorance is assumed to be null: ,

. In this paper, we consider the second
mass assignment strategy, because experimental results (on
our data) show that, in case of the first strategy, the final
number of classes (see Section IV-C) is about 50; therefore,
the interpretation of the results is tedious, or impossible for
the classes which do not have pixels located in the area where
ground truth is known.

Finally, the mass functions are normalized such that:
(1). So, in the case of the example shown

on Fig. 1, we define the mass functions as in [5]:

(8)

(9)

where and have been determined for
each pixel during learning process.

This example is very simple as we knowa priori informa-
tion about the class discrimination by the two sources. In case
of unsupervised classification, we do not know the classes, nor
the ability of the sources to recognize them.

In the case of unsupervised classification, the two classes
and (resp. and ) would be detected on image 1
(resp. 2). As would be empty, the simple hypotheses
to be considered would be: , , and

, which are easily identified as , and .
This example shows a quite simple unsupervised way to define
simple hypotheses for Dempster–Shafer data fusion: the set of
singletons we will consider is the set of nonempty intersections
between classes of different sources. This definition is based
on the assumption that the cluster characteristics are reliable
enough to avoid overlapping between classes, as most of the
clustering algorithms do.

If we denote and the two
respective sets of classes in the image from sensor and

classes in the image from sensor, before data fusion, the
simple hypotheses which have a non null mass function are:

such that

The set of compound hypotheses is:

such that

As we assume that there are no ambiguities between clusters
discriminated by sensor , we affect a null mass
function to every compound hypothesis which represents

union between clusters of the image from. Then, for each
pixel , we define the non null mass functions as follows:

For simple hypotheses:

H such that

H

H

(10a)

For compound hypotheses ( or ):

such that

H

H
(10b)

such that

H

H
(10c)

otherwise H H

where [resp. ] is the conditional prob-
ability for pixel to belong to cluster in image 1 (resp.
cluster in image 2); and are normalization terms
such that: and (1). If we denote (resp.

) the number of non null intersections betweenand ,
, (resp. ), there are hypotheses

having a mass value equal to [where
is the number of combinations of elements among :

]. Finally, since ,
we have

(11a)

(11b)

Another way to define mass functions, in the initialization
step, would be to define the masses as functions of both
probabilities and sizes of the intersections between classes
(provided by respective one-source classifications). In such
a case, the sizes of the intersections would be similar toa
priori probabilities in Bayes theory. However, on our data, we
found that small clusters (and therefore the less represented
land cover types) were penalized, and that classification results
were not as good (in terms of land cover type identification,
as defined in next Section V) as using mass functions only
depending on probabilities.

B. Combination and Decision

The mass functions are combined according to the orthogo-
nal sum defined by Dempster–Shafer (6). Table I summarizes
the results obtained with the example of three classes ,
and (Fig. 1). We note that, as all the compound hypotheses
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TABLE I
MASS AND BELIEF COMBINATION RESULTS FOR EXAMPLE OF FIG. 1, WITH 1 �K = 2(t + u � 4:t:u).

have a null mass after combination, the and functions
are equal, thus the belief interval reduces to zero: there is no
longer imprecision after data combination.

In case of unsupervised data fusion, the combined mass
functions of simple hypotheses , such that ,
are proportional to the sum of the products ,
where is the mass function of the image acquired by
sensor , and and are two hypotheses
such that . From (10a) and (10b), the
only hypotheses which have a non null mass are
either , or such
that , . Then, all hypotheses

(having a non null mass) have the same mass value
. A similar reasoning may be

used for and .
The normalization constant is the sum of the products

with and such that .
If we only consider hypotheses which have non null mass

and , and are such that
and . Then,

the condition for is either ,
or .

Finally, and having the same meaning as in the
previous section, the combined mass of is

(12a)

where

(12b)

and all compound hypotheses have null resulting mass.
In the case where the mass functions of simple hypotheses

are never null (derived from Gaussian probabilities for exam-
ple), a decision rule such as the maximum of belief over all
hypotheses will always favor compound hypotheses. In this
case, we prefer a decision rule taken over simple hypotheses.

In a first step we choose the following decision rule:

if (13)

over singleton classes. If there is no class satisfying this
condition, the pixel is said “unclassified.”

This rule, which may seem severe, has been chosen to con-
sider only pixels which can be classified with a large amount
of confidence in the unsupervised multisource classification
described in next section. To illustrate the meaning of this
decision rule, let us assume that the image has to be classified
(according to the maximum of belief decision criterion) in two
classes and , where represents any other class or union
of classes than . One pixel satisfying (13) would be labeled
“ ” rather than “not .” In such a case, we may assume that,
if a new class , intermediate between two classes included in

, is now taken into account, the pixel would not change its
label from “A” to “ ,” therefore, the class is said “reliable.”

C. Unsupervised Multisource Classification Algorithm

The initial set of singleton classes, considered for data fu-
sion, is the set of non empty intersections between monosource
classes. However, some of these singleton classes may be
empty (or contain only very few pixels) after Dempster–Shafer
combination. There are two main reasons for this.

• There may be some non empty class intersections due
only to classification errors in monosource classification.
In this case of “false” intersection, if the ill-classified
pixels are sufficiently well recognized by the other sensor,
classification errors will disappear after data fusion and
the singleton class due to this false intersection may be
empty.

• Even if there is no monosource classification error, there
may some pixels which are classified in classin image
1, and to class in the image 2, and which will be
classified neither in class nor in class (nor in the
union) after data fusion. This is the case in the simple
example of Fig. 1, if ; if the decision criterion
is the maximum of belief over simple hypotheses, the
pixel will be labeled since ,
and (cf. Table I); and, if the decision
criterion is the maximum of belief over all hypotheses
except , the pixel will be classified in or
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rather than in [
, ].

When a singleton class (defined as intersection between two
monosource classes) is empty after data fusion, it is discarded
as being invalid for the remainder of the classification. In the
following, we describe an unsupervised iterative method to
estimate the clusters:

0) classify images 1 and 2, find and
the two respective sets of classes

in images 1 and 2, and compute the conditional
probabilities and ;

1) ;
the data fusion set of classes is: ,

such that ;
2) ;

for each pixel:

a) compute the mass functions and (10)
and (11).

b) compute (12) and deduce
;

c) label the pixel according to decision criterion (13);

3) for each class :

if there “too few” pixels in suppress it:

if , return to 2).

As a summary, the only clusters that we propose to consider
are those which have a non null intersection before data fusion
combination, and have “enough” pixels after Dempster–Shafer
combination. In our case, the threshold for “empty” classes
was chosen equal to 1/1000 of the total number of pixels.
On our data, we found that the convergence is achieved after
about ten iterations.

The proposed data fusion algorithm allows to consider
the mixed aspect of some mixed pixels during classification
process. However, after data fusion, no mixed pixels will be
observed in the results: since the multisource classification that
we describe is unsupervised, the only classes to be considered
are the classes which are distinguishable from the information
provided by the sources. Therefore, for any pixel which is
mixed in one monosource modeling, there is another source
which will provide the information to lift the ambiguity.

The importance of considering compound hypotheses for
evidence estimation is illustrated in Fig 2. Fig. 2(a)–(c) shows
the decision areas, in the case of the example given in Fig. 1,
for the following three data fusion models: Bayes formu-
lation with equal probabilities for indistinguishable classes
[Fig. 2(a)], Dempster–Shafer formulation with maximum of
belief over all simple hypotheses [Fig. 2(b)], and with the
decision criterion given by (13) [Fig. 2(c)]. The decision areas
are represented versus [ ] and [ ].
We clearly see that not considering compound hypotheses
disadvantages class relative to classes and . This
is due to the impossibility to identify using either image
1 alone or image 2 alone. On Fig. 2(c), the decision area

(a) (b)

(c)

Fig. 2. Decision areas, in case of example of Fig. 1, given by: (a) Bayes
formulation with equal probabilities for indistinguishable classes, (b) Demp-
ster–Shafer formulation with maximum of belief over all simple hypotheses,
and (c) Dempster–Shafer formulation with decision criterion given by (13).

called “unclassified” represents the mass values for which the
criterion of (13) is not satisfied for any class.

D. Regularization Step and Global Classification Algorithm

The last step of classification is a regularization step, where
a neighborhood term is introduced to reduce classification
errors, particularly errors due to speckle in radar image.
For this last step, we consider the case of Bayesian mass
functions: only simple hypotheses are considered, and the
three functions , and are equal and represent the
Bayesian probability.

Referring to Geman’s modeling [8], the field of the labels is
supposed to be Markovian. Here, we consider the case of eight-
connexivity neighborhood with cliques of order one and order
two. The potential function of one-order clique is deduced
from Bayesian mass functions like in Bayes formulation, and
the pair-cliques potential function is defined according to a
Potts model. The optimization algorithm we used to obtain
Maximum a posteriori (MAP) classification is the Iterative
Conditional Modes (ICM), a simpler and faster version of
Geman’s algorithm [8].

As summary, the global classification algorithm we will use
has the following three steps:

• initialization step: unsupervised Bayesian classification of
each data set alone, and initialization of Dempster–Shafer
data fusion;

• Dempster–Shafer data fusion with iterative determination
of the set of valid clusters;

• regularization step and final classification.

Fig. 3 shows a synoptic of this algorithm.
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Fig. 3. Global data fusion algorithm.

V. EXPERIMENTAL RESULTS

The data were collected during the MAC-Europe campaign
(Summer 1991) over the French Orgeval site [13]. The area
covered by the Orgeval site is about 88 km , and the test
site is rather flat (the global variation in level is less than 40 m).
The Orgeval basin is mainly an agricultural area surrounded
by forests and containing villages.

Radar data were acquired with the NASA/JPL Aircraft
SAR, three frequencies (P, L, and C bands) and full quad-
polarization, on two days, June 15 and July 16. Optical
data were collected with the NASA/JPL Thematic Mapper
Simulator (12 bands), on July 5 and July 29. In this paper,
we only report results corresponding to the AirSAR image
of July 16, with incidence angle centered at 45, and the
July 29 Thematic Mapper Simulator (TMS) images in 2,
5, 6 (optical wavelengths, respectively, comprised between
0.45–0.52, 0.63–0.69, and 0.69–0.75m) and 10 (infra-red,

– m]) bands. The last ones were selected
because they present best contrast and greatest complemen-
tarity, measured in terms of conditional entropy as defined by
Shannon in his mathematical theory of information [19].

A. AirSAR and TMS Image Models

The polarimetric scattering properties of targets and back-
ground clutters are described by the complex scattering matrix

, where, in , denotes the antenna polarization
in transmission, and the antenna polarization in reception
[20]. In this paper, we consider the polarimetric feature vector
proposed by E. Rignot [15]:

hh
hv
vv

hh vv

hh vv

(14)

where means averaged value over a 77 window. The
main advantage of operating in the log domain is to make the
image speckle have the characteristics of an additive noise.

We assume that the distribution of the polarimetric feature
vector conditionally to a class is a multi-variate Gaussian:

(15)

where is label, the th cluster center, is the
covariance matrix of cluster, its determinant. This

assumption is verifieda posteriorifrom clustering results, with
a Kolmogorov–Smirnov test at a level of significance equal to
0.95. Then, based on the knowledge ofstatistical behavior,
the concatenated vector approach is suitable for classification
of one band AirSAR image, and then there is no need to
apply Dempster–Shafer combination rule, which implies heavy
calculations.

For the optical/infrared TMS data, the considered feature
vector is

(16)

where is the pixel value in band ( ).
These four components have a common dynamic range of
255. We assume that follows a multi-variate Gaussian
distribution conditionally to the clusters, and the concatenated
vector approach is convenient for optical data classification.

The radar spatial resolution, before and after averaging, and
optical pixel size are, respectively, about 12, 36, and 25 m.
The optical images have been projected in the radar geometry.
Projection has been done by selecting the same reference
points in the two images, and approximating the distortion
between the images by a polynomial of degree equal to three
(for 75 reference points). Thus, the mean error was equal to
1.962 (pixels) for the lines and 1.467 for the columns. Figs. 4
and 5 show, respectively, the L band AirSAR VV power
image, and the TMS image (band 10), after projection on to the
AirSAR image geometry. In the two cases, the image size is
equal to 700 lines by 700 columns (representing about 9 km).
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Fig. 4. L band AirSAR VV power image.

Fig. 5. TMS image (band 10), after projection in the AirSAR image geom-
etry.

B. Land Cover Identification Rate Criterion

Here, we focus on the problem of land cover type identifica-
tion. Table II shows the different land cover types present on
the Orgeval site and an estimation of their percentage over the
site, obtained from supervised classification result on AirSAR
L and C bands polarimetric SAR images. The land cover types
which are the most present on the site (they represent about
65% of the site) are: forest, wheat, and peas. Some other land
cover types such as flax, and beans are very poorly represented.
The averaged size of the fields is about 200 pixels (about 3
hectares), except for flax, broad beans, and string beans, for
which it is about 100 (about 1.5 hectares).

In the case of unsupervised classification, the number of
clusters may be different from the number ofa priori known
land cover types. Particularly, we found (from supervised
analysis of the polarimetric characteristics of the different land
cover types) that there may great differences, due to different
states of maturity, in target characteristics between different
fields of a same land cover type. Clearly, in such a case, the
number of image clusters is greater than the number of culture

TABLE II
PERCENTAGE OF THEDIFFERENT LAND COVER TYPES

PRESENT OVER THE ORGEVAL SITE, NUMBER OF TEST AREAS

types. However, we consider that the detection of a land cover
type represented by more than one cluster is not hindered, since
the clusters may be merged after the supervised interpretation
process. According to these considerations, we propose a
new classification performance criterion, called “identification
rate”:

For each land cover type, the identification rate is
defined by

(17)

where is the pixel label taking its value in the set ofclasses,
and is the conditional probability of label knowing
land cover type . According to this definition, the detection
and identification of a land cover type is only penalized by
the fact that it is represented by one or several clusters also
representing other land cover types.

For example, let us consider the case of four different land
cover types. , and four classes: .
Let us assume that classification results provide the confusion
matrices shown in Table III: Table III(a) shows the distribution
(in percentage of pixels) of a given land cover type, for

, in the different classes, and Table III(b) shows
the distribution (in percentage of pixels) of a given class

, for , in the different land cover types. Thus,
according to (17), the identification rates are: %,

%, %, and %.
These results are in agreement with the intuitive interpre-

tation of Table III. The land cover type will be, after
classification, completely identified; will only be half-
detected; and will be very poorly discriminated, since
the class ( ) which mainly represents it (at 90%) is in fact
mainly (at 95%) representing other land cover types (and

). The advantage of classification result representation in
terms of land cover type identification rate is the easiness of
interpretation (in case where we do not want to penalize land
cover represented by more than one class). However, in case
of ill-discrimination of a land cover type, identification rates
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TABLE III
EXAMPLE OF DISTRIBUTION (IN PERCENTAGE OFPIXELS) OF (a) A GIVEN LAND COVER TYPE �n IN

FOUR DIFFERENT CLASSES AND (b) A GIVEN CLASS �n IN FOUR DIFFERENT LAND COVER TYPES

(a) (b)

Fig. 6. Conflict image (with dynamic range between 0–255) of multisource
classification between TMS and AirSAR L band images.

do not provide information about the other land cover type(s)
with which it is confused. To access this information, we have
to refer to the confusion matrices.

Identification rates are evaluated from test areas where
ground truth is available. The number of test areas and the
total number of test pixels for each of the different land cover
types are shown in Table II. We note that, as there are less
test areas in case of broad beans, string beans, and town,
the identification rate values of these land cover types will
be less reliable. The confidence intervals of the identification
rate values have been evaluated in the following way: four
identification rate values have been computed considering
only one test-pixel (pixel belonging to a test area) out of
four, the confidence interval is then defined as the difference
between maximum and minimum values obtained for the four
different sets of the test-pixels. In the next sections, Fig. 9
will show the identification rates of the Orgeval land cover
types after data fusion between different data sets; the symbol
indicates the value obtained by computing identification rates
from all the test-pixels, and the error bar shows the minimum
and maximum values (of identification rate) obtained by
considering one test-pixel out of four.

C. Synergism Between TMS Images and L Band AirSAR Image

Firstly, we only consider TMS images (bands 2, 5, 6,
and 10) and L band AirSAR image. The numbers of classes

Fig. 7. Binary image of classified (coded in white) and unclassified (coded
in black) pixels, according to criterion given by (13).

used for monosource classification are supervised parameters
of the proposed data fusion algorithm. It was applied with
monosource numbers of classes taking any values between six
and 16. The input to data fusion is the output of monosource
classifications; then, if one of the two monosource numbers
of classes is too small (i.e., if monosource information is to
much simplified), the data fusion will not perform optimally.
On the other hand, when the monosource numbers of classes
are both large enough, the final data fusion result becomes
stable (equivalent number of classes, classification results,
and identification rates). In summary, thanks to the iterative
process, the described data fusion algorithm is not sensitive
(except on computational requirements) to the monosource
numbers of classes, provided that they are both large enough.
In case of synergism between TMS and L band AirSAR data,
the identification rates (of the different land cover types) and
the final number of classes become stable for monosource
classification numbers of classes greater than eleven. Thus,
in this case of data fusion, the monosource numbers of classes
have been chosen to be both equal to 11: smaller numbers of
classes lead to noticeably worse classification results (in terms
of land cover identification) and larger numbers of classes do
not improve it.

Firstly, for each data set, radar and optical, the cluster
characteristics have been estimated using the fuzzy-means
algorithm [4], [15], and the image has been classified accord-
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(a) (b) (c)

(d) (e)

Fig. 8. Results of multisource classification (a) “O+L,” before the regularization step, (b) “O+L,” after the regularization step, (c) “L+C,” (d) “O+C,”
and (e) “O+L+C” (clusters representing the same land cover are coded by the same label).

ing to Bayes criterion. Then, the two classified images are put
in correspondence and all the non null intersections between
their classes will be considered in the initial set of classes of
Dempster–Shafer classification: the initial number of clusters
is equal to 72. The mass functions are computed from multi-
variate Gaussian probabilities and combined according to the
Dempster’s rule. The final number of clusters is found to be
equal to 34.

Fig. 6 shows the image of conflict values (12b). The mini-
mum, mean, and maximum values of conflict are, respectively,
equal to 0.00, 0.49, and 0.72. We note that the conflict is the
lowest for forest areas. Most wheat fields present a lower value
of conflict than the other fields. In fact, we will see that this
land cover type was already well recognized by both radar and
optical sensors. We also note that conflict is more important
at the borders of fields. This is probably due to slight errors
in the projection of the optical image in radar geometry.

The decision criterion was defined by (13). If there is no
hypothesis satisfying this criterion, the pixel is said unclassi-
fied. Fig. 7 shows the binary image of classified (in white) and
unclassified (in black) pixels. The percentage of unclassified
pixels is equal to 12.2%. We see that, even if our decision
criterion was quite strict, only few pixels do not satisfy it.
Initially, considering the 72 singleton classes, the number of
unclassified pixels was equal to 15.8%. As during the iterative
data fusion, the number of unclassified pixels decreases, we
may assume that classes become more reliable (according to
the definition of the Section IV-B).

Fig. 8(a) and (b) show the classification results respectively
before and after the regularization step. The clusters have
been identified in terms of land cover types, and the classes
representing the same land cover have been coded by the same
label. We note that classification errors within some fields and
at their borders have been reduced by the regularization step.

Fig. 9(a) shows the identification rates of the different land
cover types present in the Orgeval site, provided by unsu-
pervised classifications using respectively the three following
data sets: polarimetric L band AirSAR image (called “L”);
TMS bands 2, 5, 6, and 10 bands (called “O”); and both TMS
bands and AirSAR L band (called “OL”). We clearly see the
improvement in land cover identification due to data fusion.
We note that some land cover types such as forest, wheat and
peas were already well identified using only one of the data
sets (TMS or AirSAR, L band). In fact this land cover types are
the most present on the Orgeval site, since they represent about
65% of the site. The other land cover types are less represented
(see Table II) and thus more difficult to identify in a robust
way as shown by the length of the error bars. Finally, we note
that there are two land cover types: barley and flax, which are
not well identified (their identification rates are respectively
equal to 46 and 56%). In fact, these two land cover types
are well discriminated relative to the other land cover types,
but they are not distinguishable from each other using TMS
and L band AirSAR information. However, we will see, in
the next section, that C band AirSAR can discriminate them
successfully.
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(a) (b)

(c) (d)

(e)

Fig. 9. Comparison of land cover identification rates (%) obtained from classifications using the following data sets: (a) “O,” “L,” and “O+L”; (b) “L,” “C,”
and “L+C”; (c) “O,” “C,” and “O+C”; (d) “O+L,” “L +C,” “O+C,” and “O+L+C”; and (e) “O+C,” “O+Chh,” and “O+Chh+vv.”

D. Comparison between Multiband L–C Classification
and Synergism between Optical and SAR Data

We now aim at comparing data fusion results versus the data
sets used: TMS images, L band AirSAR data, and/or C band
AirSAR data. The classification algorithm used is the same as
described in the previous section. The monosource number
of classes for C band AirSAR was chosen equal to eight.
Fig. 8(c) and (d) show the classification results respectively
using “L C” (polarimetric C band AirSAR image is coded
“C”) and “O C” data sets, with clusters representing the same
land cover coded by the same label.

Fig. 9(b) shows the comparison of land cover identifica-
tion rates computed from classification results respectively
obtained using the three following data sets: “L,” “C,” and

“L C.” Fig. 9(c) shows the comparison for the three data
sets: “O,” “C,” and “O C.” As for Fig. 9(a), we clearly see
the improvement due to data fusion. Error bars are lower
than 5% for all the land cover types, except for broad beans,
string beans, and town, for which error bars are about 10 or
20%. Multiband L–C classification results are very good: only
identification rate of string beans is below 85%. From Fig. 9(b)
or (c), we note flax is significantly better identified using C
band SAR data than L band SAR or optical data, then it is
well identified (and barley in the same way) by data fusion
“L C” or “O C.”

Comparing the Fig. 9(a)–(c), we can say that globally best
data fusion results are achieved for “LC,” and “O L”: about
90% of the Orgeval image is identified with a rate greater than
90%, and error bars being inferior to 5%. “OC” provides
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an identification of 80% of the site with a rate greater than
80%, with about the same error bar values. Moreover, the
land cover types which are “not well identified” are different
with “L C” and “O L”: string beans in the first case, and
barley and flax in the second case. So, we suggest improving
land cover identification by combination of the three data sets.

Thanks to the associative property of Dempster–Shafer
combination rule, the data fusion algorithm we propose is
easily applicable to more than two data sets. However, it
is computationally heavy. Fig. 8(e) shows the multisource
“O L C” classification results, and Fig. 9(d) shows a com-
parison between the results obtained by fusion of two among
the three data sets “O,” “L,” and “C,” and the three data sets
(called “O L C”). In latter case, the identification rates are
superior to 95% for all the land cover types (present on the
Orgeval site) but barley and broad beans, whose identification
rates are respectively equal to 92 and 86%. When more data
sets (which are not completely redundant) are used in data
fusion, the quantity of information increases and classification
becomes more precise.

However, there is a need of some comments about the
interpretation of unsupervised classes. In unsupervised clas-
sification, all the classes area priori unknown classes. These
classes are thena posterioriinterpreted (in our case, identified
in terms of land cover types). If one class cannot be interpreted,
it is called an unidentified class, and so are its pixels. In our
case, the class interpretation is done by comparison with test
areas where ground truth is available (see Table II). However,
as ground truth is only known on a subpart of the image,
each time a class is not at all present on test areas, it cannot
be identified. Table IV shows the final number of classes
and the percentage of unidentified pixels (belonging to any
unidentified class) on the different classified images: “C,” “L,”
“O,” “L C,” “O L,” “O C,” and “O L C.” We note that
in the classified image “OL C” the number of unidentified
pixels is greater ( 10%) than in the other classification results
( 5%). This increase of the percentage of unidentified pixels
in the case of data fusion “OL C” is due to both facts that
the final number of classes is slightly greater than in the case
of one-source or two-source classification (as shown in Table
IV), and that ground truth is only known over a subpart of the
image. Being aware of the statistical validity of every class,
the practical conclusion of this comment is that the number of
classes has to be a compromise between accurate detection of
the different land cover types and the percentage of uniden-
tified pixels. This is the reason for which the first strategy in
mass function definition (see Section IV-A) was not chosen.

The last image combination we tried uses TMS and copo-
larized channels C band SAR data. The aim of this study was
the evaluation of the performance (in terms of land cover type
identification) of single band copolarized radar, such as ASAR
(ESA/Envisat) or RadarSAT (the Canadian). The RadarSAT
and ASAR sensors operate both at C band (5.3 GHz), with
a wider range of incidence angles. Their polarization modes
are respectively HH for RadarSAT (single polarization), and
HH and VV for ASAR (dual polarization). Fig. 9(e) shows
the land cover identification rates obtained from classifications
using the three following data sets: “OC,” “O C ” (TMS

TABLE IV
PERCENTAGE OFUNIDENTIFIED PIXELS ON CLASSIFIED IMAGES “C,” “L,” “O,”
“L+C,” “O+L,” “O+C,” “O+L+C,” “O + Vhh+vv,” AND “O + Chh.”

and C band HH polarization AirSAR data which simulate
RadarSAT data) and “OC ” (TMS and C band HH and
VV polarization AirSAR data which simulate ASAR data).
We note that the results are not as good as previously, since
the identification rates of corn, flax and barley are about
20% inferior to those obtained combining full polarimetric
C band data and TMS images. However, the use of radar
data improves land cover identification relative to classification
with optical data alone. This is particularly true for barley,
flax, string beans, and town.

E. Comparison with Other Unsupervised
Data Fusion Methods

In this final section, we compare the data fusion algorithm
presented in this paper with two other unsupervised data fusion
methods:

a) the concatenated vector approach: cluster characteristics
estimation by the fuzzy -means algorithm, followed
by MAP classification, with eight-connectivity Markov
Random Field label image model, is applied as if the
different data sets were collected by the same sensor;

b) the subdivision of the classes detected in the first image
by the classes detected on the second image, which
is equivalent to the initialization of our data fusion
algorithm (Fig. 3).

These unsupervised data fusion methods have been chosen
because they are quite simple, and we only aim at comparing
the efficiency of the proposed unsupervised data fusion method
with more simple data fusion algorithms.

Fig. 10 shows, for each land cover type, the differ-
ence between identification rates obtained a) by
concatenated vector approach and b) by the class subdivi-
sion, and those obtained using data fusion method based on
Dempster–Shafer evidence theory. The legends have the same
meaning as in the previous sections. Negative values indicate
that Dempster–Shafer data fusion performs better and positive
values that it performs worse. Absolute differences less than
five percents are not significant. From both Fig. 10(a) and
(b), we note the global improvement due to Dempster–Shafer
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(a)

(b)

Fig. 10. Difference��id(�) between the identification rates of the land
cover types�, obtained (a) by concatenated vector approach and (b) by the
class subdivision, and those obtained using data fusion algorithm of Fig. 3.

data fusion. The improvement depends on the land cover
type considered, the data sets used and the compared data
fusion algorithm, since the concatenated vector and the class
subdivision approaches do not provide the same classification
results. For the land cover types which were already well
discriminate using only one source information (i.e., forest,
wheat, and peas), multisource classifications are equivalent.
For “O L,” Dempster–Shafer method provides a significant
improvement with an identification rate increase of more than
20% for broad beans and town. For “LC,” it performs better
[ about or greater than 20%] than the concatenated
vector approach in identifying barley, flax, and string beans,
and better than the class subdivision approach in case of
corn, barley, and broad beans. For “OC,” greatest differences
between identification rates [ %] are achieved for
barley and flax [Fig. 10(a)], or broad beans and string beans
[Fig. 10(b)].

VI. CONCLUSION

Data fusion at pixel level could be successfully used for
a better identification of land cover types in remote sensing
applications. Recent works [16], [17] have been proposed for
statistical classification data. They incorporate mucha priori
information about sensors and image acquisition process. Here,
we have described an unsupervised multisource classification
method using Dempster–Shafer evidence theory. The advan-
tage of the latter is to consider not only single classes, but

also unions of classes, and thus to deal with mixed pixels.
In particular, when two classes are indistinguishable by one
sensor, Dempster–Shafer evidence theory provides the option
not to make a decision between these two classes by affecting
a non null mass value to their union. In that case, only the
information provided by the other sensors will be used to
discriminate between the two classes.

In the proposed data fusion algorithm, the final classes to be
considered for data fusion are determined in an unsupervised
way by combining the different monosource sets of classes
and analyzing all the possible intersections. In particular,
indistinguishable classes using only one image information
are detected by comparison with the other image classification
results, and the monosource mass functions are defined forcing
indistinguishable classes and their union to have the same
mass. Then, an iterative process allows to discard invalid
clusters, which may be due either to monosource classification
errors, or to conflicts between the information provided by the
different sources.

In our case, lowest conflict values between images were
observed on forest areas and wheat fields, both land cover
types well identified on every image. Greatest conflict values
were observed at the border of the fields. During the iterative
step of the described data fusion algorithm, the decision rule
was the maximum of belief over single classes under the
constraint that singleton belief be superior to the belief of its
complementary hypothesis. This condition, satisfied by about
80% of the pixels on the data we used, was imposed to insure
of the cluster validity. It also provides an estimation of the
reliability of data fusion classes. The last step consists in
classifying each pixel even the ones that were not used in
the cluster estimation and in smoothing the classified image
through a regularization step.

The performance of classification is studied in terms of
identification of the different land cover types. Comparing
Dempster–Shafer data fusion to two other simple data fusion
methods (the concatenated vector and the class subdivision
approaches), we show that the former generally performs better
(e.g., a 20% improvement in the identification rates for corn
using L and C band data). On the MAC-Europe campaign
data, the best two-data-set fusion results are obtained either
using optical and L band SAR images, or multiband L and
C SAR images. Use of the three data sets (optical, L and C
band polarimetric SAR) provides identification rates greater
than 85% for all the land cover types present on the Orgeval
site. Because this method is unsupervised it is not site specific.
However, the actual identification rates and their improvement
due to the Dempster–Shafer approach, do depend on the site,
the types of land cover and the state of the cultures.
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