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Abstract. We establish in this paper the link between the two main
approaches for fuzzy mathematical morphology, based on duality with
respect to complementation and on the adjunction property, respectively.
We also prove that the corresponding definitions of fuzzy dilation and
erosion are the most general ones if a set of classical properties is required.

1 Introduction

Extending mathematical morphology to fuzzy sets was addressed by several au-
thors during the last years. Some definitions just consider grey levels as mem-
bership functions, or use binary structuring elements. Here we restrict ourselves
to really fuzzy approaches, where fuzzy sets have to be transformed according to
fuzzy structuring elements. Initial developments can be found in the definition of
fuzzy Minkowski addition [1]. Then this problem has been addressed by several
authors independently, e.g. [2,3,4,5,6,7,8,9]. These works can be divided into two
main approaches. In the first one [2], an important property that is put to the
fore is the duality between erosion and dilation. A second type of approach is
based on the notions of adjunction and fuzzy implication, and was formalized in
[8]. The aim of this paper is twofold. First, we will clarify the links between both
approaches (which are summarized in Section 2) and establish the conditions of
their equivalence (Section 3). Then, in Section 4, we will prove that the defini-
tions of dilation and erosion in these approaches are the most general ones if
we want them to share a set of classical properties with standard mathematical
morphology.

2 Summary of the Two Main Approaches

Let us first briefly recall the two main approaches. Fuzzy sets are defined on a
space S, through their membership functions from S into [0, 1]. The set of fuzzy
sets on S is denoted by F , and ≤ is the partial ordering defined by µ ≤ ν ⇔
∀x ∈ S, µ(x) ≤ ν(x). This defines a lattice (F , ≤).
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2.1 Fuzzy Morphology by Formal Translation Based on t-Norms
and t-Conorms

The first attempts to build fuzzy mathematical morphology were based on trans-
lating binary equations into fuzzy ones, as developed in [2]. This translation is
done term by term, by substituting all crisp expressions by their fuzzy equiva-
lents. For instance, intersection is replaced by a t-norm, union by a t-conorm,
sets by fuzzy set membership functions, etc.

An important property that was put to the fore in this approach is the
duality between erosion and dilation. We consider here morphological dilation
and erosion, i.e. based on a structuring element.

Let εB(X) denote the erosion of the set X by B, defined by x ∈ εB(X) ⇔
Bx ⊆ X , where Bx denotes B translated at point x. The translation of this
expression into fuzzy terms leads to a natural way to define the erosion of a
fuzzy set µ by a fuzzy structuring element ν, as:

∀x ∈ S, εν(µ)(x) = inf
y∈S

T [c(ν(y − x)), µ(y)], (1)

were T is a t-conorm and c a complementation. This corresponds to a degree
of inclusion of ν, translated at x, in µ. The dual of erosion in the crisp case
is δB(X) = (εB̌(Xc))c, where B̌ denotes the symmetrical of B with respect to
the origin. Accordingly, by duality with respect to the complementation c, fuzzy
dilation is then defined by:

∀x ∈ S, δν(µ)(x) = sup
y∈S

t[ν(x − y), µ(y)], (2)

where t is the t-norm associated to the t-conorm T with respect to the com-
plementation c. This definition of dilation corresponds to the translation of the
following set equivalence: x ∈ δB(x) ⇔ B̌x ∩ X �= ∅ ⇔ ∃y ∈ S, y ∈ B̌x ∩ X .
The fuzzy dilation at x is expressed as the degree of intersection of ν translated
at x and µ, which is dual of the degree of inclusion used for the erosion. These
forms of fuzzy dilation and fuzzy erosion are very general, and several definitions
found in the literature appear as particular cases, such as [5,3,10] (see e.g. [2,11]
for a comparison).

Finally, fuzzy opening (respectively fuzzy closing) is simply defined as the
combination of a fuzzy erosion followed by a fuzzy dilation (respectively a fuzzy
dilation followed by a fuzzy erosion), by using dual t-norms and t-conorms.

The detail of properties of these definitions can be found in [2]. Most properties
of classical morphology are satisfied whatever the choice of t and T . But in order to
get true closing and opening, i.e. which are extensive (respectively anti-extensive)
and idempotent, a necessary and sufficient condition on t and T is t[b, T (c(b), a)]
≤ a, which is satisfied for Lukasiewicz t-norm and t-conorm for instance.

2.2 Fuzzy Morphology Using Adjunction and Residual Implications

A second type of approach is based on the notions of adjunction and fuzzy
implication. Here the algebraic framework is the main guideline, which contrasts
with the previous approach where duality was imposed in first place.
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Fuzzy implication is often defined as [12]: Imp(a, b) = T [c(a), b)]. Fuzzy in-
clusion, as used in the previous approach, and therefore fuzzy erosion, is related
to implication by the following equation: I(ν, µ) = infx∈S Imp[ν(x), µ(x)].

This suggests another way to define fuzzy erosion (and dilation), by using
other forms of fuzzy implication. One interesting approach is to use residual
implications: Imp(a, b) = sup{ε ∈ [0, 1], t(a, ε) ≤ b}. This provides the following
expression for the degree of inclusion: I(ν, µ) = infx∈S sup{ε ∈ [0, 1], t(ν(x), ε) ≤
µ(x)}. This definition coincides with the previous one for particular forms of t,
typically Lukasiewicz t-norm.

The derivation of fuzzy morphological operators from residual implication has
been proposed in [4], and then developed e.g. in [7]. One of its main advantages
is that it leads to idempotent fuzzy closing and opening. This approach was
formalized from the algebraic point of view of adjunction in [8]. It has then been
used by other authors, e.g. [9]. This leads to general algebraic fuzzy erosion and
dilation. Let us detail this approach. A fuzzy implication I is a mapping from
[0, 1]× [0, 1] into [0, 1] which is decreasing in the first argument, increasing in the
second one and satisfies I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0. A fuzzy
conjunction is a mapping from [0, 1]× [0, 1] into [0, 1] which is increasing in both
arguments and satisfies C(0, 0) = C(1, 0) = C(0, 1) = 0 and C(1, 1) = 1. If C is
also associative and commutative, it is a t-norm. A pair of operators (I, C) are
said adjoint if:

C(a, b) ≤ c ⇔ b ≤ I(a, c). (3)

The adjoint of a conjunction is a residual implication.
Fuzzy dilation and erosion are then defined as:

∀x ∈ S, δν(µ)(x) = sup
y∈S

C(ν(x − y), µ(y)), (4)

∀x ∈ S, εν(µ)(x) = inf
y∈S

I(ν(y − x), µ(y)). (5)

Note that (I, C) is an adjunction if and only if (εν , δν) is an adjunction on the
lattice (F , ≤) for any ν.

Opening and closing derived from these operations by combination have all
required properties, whatever the choice of C and I. Some properties of dilation,
such as iterativity, require C to be associative and commutative, i.e. a t-norm.
This will be further investigated in Section 4.

3 Links Between Both Approaches

3.1 Dual vs Adjoint Operators

If C is a t-norm, then the dilation in the second approach is exactly the same
as the one obtained in the first approach. To understand further the relation
between both approaches for erosion, we define

Î(a, b) = I(c(a), b).
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Then Î is increasing in both arguments, and if I is further assumed to satisfy
I(a, b) = I(c(b), c(a)) and I(c(I(a, b)), d) = I(a, I(c(b), d)), then Î is commu-
tative and associative, hence a t-conorm. In the following, in order to simplify
notations we simply take c(a) = 1−a which is the most usual complementation,
but the derivations and results hold for any c.

Equation 5 can be rewritten as:

εν(µ)(x) = inf
y∈S

Î(1 − ν(y − x), µ(y)),

which corresponds to the fuzzy erosion of the first approach. The adjunction
property can also be written as:

C(a, b) ≤ c ⇔ b ≤ Î(1 − a, c).

However, pairs of dual t-norms and t-conorms are not identical to pairs of
adjoint operators. Let us take a few examples. For C = min, its adjoint is
I(a, b) = b if b < a, and 1 otherwise (known as Gödel implication). But the
derived Î is the dual of the conjunction defined as C(a, b) = 0 if b ≤ 1 − a and b
otherwise. Conversely, the adjoint of this conjunction is I(a, b) = max(1 − a, b)
(Kleene-Dienes implication), the dual of which is the minimum conjunction.
Lukasiewicz operators C(a, b) = max(0, a+ b− 1) and Î(a, b) = min(1, a+ b) are
both adjoint and dual, which explains the exact correspondence between both
approaches for these operators. Table 1 summarizes the differences between dual
and adjoint operators.

Table 1. A few dual and adjoint operators: dual and adjoint are generally not identical,
except in the case of Lukasiewicz operators (among these examples)

conjunction dual t-conorm adjoint implication I Î

min(a, b) max(a, b)

��
�

b if b < a

1 otherwise
(Gödel)

��
�

b if b < 1 − a

1 otherwise��
�

0 if b ≤ 1 − a

b otherwise

��
�

b if b < 1 − a

1 otherwise
max(1 − a, b) (Kleene-Dienes) max(a, b)

max(0, a + b − 1) min(1, a + b) min(1, 1 − a + b) (Lukasiewicz) min(1, a + b)

3.2 Equivalence Condition

The first main result of this paper is expressed in the following theorem.

Theorem 1. The condition for dual t-norms and t-conorms leading to idempo-
tent opening and closing (i.e. t(b, T (1−b, a)) ≤ a) is equivalent to the adjunction
property between C and I for t = C and T = Î.
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Proof. Let us assume that the adjunction property is satisfied for t = C and
T = Î, i.e.

t(a, b) ≤ c ⇔ b ≤ T (1 − a, c). (6)

Applying this property to the tautology T (1 − b, a) ≤ T (1 − b, a) leads directly
to:

t(b, T (1 − b, a)) ≤ a. (7)
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Fig. 1. Illustration of some morphological operations on a one-dimensional example.
(a) Initial fuzzy set and fuzzy structuring element. (b) Dilations using the minimum,
Lukasiewicz and Kleene-Dienes conjunctions. (c) Erosions using the maximum and
Lukasiewicz t-conorms. (d) Opening using max-min, Lukasiewicz and Kleene-Dienes
operators.



Duality vs Adjunction and General Form 359

Let us now assume that we have the property expressed by Equation 7 for
dual operators. If b ≤ T (1 − a, c), then since t is increasing, we have t(a, b) ≤
t(a, T (1 − a, c)) which is less than c by Eq. 7. This implies t(a, b) ≤ c.

Since t and T are dual, Eq. 7 is equivalent to 1−T (1− b, 1−T (1− b, a)) ≤ a,
and, by exchanging the roles of 1 − a and a and then of a and b, to T (1 −
a, t(a, b)) ≥ b.

Now, if t(a, b) ≤ c, since T is increasing, we have T (1−a, t(a, b)) ≤ T (1−a, c).
Since the first term is greater than b, this implies b ≤ T (1 − a, c). �
This new result completes the link between both approaches by showing that du-
ality and adjunction are generally not compatible, and that in case dual operators
lead to true opening and closing, the condition on these operators is equivalent
to the adjunction property. This means that in case duality and adjunction are
compatible, the two approaches lead exactly to the same definitions.

3.3 Illustrative Example

In order to show the influence of the choice of the conjunctions, t-conorms,
implications, we illustrate a few operations on a one-dimensional example in
Figure 1. Dilation, erosion and opening are performed using different operators.
When using adjoint operators, opening is a “true” opening (i.e. increasing, anti-
extensive and idempotent). It is clear in this figure that when using min and
max for instance, which are dual but not adjoint, opening is not anti-extensive
(it is not idempotent either, but it is increasing). On the contrary, using Kleene-
Dienes adjoint operators, the opening is anti-extensive (Figure 1 d). However,
other properties of erosion and dilation are lost, due to the weaker properties of
the conjunction with respect to the ones of t-norms. These aspects will be further
investigated in Section 4. The results obtained with Lukasiewicz operators are
in this case very close to the original fuzzy set. However, all properties of all
operations hold when using these operators.

4 General Forms of Fuzzy Morphological Dilation and
Erosion

The second main result of this paper establishes the general form of fuzzy dilation
and erosion, in order to satisfy a set of properties. Let δν(µ) be a morphological
dilation. Let us consider the following general form of δ:

δν(µ)(x) = g(f(ν(x − y), µ(y)), y ∈ S), (8)

where f is a mapping from [0, 1] × [0, 1] in [0, 1] and g is a mapping from [0, 1]S

into [0, 1] (the result is then a fuzzy set).

Theorem 2. The compatibility of fuzzy dilation with classical dilation in case
ν is crisp, its increasingness, and the commutativity with the supremum lead to
the only possible form of δ:

δν(µ)(x) = sup
y∈S

t(ν(x − y), µ(y))
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where t is a conjunction. If the commutativity (δν(µ) = δµ(ν)) and iterativity
(δνδν′(µ) = δδν(ν′)(µ)) properties are also required, then t has to be a t-norm.

From this dilation, a unique erosion such that (εν , δν) is an adjunction is
derived:

εν(µ)(x) = inf
y∈S

I(ν(y − x), µ(y)),

where I is the adjoint of t.
If duality is required, Î has to be the dual of t.

Proof. Let g1 be the version of g applying on one variable only. Most results
are derived by considering constant membership functions. Increasingness of δ
implies that g1.f should be increasing in µ and ν. If ν is crisp, the compatibility
with classical dilation implies that ∀a ∈ [0, 1], g1.f(1, a) = a. Therefore g1.f is a
conjunction.

Further properties such as commutativity and iterativity imply g1.f be com-
mutative and associative, respectively, i.e. it should be a t-norm.

It is easy to prove that g1 has to be a bijection (one to one mapping). It follows
that f(1, a) = g−1

1 (a). Let µ′(y) = g−1
1 (µ(y)). The compatibility with classical

morphology implies supy∈S µ(y) = g(g−1
1 (µ(y)), y ∈ S), i.e. supy∈S g1(µ′(y)) =

g(µ′(y), y ∈ S). Therefore δν(µ)(x) = supy∈S g1.f(ν(x − y), µ(y)). From the
properties of t-norms, this form commutes with the supremum.

From a dilation δν , a general result on adjunctions guarantees that there
exists a unique erosion εν such that (εν , δν) is an adjunction, and it is given by:

εν(µ) =
∨

{µ′, δν(µ′) ≤ µ}.

We have the following equivalences, by denoting g1.f = t and I the adjoint of t:

δν(µ′) ≤ µ ⇔ ∀x ∈ S, δν(µ′)(x) ≤ µ(x)
⇔ ∀x, y ∈ S, t(ν(x − y), µ′(y)) ≤ µ(x)
⇔ ∀x, y ∈ S, µ′(y) ≤ I(ν(x − y), µ(x))
⇔ ∀y ∈ S, µ′(y) ≤ inf

x∈S
I(ν(x − y), µ(x))

Since εν is the supremum of µ′ verifying this equation, we have: εν(µ)(y) =
infx∈S I(ν(x − y), µ(x)).

Now, if duality is required between εν and δν with respect to complementa-
tion, it is straightforward to show that t and Î have to be dual operators.

Having both duality and adjunction is possible under the conditions ex-
pressed in Theorem 1. �
In [3], a similar approach was developed for deriving a general form of fuzzy
inclusion (from which fuzzy erosion is derived). Since weaker properties are re-
quired, this approach leads to the use of weak t-norms and t-conorms (they are
not associative and do not admit 1 (respectively 0) as unit element, in gen-
eral). Properties of morphological operators are then weaker (no iterativity can
be expected, no compatibility with classical morphology), and this is therefore
somewhat less interesting from a morphological point of view. Our approach
overcomes these drawbacks.
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5 Conclusion

This paper exhibits the exact conditions to have a convergence between the two
main approaches for fuzzy morphology. Although the underlying principles are
not compatible in general, it is interesting to note that in case they are consis-
tent, then both approaches are equivalent. Furthermore, they provide the most
general forms in order to satisfy a set of reasonable properties as in classical
morphology. These two new results clarify the status of different forms of math-
ematical morphology.
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