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Abstract. Bipolarity has not been much exploited in the spatial domain
yet, although it has many features to manage imprecise and incomplete
information that could be interesting in this domain. This paper is a
first step to address this issue, and we propose to define mathematical
morphology operations on bipolar fuzzy sets (or equivalently interval
valued fuzzy sets or intuitionistic fuzzy sets).

1 Introduction

In many domains, it is important to be able to deal with bipolar information [IJ.
Positive information represents what is granted to be possible (for instance be-
cause it has already been observed or experienced), while negative information
represents what is impossible (or forbidden, or surely false). This view is sup-
ported by studies in cognitive psychology (e.g. [2]), which show that two inde-
pendent types of information (positive and negative) are processed separately in
the brain. The intersection of the positive information and the negative informa-
tion has to be empty in order to achieve consistency of the representation, and
their union does not necessarily covers the whole underlying space (i.e. there is
no direct duality between both types of information).

This domain has recently motivated work in several directions. In particu-
lar, fuzzy and possibilistic formalisms for bipolar information have been pro-
posed [1]. Interestingly enough, they are directly linked to intuitionistic fuzzy
sets [3], interval-valued fuzzy sets [4] and vague sets, as shown e.g. in [5/6].

When dealing with spatial information, in image processing or for spatial
reasoning applications, this bipolarity also occurs. For instance, when assessing
the position of an object in space, we may have positive information expressed
as a set of possible places, and negative information expressed as a set of im-
possible places (for instance because they are occupied by other objects). As
another example, let us consider spatial relations. Human beings consider “left”
and “right” as opposite relations. But this does not mean that one of them is
the negation of the other one. The semantics of “opposite” captures a notion of
symmetry rather than a strict complementation. In particular, there may be po-
sitions which are considered neither to the right nor to the left of some reference
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object, thus leaving room for some indetermination [7]. This corresponds to the
idea that the union of positive and negative information does not cover all the
space.

To our knowledge, bipolarity has not been much exploited in the spatial do-
main. The above considerations are the motivation for the present work, which
aims at filling this gap by proposing formal models to manage spatial bipolar
information. Additionally, imprecision has to be included, since it is an impor-
tant feature of spatial information, related either to the objects themselves or to
the spatial relations between them. More specifically, we consider bipolar fuzzy
sets, and propose definitions of mathematical morphology operators (dilation
and erosion) on these representations. To our knowledge, this is a completely
new contribution in the domain of bipolar fuzzy sets.

In Section Bl we recall some definitions on bipolar fuzzy sets. Then we in-
troduce definitions of algebraic dilations and erosions of bipolar fuzzy sets in
Section Bl In the spatial domain, specific forms of these operators, involving a
structuring element, are particularly interesting [8]. They are called morpho-
logical dilation and erosion. Morphological erosion is then defined in Section [l
Two forms of morphological dilations are proposed in Section [B, either based on
duality or on adjunction. Properties are given in Section

2 Preliminaries

Let S be the underlying space (the spatial domain for spatial information pro-
cessing). A bipolar fuzzy set on S is defined by a pair of functions (u,r) such
that Vo € S, u(x) + v(x) < 1. Note that a bipolar fuzzy set is equivalent to an
intuitionistic fuzzy set [3], as shown in [3]. It is also equivalent to an interval-
valued fuzzy set [4], where the interval at each point x is [u(z),1 — v(x)] [5].
Although there has been a lot of discussion about terminology in this domain
recently [BJ9], we use the bipolarity terminology in this paper, for its appropriate
semantics, as explained in our motivation. For each point z, p(x) defines the
degree to which = belongs to the bipolar fuzzy set (positive information) and
v(z) the non-membership degree (negative information). This formalism allows
representing both bipolarity and fuzziness.

Let us consider the set of pairs of numbers (a,b) in [0, 1] such that a +b < 1.
This set is a complete lattice, for the partial order defined as [10]:

(ahbl) j (a27b2) iff aq S as and b1 2 b2. (].)

The greatest element is (1,0) and the smallest element is (0, 1). The supremum
and infimum are respectively defined as:

(al, bl) V (az, bg) = (max(al, az), min(bl, bg)), (2)

(a1, bl) AN (ag, bg) = (H’lin((h7 0,2)7 max(bl, bg)) (3)
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The partial order =< induces a partial order on the set of bipolar fuzzy sets:
(p1,v1) = (po, v2) it Vo € S, p1(z) < po(x) and vy (x) > va(x). (4)

Note that this corresponds to the inclusion on intuitionistic fuzzy sets defined
in [3]. Similarly the supremum and the infimum are equivalent to the intuition-
istic union and intersection.

It follows that, if B denotes the set of bipolar fuzzy sets on S, (B, =) is a
complete lattice.

3 Algebraic Dilation and Erosion of Bipolar Fuzzy Sets

Once we have a complete lattice, it is easy to define algebraic dilations and
erosions on this lattice.

Definition 1. A dilation is an operator 6 from B into B that commutes with
the supremum:

o v) v (1) = (1, v)) vV (1, v)). ()
An erosion is an operator € from B into B that commutes with the infimum:
e((mv) AW v)) = e((p,v)) Ae((W', V). (6)

The following result is useful for proving the next results.

Lemma 1 . L
) = /)y { (o)) = ) )

The following results are directly derived from the properties of complete lat-
tices [T1].

Proposition 1. The following results hold:

— 6 and € are increasing operators;
- 6((0v 1)) = (Oa 1);

- 5((170)) = (170);
— by denoting (pa:, V) the canonical bipolar fuzzy set associated with (p,v) and

v such that (s, v,)(x) = (u(e), v(2)) and Yy € S\ e}, (e, ) (9) = (0,1),
we have (11,0) = \/, (112, v2) and 6((11,v)) =V, 8((pia v2)-

The last result leads to morphological operators in case 6((iy, V) has the same
“shape” everywhere (and is then a bipolar fuzzy structuring element).

Definition 2. A pair of operators (,6) defines an adjunction on (B, =) iff:

V(u,v) € BV, V') € B,8((1,v)) 2 (W',v") & (u,v) Ze((', ) (8)
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Again we can derive a series of results from the properties of complete lattices
and adjunctions.

Proposition 2. If a pair of operators (g,6) defines an adjunction, then the
following results hold:

— 6 18 a dilation and € is an erosion, in the sense of Definition [

— be = Id, where 1d denotes the identity mapping on B;

— Id < eb;

— bebe = b6¢ and €6d = €0, i.e. the composition of a dilation and an erosion
are idempotent operators.

The following representation result also holds.

Proposition 3. If ¢ is an increasing operator, it is an algebraic erosion if and
only if there exists 6 such that (€,6) is an adjunction. The operator 6 is then an
algebraic dilation and can be expressed as:

6((p,v)) = inf{(', ") € B, (n,v) 2 (')} (9)

A similar representation result holds for erosion.

4 Morphological Erosion of Bipolar Fuzzy Sets

We now assume that S is an affine space (or at least a space on which translations
can be defined). The general principle underlying morphological erosions is to
translate the structuring element at every position in space and check if this
translated structuring element is included in the original set [§]. This principle
has also been used in the main extensions of mathematical morphology to fuzzy
sets [T2IT3ITAUTHIT6]. Similarly, defining morphological erosions of bipolar fuzzy
sets, using bipolar fuzzy structuring elements, requires to define a degree of
inclusion between bipolar fuzzy sets. Such inclusion degrees have been proposed
in the context of intuitionistic fuzzy sets in [I7]. With our notations, a degree
of inclusion of a bipolar fuzzy set (u/,v’) in another bipolar fuzzy set (p,v) is

defined as:
inf I((W (2), V' (2)), (u(x), v(2))) (10)

where I is an implication operator. Two types of implication are used in [I7UIg],
one derived from an intuitionistic (or bipolar) t-conorm L, and one derived from
a residuation principle from an intuitionistic t-norm T:

In((a1,b1), (az,02)) = L((b1,a1), (a2, b2)), (11)
Ir((a1,b1), (az,b2)) = sup{(as, bs), T((a1,b1), (a3, b3)) = (az,b2)} (12)

where (a;,b;) are numbers in [0,1] such that a; + b; < 1 and (b;,a;) is the
standard negation of (a;, b;).

Two types of t-norms and t-conorms are considered in [I7] and will be con-
sidered here as well:



Dilation and Erosion of Spatial Bipolar Fuzzy Sets 389

1. operators called t-representable t-norms and t-conorms, which can be ex-
pressed using usual t-norms ¢ and t-conorms 7"

T((a1,b1), (az,b2)) = (t(a1,az),T(b1,b2)), (13)
L((a1,b1), (a2, b2)) = (T'(a1, az), t(b1, b2)). (14)

2. Lukasiewicz operators, which are not t-representable:

Tw((al,bl), (ag,bz)) = (maX(O,al —|—a2—1),min(1,b1+1—a2,b2—|—1—a1)), (15)
J_W((a1,b1), (a27b2)) = (min(l,a1 +1—b27a2—|—1—bl),maX(O,bl—i—bg— ].)) (16)

The two types of implication coincide for the Lukasiewicz operators, as shown
in [10].

Based on these concepts, we can now propose a definition for morphological
erosion.

Definition 3. Let (up,vp) be a bipolar fuzzy structuring element (in B). The
erosion of any (u,v) in B by (up,ve) is defined from an implication I as:

Y2 €8, Eun i) (V) (@) = IE Iy — 2),vp(y — 2)), (1Y), ¥(y)). (A7)

5 Morphological Dilation of Bipolar Fuzzy Sets

Dilation can be defined based on a duality principle or based on the adjunction
property. Both approaches have been developed in the case of fuzzy sets, and the
links between them and the conditions for their equivalence have been proved
in [19]. Similarly we consider both approaches to define morphological dilation
on B.

Dilation by duality. The duality principle states that the dilation is equal to the
complementation of the erosion, by the same structuring element, applied to the
complementation of the original set. Applying this principle to the bipolar fuzzy
sets using a complementation ¢ (typically the standard negation ¢((a, b)) = (b, a))
leads to the following definition of morphological bipolar dilation.

Definition 4. Let (up,vp) be a bipolar fuzzy structuring element. The dilation
of any (p,v) in B by (up,ve) is defined from erosion by duality as:

6(#3,1/3)((“’ V)) = C[g(MB,VB)(C((uvy)))]' (18)

Dilation by adjunction. Let us now consider the adjunction principle, as in the
general algebraic case. An adjunction property can also be expressed between a
bipolar t-norm and the corresponding residual implication as follows:

T((a1,b1), (a3, b3)) = (az,b2) & (as,b3) < I((a1,b1), (az,b2)) (19)

with I((a1,b1), (az,b2)) = sup{(«a, 8),a+ 5 <1, T((a1,b1), (e, 5)) = (az,ba)}.
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Definition 5. Using a residual implication for the erosion for a bipolar t-norm
T, the bipolar fuzzy dilation, adjoint of the erosion, is defined as:

Oz ) (1)) (@) = Inf{ (1, 1) (), (1 ) () =X € m) (W, V) (@)}

= sup T((eB(z —y),ve(z —y)), (1Y), v(y))). (20)

Links between both approaches. It is easy to show that the bipolar Lukasiewicz
operators are adjoint, according to Equation It has been shown in [I7] that
the adjoint operators are all derived from the Lukasiewicz operator, using a
continuous bijective permutation on [0, 1]. Hence equivalence between both ap-
proaches can be achieved only for this class of operators.

6 Properties and Interpretation

Proposition 4. All definitions are consistent: they actually provide bipolar
fuzzy sets of B.

Let us first consider the implication defined from a t-representable bipolar t-
conorm. Then the erosion writes:

Eup.we) (1, 1)) (2) = ylgg L((wp(y — ), up(y — ), (1(y),v(y)))

= ggg(T((yB(y —x), w(y)), tps(y — 2),v(y)))

= (;relgT((VB(y —x), w(y)), Zlelgt(uza(y —x),v(y)))- (21)

This resulting bipolar fuzzy set has a membership function which is exactly the
fuzzy erosion of p by the fuzzy structuring element 1 — vp, according to the
definitions of [I2]. The non-membership function is exactly the dilation of the
fuzzy set v by the fuzzy structuring element pp.

Let us now consider the derived dilation, based on the duality principle. Using
the standard negation, it writes:

S(up v (1)) () = (zggt(uB(m‘ — ), 1(y), LT ((va(r —y),v(v)). (22)

The first term (membership function) is exactly the fuzzy dilation of p by ug,
while the second one (non-membership function) is the fuzzy erosion of v by
1 — vp, according to the definitions of [12].

This observation has a nice interpretation. Let (u, ) represent a spatial bipo-
lar fuzzy set, where p is a positive information for the location of an object for
instance, and v a negative information for this location. A bipolar structuring
element can represent additional imprecision on the location, or additional pos-
sible locations. Dilating (u, ) by this bipolar structuring element amounts to
dilate p by pp, i.e. the positive region is extended by an amount represented by
the positive information encoded in the structuring element. On the contrary,
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the negative information is eroded by the complement of the negative informa-
tion encoded in the structuring element. This corresponds well to what would be
intuitively expected in such situations. A similar interpretation can be provided
for the bipolar fuzzy erosion.

From these expressions it is easy to prove the following result.

Proposition 5. In case the bipolar fuzzy sets are usual fuzzy sets (i.e.v=1—p
and vg = 1 — pup), the definitions lead to the usual definitions of fuzzy dilations
and erosions. Hence they are also compatible with classical morphology in case
W oand pp are crisp.

Let us now consider the implication derived from the Lukasiewicz bipolar oper-
ators (Equations [[H] and [[@]). The erosion and dilation write:

Va € S,€(up,up) (1)) (2) =
;Ielfs(min(l, wy)+1—psly—2z),vely—2)+1—v(y)), max(0,v(y) + pus(y—x) — 1)) =

(inf min(L, u(y)+1-ps(y—2), VB(y—fv)Jrl—V(y)),SlElg max(0, v(y)+us(y—z)—1)),
(23)

Vo € 876(;1.3,1/3)((.“’7 Z/))(LE) =
(sup max(0, u(y) + s (@=y) 1), il min(L, v(y)+1=ps(@—y) ve(@—y)+1-4(y)).
(24)

Proposition 6. If the bipolar fuzzy sets are usual fuzzy sets (i.e. v =1— p and
v = 1—pug), the definitions based on the Lukasiewicz operators are equivalent to
the fuzzy erosion defined as in [12] by the infimum of a t-conorm for the classical
Lukasiewicz t-conorm, and to the fuzzy dilation defined by the supremum of a
t-norm for the classical Lukasiewicz t-norm, respectively.

Proposition 7. The proposed definitions of bipolar fuzzy dilations and erosions
commute respectively with the supremum and the infinum of the lattice (B, <).

O(upwe)((1,v))) and the bipolar fuzzy erosion is anti-extensive (i.e.
Eupwe) (1) = (1,v)) if and only if (us,vB)(0) = (1,0), where 0 is the ori-
gin of the space S (i.e. the origin completely belongs to the structuring element,
without any indetermination).

Proposition 8. The bipolar fuzzy dilation is extensive (i.e. (u,v) =

Note that this condition is equivalent to the conditions on the structuring ele-
ment found in classical and fuzzy morphology to have extensive dilations and
anti-extensive erosions [S/12].

Proposition 9. If the dilation if defined from a t-representable t-norm, the fol-
lowing iterativity property holds:

S wn) Oy i) (15 0))) = 85, (i), 161y (1—0p)) (11, V)). (25)
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7 Conclusion

New concepts on bipolar fuzzy sets are introduced in this paper, in particular
algebraic and morphological dilations and erosions, for which good properties
are proved and nice interpretations in terms of bipolarity in spatial reasoning
can be derived. Further work aims at exploiting these new operations in concrete
problems of spatial reasoning, in particular for handling the bipolarity nature of
some spatial relations.
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