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Application of Dempster—Shafer Evidence
Theory to Unsupervised Classification
In Multisource Remote Sensing

Sylvie Le Hegarat-Mascle, Isabelle Bloch, and D. Vidal-Madjar

Abstract—The aim of this paper is to show that Demp- they were measurements from one single sensor [11]. In
ster—Shafer evidence theory may be successfully applied to un-that case, establishing a good model for multisource data is

supervised classification in multisource remote sensing. Demp-he gifficult part. More sophisticated methods of statistical
ster—Shafer formulation allows to consider unions of classes,

and to represent both imprecision and uncertainty, through the multisource classification have been proposed [3], []jO]’ [16],
definition of belief and plausibility functions. These two functions, [17]. However, they require knowledge of a considerable
derived from mass function, are generally chosen in a supervised amount of information on the measurement physics of sensors,
way. In this paper, we describe an unsupervised method, based and their applications are usually supervised.
on the comparison of monosource cIaSS|f|cat|on results, to §e|ept Mathematical theory of evidence was first introduced by
the classes necessary for Dempster—Shafer evidence comblnatlorb in th , dl ded by Shafer 18
and to define their mass functions. Data fusion is then performed, e_mpSter L (_a 1960’s, and later extende ] y _a_er [18].
discarding invalid clusters (e.g., corresponding to conflicting in- This theory, which allows to represent both imprecision and
formation) thank to an iterative process. uncertainty, appears as a more flexible and general approach
Unsupervised multisource classification algorithm is applied to than the Bayesian one. Another of its advantages is its ability

MAC-Europe’91 multisensor airborne campaign data collected 4 qonsider not only single (or individual) classes, but also
over the Orgeval French site. Classification results using different '

combinations of sensors (TMS and AirSAR) or wavelengths (L UN'ONS of class_es. Appl|c§t|ons were developed in med_lcal
and C bands) are compared. Performance of data fusion is imaging [5], object detection [7], [14], and remote sensing
evaluated in terms of identification of land cover types. The classification [12]. However, even if the authors generally
best results are obtained wher_1 aI_I three data sets are used. ynderline the advantages of Dempster—Shafer approach, the
Furthermore, some other combinations of data are tried, and  gy,gieq applications are either theoretical or using small data
their ability to discriminate between the different land cover types . - o
is quantified. sets, and we did nqt find any gpp!matlon of Dempster—Shafer
theory to unsupervised classification problem.
In remote sensing applications, the expected number of
classes may be large, in particular for agricultural areas.
MAGES acquired over the same site by different sensoffierefore, an accurate estimation of the class characteris-
are generally partially redundant, as they represent the sajigg from the training areas is tedious and time consuming.
scene, and partially complementary, since the sensors h¥§reover, even when supervised methods are able to show
different characteristics and physical interaction mechanisfpg existence of priori unknown classes (for instance, by
are different. For many applications of image classificatiftroduction of a rejection class), they are generally unable
problems, the information provided by a single sensor is ifg separate thesa priori unknown classes and to estimate
Complete resulting in misclassification. Fusion with redundameir characteristics. Fina”y, for some app"cationsy such as
data can help reduce imprecision, and fusion with complemefzs MARS project [6], an unsupervised classification is first
tary data can provide a more complete description. In boffarformed to identify image classes. Comparison with ground
cases, classification results should be better. truth is then accomplished. In such a case, the advantage to
Data fusion may be performed at different stages [l§perate in an unsupervised way is that it allows to identify
pixel, feature, and decision level. At decision level, firshe actual feature of each of the supervised classes. Therefore,
monosource classification results are combined in the last steggn, if unsupervised classifications are generally known to
generally in a supervised approach. At pixel level, many dai& more computationally expensive (in particular, they gen-
fusion methods have been proposed. The simplest approgghlly require a greater number of classes) than supervised
is to concatenate the data from the different sensors asgfssifications, there is an interest to develop unsupervised
Manuscript received April 3, 1996; revised September 24, 1996. This wotkchniques. The aim of this paper is to propose a unsupervised
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irmage: | image 2 is said to be uncertain if its probability is not equal to one
(or zero, in which case it is certain to be false). However,
there may be an imprecision on probability measurement (a
[ measurement can be said imprecise if there is a non null error
I R i | s esspmrocssesnmanciascn | bar on its value). A first advantage of Dempster—Shafer evi-

iy I £y { ! dence theory is its ability to deal with ignorance and missing

information. In particular, it provides explicit estimations of

; - imprecision and conflict between information from different

ey hain fnzon - e P
il sources. Indeed, probability theory may be seen as a limit
of Dempster—Shafer evidence theory when it is assumed that

- : there is no imprecision, and that only uncertainty has to be

}:::c; taken into account.

' Another major advantage of Dempster—Shafer theory is it
- can deal with any union of classes. This is particularly useful
to represent “mixed” pixels in classification problems. Besides
the case of mixed pixels due to coarse spatial resolution, mixed
Fig. 1. Three classes example: distinctions between classes in images 1pixels are present in monosource image modeling every time
2. the source is unable to distinguish two classes, suethamnd

Cs in image 1 of the previous example.
were respectively, recorded by AIrSAR [21] and TMS (The- Because of these advantages, we will focus on Demp-
matic Mapper Simulator), both from NASA/JPL. ster—Shafer method in the following sections.

The remainder of the paper is organized as follows. In
Section I, some advantages of Dempster—Shafer approach for
data fusion are presented, and a simple example is introduced
that will be discussed throughout the paper to illustrate how
this theory can be applied to multisource classification. In We denote© the space of hypotheses. In image classifi-
Section Ill, main aspects of the Dempster—Shafer evidence t§ation applications© is the set of hypotheses about pixel
ory are summarized. In Section IV, multisource unsupervisétss. Dempster—Shafer theory allows to consider any subset
classification is discussed. In Section V, classification resulé, ©- In the following, we denot@® the set of the subsets of
using different combinations of sensors or wavelengths, dfe Applied to classification problems, it means that not only
analyzed in terms of land cover identification. Section VI i§ingle classes (also called singletons) but also any union of

—

mage | + 2

I1l. BASIC PRINCIPLES OF
DEMPSTER-SHAFER EVIDENCE THEORY

our conclusion. classes can be represented. In the following, hypotheses about
singletons and hypotheses about unions of classes are respec-
Il. ADVANTAGES OF DEMPSTER-SHAFER tively called simple hypotheses and compound hypotheses.
EVIDENCE THEORY FOR DATA FUSION By extension of the notations of the set theory, inclusion,

_ . . intersection, and union between two hypothedeand B are
Let us first introduce a simple example to illustrate thgefined and denoted as follows:

interest of data fusion: consider the simple case of three classes

Cy, C,, andCs, and two different sourceS! and X2 which for a given eventr: VA € 2°, VB € 2°
are respectively able to distinguisti; from the two other A C B & if Ais true, thenB is true
classes but naf, from C3, andC, from the two other classes (AN B) is trues A is true andB is true
but not C; from Cs. Fig. 1 shows a representation of the (AU B) is true< A is true orB is true.

classes which can be identified in images 1 and 2 (respectively
provided byX! and X?). In this figure, we clearly see thata, Representation of Evidence

complementary information may be used to detect new classesrhe Dempster—Shafer evidence theory provides a repre-

such asCs (see Fig. 1) which was indistinguishable USING e ntation of both imprecision and uncertainty through the

image 1 (e.g., Fig. 4 in the application of Section V) alon§. g ioh ot two functions: plausibilityPls) and belief Bel),
or image 2 (e.g., Fig. 5) alone, or to obtain a nonamb|guou§1. . : . :
2 ) which are both derived from a mass functian){ m is defined

description of the targets when data collected by a single sensor o

i S : - or every elementd of 2%, such that the mass valua(A)
fail to discriminate between two particular targets of interest. .

. . : elongs to the [0, 1] interval and

The three main numerical approaches to data fusion are the
probabilistic methods, fuzzy set theory, and Dempster—Shafer m(p)=0
evidence theory. The main advantage of fuzzy fusion approach m: o 1)
; . L E m(Ad) =1
is that the fuzzy set framework provides a lot of combination
operators, which allows the user to adapt the fusion scheme to
the specificity of the data at hand. However, to our knowledgehere (i is the empty set.
the operators are always selected in a supervised way. When the mass affected to a compound hypothdsis B

The main limitation of Bayesian inference is that it cannas nonzero, it means that we have an option not to make the

model imprecision about uncertainty measurement. An evetgcision between or B but rather leave the pixel in théUB

Ag2@
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class. In particular, assigning a non null mas$tallows to when K is equal to 1. In this case, the sources are said to be
not classify some pixels, for which there is a global ignorancttally or flatly contradictory, and it is no longer possible to
The belief and plausibility functions, derived from, are combine them.

respectively defined fro2® to [0, 1]: More details about Dempster—Shafer algebraic properties
can be found in [9]. In particular, it is shown that the Demp-
Bel(4) = Z m(B) (2) ster's rule of combination is commutative and associative.
BCA
Pls(A) = Z m(B). 3) C. Decision Making
BnAz£) Having computed the mass, plausibility and belief values

for each simple and compound hypothesis of the multisource
These two functions, which have been sometimes referrednbmdel, we need a criterion, which is called “decision rule,” to
as lower and upper probability functions, have the followindecide which hypothesis is the more ‘“realistic.” Nowadays,

properties: the choice of this criterion remains application dependent.
The three most popular decision rules are ([9], [18]): 1)

Bel(A) < Pls(A) (4) maximum of plausibility, 2) maximum of belief, and 3)

{Pls(A) - Bel(A) maximum of belief without overlapping of belief intervals.
(5) Rule 1) is judged as the best by some authors [2]; maximum

_ _ o belief over the simple hypotheses is the most used; rule
where A is the complementary hypothesis of AU A =©  3) called absolute decision rule, is very strict. Other rules
andAnA = 0. such asmax {Bel(A) + Pls(A)} [which may also be written

In the case of Bayes theory, uncertainty about an eventyjgx {Bel(A) — Bel(A)}] are compromises.
measured by a single value (probability) and imprecision about

uncertainty measurement is assumed to be null. In the case

of Dempster—Shafer theory, the belief value of hypothesis IV. APPLICATION TO UNSUPERVISED

may be interpreted as the minimum uncertainty value about MULTISOURCE CLASSIFICATION

A, and its plausibility value, which is also the “unbelief”

value of the complementary hypothesis[see (5)], may be A. Mass Function Definition

interpreted as the maximum uncertainty value Af Thus, There is no general answer to the problem of the mass

uncertainty aboul is represented by the values of the intervg{, +(ion definition. In image processing, the most widely used
[Bel(4), PIS(A),]' Wh,'Ch,'S caIIed'the belief interval” and mass functions are directly derived, at the pixel level, from the
the length of this belief interval gives a measurement of thehapjiities [12], [14], or from the distance to class centers
imprecision about the uncertainty value. [5]. In most cases, no other compound hypothesis ®Lis
considered. This approach may be well adapted in cases where
the information from the different sources is mainly redundant
) (same classes in the images), and data fusion is only used to
Dempster—Shafer theory provides a method to combiggnfirm the decision taken from the data of a single source.
the previous measures of evidence of different sources.|fre we consider the case where the information provided by
m; is the basic probabllhty .aSS|gnment provided by SourGfe different sources is mainly complementary.
X1 < i < p), the combinationm = my & --- @ mp, alS0  Fjrgt we consider the example (presented in Section Il and
called orthogonal sum, is defined, according to the Dempstep’%_ 1) of three classe€), C,, and C5. The hypotheses to

B. Evidence Combination

combination rule [18], by be considered in Dempster—Shafer formulation dréwvhose
) mass is null, according to (1), and therefore, it is no longer
m(()) =0 considered), simple hypothesé&s; (for notation convenience,
> [ mi(B:) we denoteC; the hypothesis about the membership of a pixel
if K #1, m(A) = Bin--NBp=A1<i<p (©) to classC;), Co, C5, and compound hypothese€ U Cs,
1-K CLUCs, CoUC3, 0 =CUC,UCs.
where K — Z H m;(B;). @) If there is no ambiguity between two classes (i.e., we assume
BuneB,=p1Zi<p there is no ignorance about these two classes), affecting a null

\

mass to their union seems relevant. Conversely, when two
classes’; andC; are not distinguishable by a sensor, it seems
asonable to give a non null mass to their unigmn C;. For

e choice of the mass functions 6%, and C;, two basic
&trategies may be chosen:

From (7), we see thak(K € [0, 1]) represents the mass
which would be assigned to the empty set, after combinatiJﬁ
in the absence of normalization [division by ¢ K) in t
(6)]. Thus, K is often interpreted as a measure of confli
between the different sources and it is introduced in (6) ase affecting a null mass to these two classes(C;) =

a normalization factor. The largdk is (with 0 < K < 1), m(C;) = 0, andm(C; U C;) # 0;

the more the sources are conflicting and the less sense has affecting the same mass to these two classes and to their
their combination. Finally, the orthogonal sum does not exist union: m(C;) = m(C;) = m(C; U C;) # 0.
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The former assumes that the ignorance about the membamion between clusters of the image frah. Then, for each
ship of a pixel toC; or C; is total. In the latter, the mass ispixel =,, we define the non null mass functions as follows:
arbitrary distributed among?z, C; and a part of the ignorance
represented byn(C; U C}). Therefore the second strateg)F
is intermediate between the model of total ignorance about H =4, N B; such thatd; N B; #

or simple hypotheses:

C; or C; relative to C; U C; and the Bayesian modeling, ma(H) = ma(A;) = Dals/A)
where ignorance is assumed to be nul{C; U C;) = 0, alviy o iass Z,
m(C;) = m(C;) # 0. In this paper, we consider the second (¢./B;) (102)
mass assignment strategy, because experimental results (on mp(H) = my,(B;) = 2 .
our data) show that, in case of the first strategy, the final b
number of classes (see Section IV-C) is about 50; therefof®r compound hypotheses ¢ 2 or m > 2):
the interpretatien of the results.is tedious, or impossible for H=AiN(By U---UBy,) such that
the classes which do not have pixels located in the area where ! o
ground truth is known. AiN By, #0,7 €1, n]
Finally, the mass functions are normalized such that: ma(H) = ma(A4;) = Pa(®s/4:)
> acem(A) =1 (1). So, in the case of the example shown 2 2 Zy (10b)
on Fig. 1, we define the mass functions as in [5]: my, (H) =0
( ) ( ) ( ) HI(AIIU---UAIM)QB]' such that
mi(CitUCy)=m(CiUC3) =m1(0) =0 ) r
m;(C2) = my(C3) =my(C2UC3) =t (8) A0 B; 70, € 1 m]
my (Cr) =1-3t () =0 B;)  (10c)
m2(01U02) Imz(CQUC;),) Imz(@) =0 mb(H) :mb(Bj) = pb(w}ijj)
22%23 ; Ilnf(g%) = malCiuC) =u ®) otherwise m,(H) = mp(H) =0

where Py (x,/A;) [resp.py(zs/B;)] is the conditional prob-
wheret € [0, 1] andu € [0, )] have been determined forability for pixel z, to belong to clusterd; in image 1 (resp.
each pixel during learning process. cluster B; in image 2);Z, and Z, are normalization terms

This example is very simple as we knawpriori informa- such thatYm, = 1 andZm;, = 1 (1). If we denoten; (resp.
tion about the class discrimination by the two sources. In cagg) the number of non null intersections betweénand B;,
of unsupervised classification, we do not know the classes, 1jo¢ [1, c,], (resp: € [1, ¢1]), there aré ", C* hypotheses
the ability of the sources to recognize them. having a mass value equal t,(X/A; )/Z [Where Ck.

In the case of unsupervised classification, the two claSgesis the number of combinations of elements amongzZ
andC3, 5 (resp.C3 andClug) would be detected on image 1C* = n,;!/k!(n;—k)!]. Finally, since} "2, Ck = (27 -1),
(resp. 2). AsCE NC2 would be empty, the simple hypothesesve have
to be considered would beZl N CZ 5, Ci,3 N C3, and c
C33 N C? 5, which are easily identified a6;, Cs, and Cs. Zo = Z {(2" = 1) X pq (xs/As)} (11a)
This example shows a quite simple unsupervised way to define i=
simple hypotheses for Dempster—Shafer data fusion: the set of
singletons we will consider is the set of nonempty intersections Zy =Y {(2% = 1) xpy (x:/B))}. (11b)
between classes of different sources. This definition is based '
on the assumption that the cluster characteristics are reliable\nother way to define mass functions, in the initialization

enough to avoid overlapping between classes, as most of §ip, would be to define the masses as functions of both
clustering algorithms do. probabilities and sizes of the intersections between classes
If we denote{A;, ---, A; } and{Bi, -, B, } the tWwo (provided by respective one-source classifications). In such
respective sets aof; classes in the image from sensot and g case, the sizes of the intersections would be similaa to
¢y classes in the image from senddlt, before data fusion, the priori probabilities in Bayes theory. However, on our data, we
simple hypotheses which have a non null mass function ar@und that small clusters (and therefore the less represented
land cover types) were penalized, and that classification results
were not as good (in terms of land cover type identification,
as defined in next Section V) as using mass functions only
depending on probabilities.

{Ai N B, such that4; N B; # 0,i¢€ [1, Cl], JE [1, CQ]}.
The set of compound hypotheses is:

{(All U..-u Alm) N (Bk1 U...u Bkn) such that

B. Combination and Decision
Alg N Bkj 7& (2)7 lz S [17 cl]7 kj € [17 62]}- . i i
The mass functions are combined according to the orthogo-
As we assume that there are no ambiguities between clusteat sum defined by Dempster—Shafer (6). Table | summarizes
discriminated by sensdt?, i € {a, b}, we affect a null mass the results obtained with the example of three clagses’s,

function m; to every compound hypothesis which represengndC; (Fig. 1). We note that, as all the compound hypotheses
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Mass AND BELIEF COMBINATION RESULTS FORTEAXEI\I;PELEI oF Fic. L, witH 1 — K = 2(t 4+ u — 4.t.u).
A Cy Cy C3 CuC, | GGuCs | CuCy o)
mj(A) 1-3t t t 0 0 t 0
mp(A) u 1-3u u 0 u 0 0
my | 2020 | 2030 | ata || g

have a null mass after combination, Bel andPls functions In a first step we choose the following decision rule:

are equal, thus the belief interval reduces to zero: there is no . —
longer imprecision after data combination. max [Bel(4)],  if Bel(4) > Bel(4) (13)

In case of unsupervised data fusion, the combined masger singleton classes. If there is no class satisfying this
functions of simple hypothese$N.B;, such thatd;NB; # 0,  condition, the pixel is said “unclassified.”
are proportional to the sum of the produnts (4, ). mp(H2),  This rule, which may seem severe, has been chosen to con-
where m; is the mass function of the image acquired byjger only pixels which can be classified with a large amount
sensory’, i € {a, b}, and H; and H; are two hypotheses of confidence in the unsupervised multisource classification
such thatd; N Hy = A; N B;. From (10a) and (10b), the gescribed in next section. To illustrate the meaning of this
only hypotheses; which have a non null massi,(H,) are decision rule, let us assume that the image has to be classified
either A; N B;, or Hy = A; N (B; U By, U---U By, ) such  (according to the maximum of belief decision criterion) in two
that vl < m < n, 4; N By, # 0. Then, all hypotheses classesd and A, whereA represents any other class or union
H, (having a non null mass) have the same mass valgfclasses thant. One pixel satisfying (13) would be labeled
ma(A; N Bj) = pa(xs/Ai)/Z,e. A similar reasoning may be « 4 rather than “not4.” In such a case, we may assume that,
used forH; and my(Hz). if a new classB, intermediate between two classes included in

The normalization constark’ is the sum of the products 1 is now taken into account, the pixel would not change its
m, (Hy). mp(Hz) with H; and H; such that; N Hy = 0. |apel from “A” to “ B,” therefore, the clas is said “reliable.”
If we only consider hypotheses which have non null mass

m,(Hy) and my,(H2), H and H, are such thatd; = ¢ ynsupervised Multisource Classification Algorithm
A;N(By, U---UBy, ) andHy = (A, U---UA; )NB;. Then, L , ,
the condition forH, N Hy = 0 is eitheri # 1,, ¥1 < p < m, The initial set of singleton classes, considered for data fu-

orj #k,V1<p<n sion, is the set of non empty intersections between monosource
Finallyp7n< and n»_having the same meaning as in th&lasses. However, some of these singleton classes may be
’ (2 7

previous section, the combined massAfn B; is empty (or contain only very few pixels) after Dempster—Shafer
! combination. There are two main reasons for this.

m(4; N B;) = m,(4; N B;) X mp(4; N By) « There may be some non empty class intersections due
1-K only to classification errors in monosource classification.
x {1+ @Y -1+ (2v 1 =1) In this case of “false” intersection, if the ill-classified
+@vTt oYl -1))  (12a) pixels are sufficiently well recognized by the other sensor,
classification errors will disappear after data fusion and
where the singleton class due to this false intersection may be
empty.
K= Y ma(ANB;)xmy(4;NBy) « Even if there is no monosource classification error, there
AiNB;#0 may some pixels which are classified in clagsin image
x {27t =) x (W =) 4 (2M T = 1) 1, and to clasC, in the image 2, and which will be
x 2L gl (omml 1)) (12b) classified neither in clas§’ nor in classCs, (nor in the
union) after data fusion. This is the case in the simple
and all compound hypotheses have null resulting mass. example of Fig. 1, it =« = %; if the decision criterion

In the case where the mass functions of simple hypotheses is the maximum of belief over simple hypotheses, the
are never null (derived from Gaussian probabilities for exam-  pixel will be labeledC; sinceBel(C} ) = Bel(C;) = 2,
ple), a decision rule such as the maximum of belief over all and Bel(C3) = ﬁ (cf. Table 1); and, if the decision
hypotheses will always favor compound hypotheses. In this criterion is the maximum of belief over all hypotheses
case, we prefer a decision rule taken over simple hypotheses. exceptO, the pixel will be classified i€®; UC3 or CoUCs
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rather than iCy UC, [Bel(C; UCs) = Bel(CLUCs) = e A B e e
31 _ 26 r
140 Be].(01 U 02) = 1al 0.8t C3 1 0.8; C3
When a singleton class (defined as intersection between two : C, o C,
monosource classes) is empty after data fusion, it is discarded" 0-6¢ T g6t -
as being invalid for the remainder of the classification. In theg ¢4} £ 04l 1
following, we describe an unsupervised iterative method tg" 5 C, - 025 C,
estimate the clusters: 0-21 1 <l !
0) classify images 1 and 2, fine[_Al, -, Ae, b and O o oe o L Qff st
{B1, -+, B.,} the two respective sets of classes 1w, (C,) 1-m,(C,)

in images 1 and 2, and compute the conditional
probabilitiesp, and py;

1) k=0
the data fusion set of*) classes is@*) = {4; N B;,

(@) (b)

V (i, j) such that4; N B; # 0}; 0.8
) k=Fk+1, g

for each pixel: E“ N

a) compute the mass functiomal™ and m;,® (10) - 02
and (11). :

b) computem™® = m{” & m,® (12) and deduce %0 02 04 06 05 1
Bel Cm©)

c) label the pixel according to decision criterion (13); ©

3) for each clasg>; € ©*):

Fig. 2. Decision areas, in case of example of Fig. 1, given by: (a) Bayes

. N Y . . formulation with equal probabilities for indistinguishable classes, (b) Demp-

if there “too few” pixels inC;, suppress it: ster—Shafer formulation with maximum of belief over all simple hypotheses,
{ ok — gk _ {Cz} and (c) Dempster—Shafer formulation with decision criterion given by (13).

c(k) = c(k) -1
called “unclassified” represents the mass values for which the
if ¢ £ k=1, return to 2). criterion of (13) is not satisfied for any class.
As a summary, the only clusters that we propose to consider
are those which have a non null intersection before data fusign Regularization Step and Global Classification Algorithm

combination, and have “enough” pixels after Dempster—Shafer e L
combination. In our case, the threshold for “empty” cIassesThe last step of classification is a regularization step, where

was chosen equal to 1/1000 of the total number of pixel. neighborhood term is introduced to redu_ce classification
On our data, we found that the convergence is achieved afgsfors, particularly errors due to speckle in radar image.
about ten iterations. For this last step, we consider the case of Bayesian mass
The proposed data fusion algorithm allows to consigfnctions: only simple hypotheses are considered, and the
the mixed aspect of some mixed pixels during classificatigh'e® functionsm, Bel, andPls are equal and represent the
process. However, after data fusion, no mixed pixels will Jedyesian probability. , _ . .
observed in the results: since the multisource classification thaf*€ferfing to Geman's modeling [8], the field of the labels is
we describe is unsupervised, the only classes to be considefdP0sed to be Markovian. Here, we consider the case of eight-
are the classes which are distinguishable from the informatiGnnexivity neighborhood with cliques of order one and order
provided by the sources. Therefore, for any pixel which /0. The potential function of one-order clique is deduced
mixed in one monosource modeling, there is another souf8M Bayesian mass functions like in Bayes formulation, and
which will provide the information to lift the ambiguity. the pair-cliques poten.tlall fu_nctlon |s.def|ned according to a
The importance of considering compound hypotheses f@ptts model. The optimization algorithm we used to obtain

evidence estimation is illustrated in Fig 2. Fig. 2(a)—(c) shov)d@ximum a posteriori (MAP) classification is the Iterative

the decision areas, in the case of the example given in Fig.C‘lgnditionaI ques (ICM), a simpler and faster version of
Geman’s algorithm [8].

for the following three data fusion models: Bayes formu o . )
lation with equal probabilities for indistinguishable classes AS Summary, the global classification algorithm we will use

[Fig. 2(a)], Dempster—Shafer formulation with maximum off@s the following three steps:
belief over all simple hypotheses [Fig. 2(b)], and with the * initialization step: unsupervised Bayesian classification of
decision criterion given by (13) [Fig. 2(c)]. The decision areas €ach data set alone, and initialization of Dempster—Shafer

are represented versug £ m;(C1)] and [I — my(Cy)]. data fusion;
We clearly see that not considering compound hypotheses Dempster—Shafer data fusion with iterative determination
disadvantages class; relative to classe€’; and Cs. This of the set of valid clusters;

is due to the impossibility to identify’s using either image * regularization step and final classification.
1 alone or image 2 alone. On Fig. 2(c), the decision areaFig. 3 shows a synoptic of this algorithm.
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first data set second data set

S = (hh Vh), where, inij, j denotes the antenna polarization

hv vv

in transmission, and the antenna polarization in reception
[20]. In this paper, we consider the polarimetric feature vector
proposed by E. Rignot [15]:

§ FCM clustering FCM clustering
g + +
= Bayes classification Bayes classification 10.1og;¢ (<|hh|2>)
N
= 10.logyq ({|vv
= =
= — Xr = | 10.1og,o (|(hh. w*)|) (14)
class intersections: 10
DS's initialization ——— . arg ({hh. vw*
a0y e (hhwe)
i where ( ) means averaged value over ax77 window. The
| Dempster-Shafer main advantage of operating in the log domain is to make the
é‘ g " | classification image speckle have the characteristics of an additive noise.
o § We assume that the distribution of the polarimetric feature
ki 2 vectorx, conditionally to a classis a multi-variate Gaussian:
b
™| elimination of )
"empty" classes T p(xx|€ =1)
1 1 t -1
= ————exp < —= (X — Vi) . W (X — Vi
s e g O W G- )
————————— (15)
g ICM _ _
2 where £ is x, label, v; the ith cluster centerWV; is the
% X, Covariance matrix of clustet, |W;| its determinant. This
§ assumption is verified posteriorifrom clustering results, with
3, a Kolmogorov—-Smirnov test at a level of significance equal to
g classified image 0.95. Then, based on the knowledgexgfstatistical behavior,

the concatenated vector approach is suitable for classification
of one band AirSAR image, and then there is no need to
apply Dempster—Shafer combination rule, which implies heavy
V. EXPERIMENTAL RESULTS calculations.

. . For the optical/infrared TMS data, the considered feature
The data were collected during the MAC-Europe campaig tor is

(Summer 1991) over the French Orgeval site [13]. The area

Fig. 3. Global data fusion algorithm.

covered by the Orgeval site is aboutx88 km?, and the test (10)
site is rather flat (the global variation in level is less than 40 m). z(2)
The Orgeval basin is mainly an agricultural area surrounded Xo = z(3) (16)
by forests and containing villages. z(6)

Radar data were acquired with the NASA/JPL Aircraft
SAR, three frequencies (P, L, and C bands) and full quagiere (i) is the pixel value in band (i € [10, 2, 5, 6]).
polarization, on two days, June 15 and July 16. Opticghese four components have a common dynamic range of
data were collected with the NASA/JPL Thematic Mapperss. Wwe assume that, follows a multi-variate Gaussian
Simulator (12 bands), on July 5 and July 29. In this papedistribution conditionally to the clusters, and the concatenated
we only report results corresponding to the AiIrSAR imaggector approach is convenient for optical data classification.
of July 16, with incidence angle centered at°4@nd the  The radar spatial resolution, before and after averaging, and
July 29 Thematic Mapper Simulator (TMS) images in Zpptical pixel size are, respectively, about 12, 36, and 25 m.
5, 6 (optical wavelengths, respectively, comprised betweghe optical images have been projected in the radar geometry.
0.45-0.52, 0.63-0.69, and 0.69-0.,i6) and 10 (infra-red, Projection has been done by selecting the same reference
A € [2.08-2.35 pm]) bands. The last ones were selectegoints in the two images, and approximating the distortion
because they present best contrast and greatest complerhefween the images by a polynomial of degree equal to three
tarity, measured in terms of conditional entropy as defined pir 75 reference points). Thus, the mean error was equal to
Shannon in his mathematical theory of information [19].  1.962 (pixels) for the lines and 1.467 for the columns. Figs. 4

) and 5 show, respectively, the L band AIrSAR VV power

A. AIrSAR and TMS Image Models image, and the TMS image (band 10), after projection on to the

The polarimetric scattering properties of targets and backirSAR image geometry. In the two cases, the image size is
ground clutters are described by the complex scattering mateigual to 700 lines by 700 columns (representing about 9km
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L band AirSAR VWV power

TABLE I
PERCENTAGE OF THEDIFFERENT LAND CoOVER TYPES
PRESENT OVER THE ORGEVAL SITE, NUMBER OF TEST AREAS

1025

land cover type | percentage over number of test total number of
the site arcas test pixels

forest =15 9 5229

wheat =30 30 7524

peas =23 26 4167

corn =9.5 12 2007

barley =6.5 7 1170

flax =2.0 8 1224
broad beans =5.5 6 693
string beans ~1.5 4 290

Fig. 4. L band AirSAR VV power image.

fown =7.0 3 432

TMS, band 10

types. However, we consider that the detection of a land cover
type represented by more than one cluster is not hindered, since
the clusters may be merged after the supervised interpretation
process. According to these considerations, we propose a
new classification performance criterion, called “identification
rate”:

For each land cover type, the identification rate; («) is
defined by

Tia(r) = 100. Z pl&/k=r).plk=r/&) (A7)

whereé; is the pixel label taking its value in the setotlasses,
andp(¢;/k) is the conditional probability of labed; knowing

L Ahee . land cover typek. According to this definition, the detection
Fig. 5. TMS image (band 10), after projection in the AirSAR image geomand identification of a land cover type is only penalized by
etry. the fact that it is represented by one or several clusters also
representing other land cover types.

For example, let us consider the case of four different land
cover types.si, ko, k3, k4, and four classesty, &, &3, &4.

Here, we focus on the problem of land cover type identificget us assume that classification results provide the confusion
tion. Table Il shows the different land cover types present @fatrices shown in Table Ill: Table Ili(a) shows the distribution
the Orgeval site and an estimation of their percentage over {ii¢ percentage of pixels) of a given land cover typg for
site, obtained from supervised classification result on AirSAR¢ [1, 4], in the different classes, and Table lli(b) shows
L and C bands polarimetric SAR images. The land cover typgse distribution (in percentage of pixels) of a given class
which are the most present on the site (they represent abgutfor i € [1, 4], in the different land cover types. Thus,
65% of the site) are: forest, wheat, and peas. Some other ladording to (17), the identification rates argx;) = 100%,
cover types such as flax, and beans are very poorly represenigf«,) = 50%, Tiq(x3) = 41%, andr;q(rky) = 9%.

The averaged size of the fields is about 200 pixels (about 3These results are in agreement with the intuitive interpre-
hectares), except for flax, broad beans, and string beans, tiafon of Table Ill. The land cover type; will be, after
which it is about 100 (about 1.5 hectares). classification, completely identified;, will only be half-

In the case of unsupervised classification, the number détected; ands, will be very poorly discriminated, since
clusters may be different from the numberapriori known the class §3) which mainly represents it (at 90%) is in fact
land cover types. Particularly, we found (from superviseshainly (at 95%) representing other land cover types 4dnd
analysis of the polarimetric characteristics of the different lanet). The advantage of classification result representation in
cover types) that there may great differences, due to differaatms of land cover type identification rate is the easiness of
states of maturity, in target characteristics between differenterpretation (in case where we do not want to penalize land
fields of a same land cover type. Clearly, in such a case, tt@ver represented by more than one class). However, in case
number of image clusters is greater than the number of cultwkill-discrimination of a land cover type, identification rates

B. Land Cover ldentification Rate Criterion
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TABLE 11l
ExAaMPLE OF DISTRIBUTION (IN PERCENTAGE OF PIXELS) OF (a) A GIVEN LAND COVER TYPE Ky IN
Four DIFFERENT CLASSES AND (b) A GIVEN CLASS &, IN FOUR DIFFERENT LAND CoOVER TYPES

& 2 &3 Eq K1 K2 K3 K4
L9 25% | 75% 0 0 i 100 % 0 0 0
Lv) 0 0 0% | 10% & 100 % 0 4] 0
K3 0 0 90% | 10% &3 0 50% | 45% 5%
K4 0 0 90% | 10% &4 0 50 % 5% 45 %

(@) (b)

Fig. 6. Conflict image (with dynamic range between 0-255) of multisourdéig. 7. Binary image of classified (coded in white) and unclassified (coded
classification between TMS and AirSAR L band images. in black) pixels, according to criterion given by (13).

do not provide information about the other land cover type(sed for monosource classification are supervised parameters
with which it is confused. To access this information, we havaf the proposed data fusion algorithm. It was applied with
to refer to the confusion matrices. monosource numbers of classes taking any values between six
Identification rates are evaluated from test areas wheard 16. The input to data fusion is the output of monosource
ground truth is available. The number of test areas and tblassifications; then, if one of the two monosource numbers
total number of test pixels for each of the different land covesf classes is too small (i.e., if monosource information is to
types are shown in Table Il. We note that, as there are lgasich simplified), the data fusion will not perform optimally.
test areas in case of broad beans, string beans, and to@n,the other hand, when the monosource numbers of classes
the identification rate values of these land cover types wike both large enough, the final data fusion result becomes
be less reliable. The confidence intervals of the |dent|flcat|@ﬁab|e (equiva|ent number of C|asse5, classification resu]tsy
rate values have been evaluated in the following way: fodfd identification rates). In summary, thanks to the iterative
identification rate values have been computed consideripghcess, the described data fusion algorithm is not sensitive
only one test-pixel (pixel belonging to a test area) out Qbxcept on computational requirements) to the monosource
four, the confidence interval is then defined as the differenggmpers of classes, provided that they are both large enough.
b_etween maximum and minimum values obtained_for the_foH{ case of synergism between TMS and L band AirSAR data,
different sets of the test-pixels. In the next sections, Fig.{fle identification rates (of the different land cover types) and

will show the identification rates of the Orgeval land covel,a final number of classes become stable for monosource
types after data fusion between different data sets; the sym

. : e . Hhve been chosen to be both equal to 11: smaller numbers of
and maximum vaIues. (of identification rate) obtained bcYIasses lead to noticeably worse classification results (in terms
considering one test-pixel out of four. of land cover identification) and larger numbers of classes do
) ] not improve it.

C. Synergism Between TMS Images and L Band AirSAR Imagg;sily, for each data set, radar and optical, the cluster
Firstly, we only consider TMS images (bands 2, 5, Gharacteristics have been estimated using the fuzmeans
and 10) and L band AirSAR image. The numbers of classalgorithm [4], [15], and the image has been classified accord-
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fonast
whaat
ol
Carn
perlay
flax

orood beans
string beans
Lowen
pmidentified

(d)

Fig. 8. Results of multisource classification (a)+Q,” before the regularization step, (b) “EL,” after the regularization step, (c) “kC,” (d) “O+C,”
and (e) “O+L+C” (clusters representing the same land cover are coded by the same label).

ing to Bayes criterion. Then, the two classified images are putFig. 8(a) and (b) show the classification results respectively
in correspondence and all the non null intersections betwdessfore and after the regularization step. The clusters have
their classes will be considered in the initial set of classes béen identified in terms of land cover types, and the classes
Dempster—Shafer classification: the initial number of clusterspresenting the same land cover have been coded by the same
is equal to 72. The mass functions are computed from mulbel. We note that classification errors within some fields and
variate Gaussian probabilities and combined according to thetheir borders have been reduced by the regularization step.
Dempster’s rule. The final number of clusters is found to be Fig. 9(a) shows the identification rates of the different land
equal to 34. cover types present in the Orgeval site, provided by unsu-
Fig. 6 shows the image of conflict values (12b). The minpervised classifications using respectively the three following
mum, mean, and maximum values of conflict are, respectivetiata sets: polarimetric L band AirSAR image (called “L");
equal to 0.00, 0.49, and 0.72. We note that the conflict is th&S bands 2, 5, 6, and 10 bands (called “O”); and both TMS
lowest for forest areas. Most wheat fields present a lower valbands and AirSAR L band (called “€EL"). We clearly see the
of conflict than the other fields. In fact, we will see that thismprovement in land cover identification due to data fusion.
land cover type was already well recognized by both radar awée note that some land cover types such as forest, wheat and
optical sensors. We also note that conflict is more importap¢as were already well identified using only one of the data
at the borders of fields. This is probably due to slight errogets (TMS or AirSAR, L band). In fact this land cover types are
in the projection of the optical image in radar geometry. the most present on the Orgeval site, since they represent about
The decision criterion was defined by (13). If there is n65% of the site. The other land cover types are less represented
hypothesis satisfying this criterion, the pixel is said unclasqisee Table II) and thus more difficult to identify in a robust
fied. Fig. 7 shows the binary image of classified (in white) angay as shown by the length of the error bars. Finally, we note
unclassified (in black) pixels. The percentage of unclassifitliat there are two land cover types: barley and flax, which are
pixels is equal to 12.2%. We see that, even if our decisiomot well identified (their identification rates are respectively
criterion was quite strict, only few pixels do not satisfy itequal to 46 and 56%). In fact, these two land cover types
Initially, considering the 72 singleton classes, the number afe well discriminated relative to the other land cover types,
unclassified pixels was equal to 15.8%. As during the iteratibait they are not distinguishable from each other using TMS
data fusion, the number of unclassified pixels decreases, aral L band AirSAR information. However, we will see, in
may assume that classes become more reliable (accordinght next section, that C band AirSAR can discriminate them
the definition of the Section IV-B). successfully.
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Fig. 9. Comparison of land cover identification rates (%) obtained from classifications using the following data sets: (a) “O,” “L,%drd (9 “L,” “C,”
and “L+C”; (c) “O,” “C,” and “O+C"; (d) “O+L,” “L +C,” “O+C,” and “O+L+C"; and (e) “O+C,” “O+Cyp,” and “O4+Cpp4vv.”

D. Comparison between Multiband L—C Classification “L+C.” Fig. 9(c) shows the comparison for the three data

and Synergism between Optical and SAR Data sets: “O,” “C,” and “O+C."” As for Fig. 9(a), we clearly see
We now aim at comparing data fusion results versus the dtrl]:g n'?g(;gfr:"e?;edgi(;ocodagft fuzlsoné Egotr fg?[)sm‘;:je blt(a);vfsr

sets used: TMS images, L band AirSAR data, and/or C ban 0 VEr types, excep '

AirSAR data. The classification algorithm used is the same 249 bea_ns, and town, fo_r. Wh.ICh error bars are about. 10 or
%. Multiband L—C classification results are very good: only

described in the prewoug section. The monosource nu,ml?c?éntification rate of string beans is below 85%. From Fig. 9(b)
of classes for C band AIrSAR was chosen equal to €ighf: ) e note flax is significantly better identified using C
Fig. 8(c) and (d) show the classification results respectivel4nq SAR data than L band SAR or optical data, then it is
using “L4-C” (polarimetric C band AirSAR image is codedyg|| identified (and barley in the same way) by data fusion
“C”) and “O+C” data sets, with clusters representing the samg _ c” or “O+C.”
land cover coded by the same label. Comparing the Fig. 9(a)—(c), we can say that globally best
Fig. 9(b) shows the comparison of land cover identificatata fusion results are achieved fortC,” and “O4L": about
tion rates computed from classification results respectived¥)% of the Orgeval image is identified with a rate greater than
obtained using the three following data sets: “L,” “C,” an®0%, and error bars being inferior to 5%. 4@" provides
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an identification of 80% of the site with a rate greater than TABLE IV

80%. with about the same error bar values. Moreover tH@RCENTAGE OFUNIDENTIFIED PIXELS ON CLASSIFIED IMAGES “C,” “L,” “O,”
' . u . . e L4C"04L,” “O4+C,” “O4+L4+C,” “O + Vihivy,” AND “O 4 Cyy,.”

land cover types which are “not well identified” are different = + + e + Vint + S

with “L+C” and “O+L™ string beans in the first case, and classified image | number of classes | % of unidentified pixels

barley and flax in the second case. So, we suggest improving o

land cover identification by combination of the three data sets. < 8 0.00
Thanks to the associative property of Dempster—Shafer L 16 0.00

combination rule, the data fusion algorithm we propose is "o 17 0.00

easily applicable to more than two data sets. However, it .

is computationally heavy. Fig. 8(e) shows the multisource L+C 31 6.70

“O+L+C" classification results, and Fig. 9(d) shows a com- "O+L" 34 6.60

parison between the results obtained by fusion of two among "O4C" 32 396

the three data sets “O,” “L,” and “C,” and the three data sets ) i

(called “O+L+C"). In latter case, the identification rates are O+LAC 36 9:50

superior to 95% for all the land cover types (present on the "O+Chhivv" 28 6.17

Orgeval site) but barley and broad beans, whose identification “O+Cpy” 29 830

rates are respectively equal to 92 and 86%. When more data
sets (which are not completely redundant) are used in data
fusion, the quantity of information increases and classificatiethd C band HH polarization AirSAR data which simulate
becomes more precise. RadarSAT data) and “®Cy, " (TMS and C band HH and
However, there is a need of some comments about % polarization AirSAR data which simulate ASAR data).
interpretation of unsupervised classes. In unsupervised clag note that the results are not as good as previously, since
sification, all the classes aeepriori unknown classes. Thesethe identification rates of corn, flax and barley are about
classes are themposterioriinterpreted (in our case, identified20% inferior to those obtained combining full polarimetric
in terms of land cover types). If one class cannot be interpretegl,band data and TMS images. However, the use of radar
it is called an unidentified class, and so are its pixels. In odata improves land cover identification relative to classification
case, the class interpretation is done by comparison with testh optical data alone. This is particularly true for barley,
areas where ground truth is available (see Table Il). Howevélax, string beans, and town.
as ground truth is only known on a subpart of the image,
each tim.e. a class is not at all preser_lt on test areas, it can@_otCOmparison with Other Unsupervised
be identified. Table IV shows the final number of classe[§ata Fusion Methods
and the percentage of unidentified pixels (belonging to any o ) . i
unidentified class) on the different classified images: “C,” “L,» In this final section, we compare the data fusion algorithm
“0,” “L +C,” “O+L,” “O+C,” and “O+L+C.” We note that presented in this paper with two other unsupervised data fusion
in the classified image “@L+C” the number of unidentified Methods:
pixels is greater£10%) than in the other classification results @) the concatenated vector approach: cluster characteristics
(~5%). This increase of the percentage of unidentified pixels  estimation by the fuzzy-means algorithm, followed
in the case of data fusion “GL+C” is due to both facts that by MAP classification, with eight-connectivity Markov
the final number of classes is slightly greater than in the case Random Field label image model, is applied as if the
of one-source or two-source classification (as shown in Table different data sets were collected by the same sensor;
IV), and that ground truth is only known over a subpart of the b) the subdivision of the classes detected in the first image
image. Being aware of the statistical validity of every class, by the classes detected on the second image, which
the practical conclusion of this comment is that the number of IS equivalent to the initialization of our data fusion
classes has to be a compromise between accurate detection of algorithm (Fig. 3).
the different land cover types and the percentage of uniden-These unsupervised data fusion methods have been chosen
tified pixels. This is the reason for which the first strategy ibecause they are quite simple, and we only aim at comparing
mass function definition (see Section 1V-A) was not chosenthe efficiency of the proposed unsupervised data fusion method
The last image combination we tried uses TMS and copwith more simple data fusion algorithms.
larized channels C band SAR data. The aim of this study wasFig. 10 shows, for each land cover typge the differ-
the evaluation of the performance (in terms of land cover tymice A7;4(x) between identification rates obtained a) by
identification) of single band copolarized radar, such as ASAd®ncatenated vector approach and b) by the class subdivi-
(ESA/Envisat) or RadarSAT (the Canadian). The RadarSAlon, and those obtained using data fusion method based on
and ASAR sensors operate both at C band (5.3 GHz), widempster—Shafer evidence theory. The legends have the same
a wider range of incidence angles. Their polarization modeseaning as in the previous sections. Negative values indicate
are respectively HH for RadarSAT (single polarization), anithat Dempster—Shafer data fusion performs better and positive
HH and VV for ASAR (dual polarization). Fig. 9(e) showsvalues that it performs worse. Absolute differences less than
the land cover identification rates obtained from classificatiofise percents are not significant. From both Fig. 10(a) and
using the three following data sets: 4@,” “O+Cyy,” (TMS  (b), we note the global improvement due to Dempster—Shafer
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20 also unions of classes, and thus to deal with mixed pixels.
L In particular, when two classes are indistinguishable by one
0 : - sensor, Dempster—Shafer evidence theory provides the option
‘ not to make a decision between these two classes by affecting
g -20 ; P a non null mass value to their union. In that case, only the
2 . information provided by the other sensors will be used to
< 40 p— . discriminate between the two classes.
60 "LaC In the proposed data fusion algorithm, the final classes to be
" o considered for data fusion are determined in an unsupervised
80 i way by combining the different monosource sets of classes
8 § g ¢ ;g 5 35 2§ % and analyzing all the possible intersections. In particular,
¢ % & ¢ F % 5% 3% = indistinguishable classes using only one image information
() are detected by comparison with the other image classification
results, and the monosource mass functions are defined forcing
20 . indistinguishable classes and their union to have the same
0 ! " mass. Then, an iterative process allows to discard invalid
l ¢ clusters, which may be due either to monosource classification
& 20 ! :: errors, or to conflicts between the information provided by the
e " B different sources.
S 40 p— In our case, lowest conflict values between images were
: (L’:z . observed on forest areas and wheat fields, both land cover
L i I ¢ types well identified on every image. Greatest conflict values
: were observed at the border of the fields. During the iterative
80 2 § 2 g & x 739E wE ¢ step of the described data fusion algorithm, the decision rule
g ¥ & 8 F = g2 Es 8 was the maximum of belief over single classes under the

constraint that singleton belief be superior to the belief of its
(b) : . " -
Fig. 10. DifferenceAr;;(x) between the identification rates of the Iandcomplementary hypothesis. This condition, satisfied by about
1g. . T;d(K 0 . . .
cover typesx, obtained (a) by concatenated vector approach and (b) by tﬁgﬁ) of the plxels_o_n the data we U_Sed’ was |m_pos_ed to insure
class subdivision, and those obtained using data fusion algorithm of Fig. ®f the cluster validity. It also provides an estimation of the
reliability of data fusion classes. The last step consists in

classifying each pixel even the ones that were not used in

data fu3|o_n. The improvement depends on the land COMBEL ¢y gter estimation and in smoothing the classified image
type considered, the data sets used and the compared gh a regularization step

fusion algorithm, since the concatenated vector and the clas he performance of classification is studied in terms of
subdivision approaches do not provide the same classificati Bntification of the different land cover types. Comparing

;Igsullts.. For th? land Icover types W.h'fCh were a!readfy w empster—Shafer data fusion to two other simple data fusion
iscriminate using only one source information (i.e., Oresitnethods (the concatenated vector and the class subdivision

wheat, and peas), multisource classifications are equ'valeéﬁproaches),we show that the former generally performs better

_For OtL” DempSter.‘Sh?‘ffer r_nethod provides a significartlé_g_’ a 20% improvement in the identification rates for corn
improvement with an identification rate increase of more th%ing L and C band data). On the MAC-Europe campaign
20% for broad beans and town. Foro#lc," it performs better data, the best two-data-set fusion results are obtained either
[A7;4(x) about or greater than 20%)] than the concatenatgy ing optical and L band SAR images, or multiband L and

vector approach in identifying barley, flax, and string beané1 SAR images. Use of the three data sets (optical, L and C

and Detter than the class subdivision approach in case oty ho|arimetric SAR) provides identification rates greater

gorn, barI%y, a.rf].d bfoad be;ns. Forjio," geatest dr:ffere(r;?es than 85% for all the land cover types present on the Orgeval
etween identification rates\f;y(r) > 20%] are achieved for site. Because this method is unsupervised it is not site specific.

barley and flax [Fig. 10(a)], or broad beans and string beaﬂﬁwever, the actual identification rates and their improvement

[Fig. 10(b)]. due to the Dempster—Shafer approach, do depend on the site,
the types of land cover and the state of the cultures.
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