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Abstract. A new method that automatically detects and segments
brain tumors in 3D MR images is presented. An initial detection is per-
formed by a fuzzy possibilistic clustering technique and morphological
operations, while a deformable model is used to achieve a precise seg-
mentation. This method has been successfully applied on five 3D images
with tumors of different sizes and different locations, showing that the
combination of region-based and contour-based methods improves the
segmentation of brain tumors.

1 Introduction

Brain tumor segmentation from MR images is a challenging task that involves
various disciplines including medicine, MRI physic, radiologist’s perception, and
image analysis based on intensity and shape. The literature is rich with tech-
niques for segmenting normal brain structures, but many of these methods fail
in the presence of a pathology. Actually the techniques that are intended for
tumors leave significant room for increased automation, applicability and accu-
racy. In brain tumor studies, existence of abnormal tissues is most of the time
easy to detect but accurate and reproducible segmentation and characterization
of abnormalities still remain a challenging task.

Let us briefly summarize existing work, classically divided into region-based
and contour-based methods. In the first class, a tumor segmentation method
using knowledge based and fuzzy techniques was proposed by Clark et al. [2].
This method has two drawbacks. First, it requires multichannel images such
as T1, T2 and PD. Furthermore a training phase prior to segmenting a set of
images is necessary. Other methods are based on statistical pattern recognition
techniques. Kaus et al. [6] have proposed a method for automatic segmenta-
tion of small brain tumors using a statistical classification method and atlas
registration. Moon et al. [9] have also used the EM algorithm and atlas prior
information for automatic tumor segmentation. These methods fail in the case of
large deformations in the brain and they also require multichannel images (T1,
T2, PD and contrast enhanced images) for classification. Prastawa et al. [12]

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 312–318, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



3D Brain Tumor Segmentation 313

consider the tumor as an outlier and use a statistical classification for rough
segmentation and then geometric and spatial constraints for final segmentation.
The fuzzy connectedness method was proposed by Moonis et al. [10] for tumor
segmentation. In this semi-automatic method, the user must select the region of
the tumor. The calculation of connectedness is achieved in this region and the
tumor is delineated in 3D as a fuzzy connected object containing the seed points
of the tumor that were selected by the user. Other methods such as data fusion
[1], atlas based [4] and transformation [13] methods have been developed, with
similar drawbacks.

In contour-based methods, Lefohn et al. [7] have proposed a semi-automatic
method for tumor segmentation by level sets. The user selects the tumor region
and after the deformation process, he adapts the level set parameters. Zhu and
Yang [15] introduce an algorithm using neural networks and a deformable model.
Their method processes each slice separately and is not a real 3D method. Ho
et al. [5] have proposed level set evolution with region competition for tumor
segmentation. Their algorithm uses two images (T1-weighted with and without
contrast agents) and calculates a tumor probability map using classification,
histogram analysis and the difference between the two images, and then this map
is used as the zero level of the level set evolution. The deformable methods suffer
from the difficulty of determining the initial contour, and tuning the parameters.

In this paper we propose a fully-automatic method that is a combination of
region-based and contour-based methods. It does not require any user supervi-
sion, works in 3D and on standard routine T1 aquisitions. It combines a fuzzy
classification method (FPCM) [11], morphological operations and a parametric
deformable model, thus taking advantages of both approaches while cancelling
their drawbacks. The method is detailed in Section 2, and results are presented
in Section 3.

2 Tumor Segmentation Procedure

A preliminary stage consists of brain segmentation. For this purpose, a robust
method using histogram scale-space analysis and morphological operations [8] is
applied. This method first calculates statistical parameters of the main classes
of tissues, which will be used in the classification procedure. After extracting
the brain, the histogram based Fuzzy Possiblistic C-Mean method is used for
rough segmentation of the tumor. This rough segmentation is used as the initial
surface of a deformable model for the final precise tumor segmentation.

2.1 Classification Using FPCM and Morphological Operations

Fuzzy Possibilistic c-Means was introduced by Pal et al. [11] for classification. It
is a combination of Fuzzy c-Means and Possibilistic c-Means algorithms. In data
classification, both membership and typicality are mandatory for data structures
interpretation. FPCM computes these two factors simultaneously. FPCM solves
the noise sensitivity defect of FCM and also overcomes the problem of coincident
clusters of PCM. The objective function of FPCM is:
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Jm,η(U, T, V ;X) =
c∑

i=1

n∑

k=1

(um
ik + tηik)‖Xk − Vi‖2 (1)

where m > 1, η < 1, 0 ≤ uik ≤ 1, 0 ≤ tik ≤ 1,
∑c

i=1 uik = 1, ∀k,
∑n

k=1 tik =
1, ∀i, Xk denotes the characteristics of a point to be classified (here we use grey
levels), Vi is the class center, c the number of classes, n the number of points to
be classified, uik the membership of point Xk to class i, and tik is the possibilistic
typicality value of Xk associated with class i.

In order to detect and label the tumor we use a histogram based FPCM
that is faster than the classical FPCM implementation. Since the process of the
brain extraction provides an estimation of the cerebro spinal fluid (CSF), white
matter (WM) and gray matter (GM) radiometric characteristics, we exploit this
information to overcome the classifical initialization problem, i.e. the algorithm
is initialized with class centers which are very close to the final ones. We classify
the extracted brain into five classes, CSF, WM, GM, tumor and background (at
this study stage we do not consider the edema). To obtain the initial value of the
class centers, we use the results of histogram analysis in the extraction step. We
have used the mean of the CSF, WM and GM (mG , mW and mC) (calculated
in brain extraction step) as the centers of their classes. For background, the
value zero is used. To select the tumor class we assume that the tumor has the
highest intensity among the five classes (this is the case in our study where we
are interested in hyper-intensity pathologies such as full-enhancing tumors).

Several binary morphological operations (opening, erosion, largest component
selection, etc.) are then applied to the tumor region in order to correct misclas-
sification errors. The results of this step for two images are shown in Figure 1.

2.2 Refinement Using a 3D Deformable Model

To obtain an accurate segmentation, a parametric deformable method, that has
been applied successfully in our previous work to segment internal brain struc-
tures [3], is used. The segmentation obtained from the previous processing is
transformed into a triangulation using an isosurface algorithm based on tetra-
hedra and is decimated and converted into a simplex mesh X. The evolution of
the deformable surface X is described by the following dynamic force equation:

γ
∂X
∂t

= Fint(X) + Fext(X) (2)

where Fint is the internal force that specifies the regularity of the surface and
Fext is the external force that drives the surface towards image edges. The chosen
internal force is:

Fint = α∇2X − β∇2(∇2X) (3)

where α and β respectively control the surface tension (prevent it from stretch-
ing) and rigidity (prevent it from bending) and ∇2 is the Laplacian operator. It
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(a) (b) (c) (d)

Fig. 1. Results obtained in the classification step for two 3D images. (a) One axial slice
of extracted brain. (b) Result of FPCM classification. (c) Result of the thresholding.
(d) Result after morphological operations.

is then discretized on the simplex mesh using the finite difference method [14].
In our case, the external force is derived from image edges. It can be written as:

Fext = v(x, y, z) (4)

where v is a Generalized Gradient Vector Flow (GGVF) field introduced by Xu et
al. [14]. A GGVF field v is computed by diffusion of gradient vector of a given edge
map and is defined as the equilibrium solution of the following diffusion equation:

∂v

∂t
= g(‖∇f‖)∇2v − h(‖∇f‖)(v − ∇f) (5)

v(x, y, z, 0) = ∇f(x, y, z) (6)

where f is an edge map and the functions g and h are weighting functions which
can be chosen as follows:

{
g(r) = e−

r
κ

2

h(r) = 1 − g(r)
(7)

To compute the edge map, a linear spatial filtering which is usually associated
to Canny-Deriche edge detector is applied. Our experience shows that the GGVF
is not sensitive to parameter k and we set it to k = 0.05 for all cases. The
parameters involved in Fint were set to α = 0.25 and β = 0.0. Again the same
parameters were used for all tests.
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(a) (b) (c) (d)

Fig. 2. Results obtained on four 3D images (obtained with the same parameters).
(a) One axial slice of the original 3D image. (b) Result of the extracted brain and
classification. (c) Final contour, superimposed on the axial slice. (d) Final contour,
superimposed on a sagittal slice.
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Fig. 3. Results obtained on one 3D image (256 × 256 × 22 voxels and obtained with
the same parameters). (a) One axial slice of the original 3D image. (b) Result of the
extracted brain and classification. (c) Final contour, superimposed on the axial slice.
(d) Final contour, superimposed on a sagittal slice.

3 Results and Conclusion

We applied our algorithm to five different real 3D T1-weighted MR images (256×
256 × 124 voxels and 256 × 256 × 22 voxels). They exhibit tumors with different
sizes and at different locations. We obtained good results for the five datasets
without changing any parameter. The segmentation results of five datasets are
shown in Figures 2 and 3.

We developed a hybrid algorithm using contour-based and region-based meth-
ods to segment brain tumors in 3D MR images. It exploits the advantages of
fuzzy classification for automating the algorithm and the good quality segmenta-
tion result of deformable models to improve the segmentation. This is achieved
by combining the FPCM classification method, morphological operations and
a parametric 3D deformable model. Application on several datasets with dif-
ferent tumor sizes and different locations shows that this method works auto-
matically with high quality of segmentation, and is robust to inter-individual
variability for the all types of fully enhancing tumors. More tests are however
necessary to further validate the approach. For quantitative evaluation of the
results of segmentation, unfortunately there are not any standard images or
methods. One way consists in comparing the results with manual segmenta-
tions. We are preparing these images for further evaluations with the help of
medical experts.

Future work aims at assessing spatial relations to other structures around the
tumor. Also we are extending this method for detecting several tumors in the
brain and segmenting the edema.

Acknowledgments. We would like to thank Professor Desgeorges at Val-de-Grâce
hospital for providing the images and his medical expertise. The image used in
Figure 3 was provided by the Center for Morphometric Analysis at Massachusetts
General Hospital and is available at http://www.cma.mgh.harvard.edu/ibsr/.
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