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ABSTRACT

In this paper we propose a method to classify masses in digital breast tomosynthesis (DBT) datasets. First,
markers of potential lesions are extracted and matched over the different projections. Then two level-set models
are applied on each finding corresponding to spiculated and circumscribed mass assumptions respectively. The
formulation of the active contours within this framework leads to several candidate contours for each finding. In
addition, a membership value to the class contour is derived from the energy of the segmentation model, and
allows associating several fuzzy contours from different projections to each set of markers corresponding to a
lesion. Fuzzy attributes are computed for each fuzzy contour. Then the attributes corresponding to fuzzy contours
associated to each set of markers are aggregated. Finally, these cumulated fuzzy attributes are processed by two
distinct fuzzy decision trees in order to validate/invalidate the spiculated or circumscribed mass assumptions.

The classification has been validated on a database of 23 real lesions using the leave-one-out method. An error
classification rate of 9% was obtained with these data, which confirms the interest of the proposed approach.
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1. INTRODUCTION

Digital Breast Tomosynthesis (DBT) is a new 3D imaging technique. The 3D reconstruction of the breast from a
set of low-dose projections intends to overcome the superimposition of tissues in the breast that leads to obscured
lesions and false alarms. The accurate detection and localization of mass lesions, which may be a sign of breast
cancer in 2D mammograms, remains an important diagnosis step. Computer Aided Detection (CAD) has the
potential to increase the detection sensitivity of radiologists. With the expected increased volume of data to read
in DBT exams, the availability of a CAD system is becoming increasingly important. Furthermore, circumscribed
and spiculated masses are typical of benign and malignant lesions respectively. It becomes therefore critical to
develop an efficient algorithm for this classification task. We introduce a new segmentation and classification
approach based on fuzzy active contours and fuzzy decision trees that is a suitable alternative to conventional
approaches1 for this purpose.

2. GLOBAL SCHEME

Our approach is based on the detection and segmentation of structures directly on the projections, which may
be faster than processing a reconstructed volume when few acquisitions are acquired and has the advantage of
being reconstruction independent. Then we associate the result of the segmentation in the different projected
views, extract some features and aggregate the results in order to make a decision.2 This last step is done two
times using different assumptions about the findings (circumscribed or spiculated). The goal of this decision step
will be to validate or invalidate these assumptions.

∗G. Peters was GE Healthcare employee and ENST PhD student during the development of the work presented in this paper.
Send correspondence to giovanni.palma@ge.com.

Medical Imaging 2008: Computer-Aided Diagnosis, edited by Maryellen L. Giger, Nico Karssemeijer
Proc. of SPIE Vol. 6915, 691509, (2008) · 1605-7422/08/$18 · doi: 10.1117/12.770078

Proc. of SPIE Vol. 6915  691509-1



2.1 Makers
First, some markers need to be placed on the projected masses. While this can be achieved using several
approaches, for instance using the result of the convolution of the projection images with wavelets,3 in our study
an expert manually marked the lesions. In this paper, we only address the classification of a finding as spiculated
or circumscribed.

2.2 Multiple hypotheses
In order to describe the type of a lesion, we consider two hypotheses (see Figure 1) for each finding: either it is
a spiculated mass, or a circumscribed one. This results in two kinds of a priori on the shape of mass contours.
These two hypotheses will be translated into a priori information in the segmentation process. The key point
discussed in this article will be to validate or invalidate these hypotheses.
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Figure 1. Global scheme of the algorithm.

To achieve this goal each finding will be segmented into two sets of contours using two sets of parameters
corresponding to each hypothesis. This is done using fuzzy active contours as detailed in Section 3. Then,
for each model, the results of each segmentation along the projections for the same finding are aggregated and
classified using fuzzy decision trees as shown in Section 4.

3. FUZZY CONTOURS EXTRACTION
We now propose a way to segment the findings in the projections. Since a unique contour for a given finding
is sometimes difficult to define, our segmentation approach relies on the extraction of a set of contours. A
membership degree is associated to each contour, which enables us to use fuzzy set theory, which is suitable
not only to handle imprecision of the lesion, but also for the aggregation of information collected amongst the
projections.

3.1 Segmentation using fuzzy active contours
We use the level-set framework to express and solve this particular finding segmentation problem. This mainly
relies on the representation of the contours by a Lipschitz continuous function4,5 φ : Ω → R. This function is
interpreted as follows:

∀p ∈ Ω

⎧
⎨

⎩

φ(p) > 0 if p is inside the contour
φ(p) = 0 if p is on the contour
φ(p) < 0 if p is outside the contour

(1)

with p a point of the image domain Ω.

Now, using this framework, the problem is modeled using an energy previously introduced6 with two sets
of parameters corresponding to each hypothesis. This energy is a hybrid model that takes into account the
regularity, the gradient under the contours and the homogeneity of the segmented regions:

E(φ) = µ

∫

Ω

δ(φ(p))|∇φ(p)|dp + ν

∫

Ω

H(φ(p))dp + αEregion(φ) + βEedge(φ) + γEpressure(φ) (2)
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with H the Heavyside function, δ its derivative (the Dirac distribution) and:

Eregion(φ) = λ1

∫

Ω

|I(p) − c1|2H(φ(p))dp + λ2

∫

Ω

|I(p) − c2|2(1 − H(φ(p)))dp (3)

with I the image to segment, c1 and c2 the mean gray values inside and outside the contour.

Eedge(φ) = −
∫

Ω

δ(φ(p))g(|I(p)|)dp (4)

where g(|I(p)|) is a stopping function designed to slow down the contour in the vicinity of the edges, and is given
by:

g(|I(p)|) = |∇(G(p) ∗ I(p))|

where G ∗ I, a smoother version of I, is the convolution of the image I with the Gaussian G. The function
g(|I(x, y)|) is zero in homogenous regions and large at the edges.

Finally, the pressure term is given by:

Epressure(φ) =
∫

Ω

δ(φ(p))dp (5)

According to the hypothesis made, different sets of parameters µ, ν, α, β, γ, λ1 and λ2 are used, letting us
to introduce the corresponding a priori (e.g. a higher value of µ will be used for circumscribed masses since they
are more regular than spiculated masses). To actually resolve such a problem, an evolution scheme is derived
from the energy.5,7, 8 This evolution scheme is expressed as the derivative of the energy according to the time.

3.2 From a Lipschitz function to a fuzzy contour

Using an evolution scheme similar to the one proposed for active contours without edges,7 we can observe that
the level 0 is not the only suitable contour candidate. Actually, this evolution scheme is interesting since the
Dirac distribution and the Heavyside function are approximated by functions that have non negligible values
almost everywhere in the image. This results in a ∂φ

t that makes the function φ evolve not only near the contour
but also farther away. Thus, our approach consists to slice the resulting function after convergence in order to
get a set of several candidate contours (see Figure 2).

(a) (b) (c)

Figure 2. Fuzzy active contour. The original image (a) is segmented using the energy of Equation 2. The resulting φ (c)
is sliced in order to get a set of possible contours (b).

For each contour, an energy value is computed and a membership value to the class contour is derived from
this one. The energy value is obtained from Equation 2 by shifting the function to the level of the considered
contour. This shift is done by adding a constant value to φ such that the zero level of the shifted function
corresponds to the selected contour. To compute the energy, more strict approximations of δ and H are used.
Then the candidate with the lowest energy (emin) is considered to completely verify the property is a contour,
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and thus a membership value of 1 is associated to it. The remaining contour membership values are computed
using:

µ(C) = max(0, 1 − c ∗ (eC − emin)) (6)

where c is a positive constant, C the considered contour and eC its energy.

These contours are nested and thus ordered: they represent a fuzzy contour. Using a partial de-fuzzyfication
process,2 fuzzy contours from different projections are associated, leading to a marker in the volume. Re-
projecting each 3D marker derived from this aggregation (using an operator as the arithmetical mean) allows
the association of fuzzy contours over the projections.

4. CLASSIFICATION USING FUZZY DECISIONS TREES

In order to classify the lesion, attributes are extracted from the contours. Since the segmentation results are not
crisp, and one finding is represented by several fuzzy contours retrieved from different projections, it is difficult
to use classical classification tools. The fuzzy framework is suitable to deal with these constraints: it enables
us to express attribute values from fuzzy contours using the extension principle,9 to merge information from
different sources (the projections) and to classify them using fuzzy decision trees. This is the main contribution
of this paper.

4.1 Fuzzy attribute extraction
For every crisp contour of a fuzzy contour some common attribute values (compacity, homogeneity, gradient
orientation, etc.) are computed.10 Using the extension principle,9 fuzzy attribute values can be calculated for
the fuzzy contour from these crisp values. The extension principle is illustrated in Figure 3.

Membership value

Contour

Contour

Attribute value

Attribute value

Membership degree
to the class contour

Figure 3. Extension principle: for every possible value of the attribute, the contours with this attribute value are considered,
and the maximum membership degree of these contours is associated to the attribute value.

4.2 Aggregation of particles over the projections
Since a marker in space is associated to fuzzy contours in different projections, the fuzzy features of these
contours need to be aggregated. The result of this aggregation is named a cumulated fuzzy attribute. This value
is representative of the finding from the different projections. The classifier will be fed with this fuzzy value.
This aggregation is done for each attribute in a disjunctive way using a t-conorm (fuzzy union: e.g. max ) as
illustrated in Figure 4.

4.3 Fuzzy decision tree
Finally, fuzzy decision trees are used to check whether the former assumptions hold. These trees not only
propagate the input into every branch with a membership degree, they are also able to handle fuzzy inputs.10

These inputs are composed of a set of fuzzy quantities (the fuzzy cumulated attributes previously computed)
associated to the different attributes.
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Figure 4. Computation of a cumulated (solid line) attribute from a fuzzy attribute from three projections.

4.3.1 Fuzzy tree description

Such a tree is similar to classical fuzzy decision trees where each internal node of the tree is associated to an
attribute and composed of two density functions leading to two sub-trees. The density function of each sub-tree
is a representative generalization of the population going in this one. In the case of spiculated a priori, the
leaves are labeled as spiculated lesion or not spiculated lesion (denoted herein as A and A), and in the case of
circumscribed a priori as circumscribed lesion or not circumscribed lesion. Figure 5 illustrates the structure of
such a tree.

spiculated

non spiculated

Attribute 1

Attribute 2

Attribute 2Attribute 2

Attribute 3

f′
1 f′

2

f1 f2

S(f1, pa1 )�S(f′
1, pa2 ) S(f1, pa1 )�S(f′

2, pa2 )

S(f1, pa1 ) S(f2, pa1 )

. . .. . .

. . .. . .

. . . . . .

Figure 5. Tree description. Each internal node is associated to an attribute and contains two density functions corre-
sponding to two subbranches. Each leaf is tagged either as spiculated (resp. circumscribed) or non spiculated (resp. non
circumscribed).

4.3.2 Fuzzy tree usage

To classify a fuzzy particle using this tree, it is processed as follows (see Figure 5):

• the particle p moves to a node (associated to an attribute a) with a membership degree µ,
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• for each density function fa
i of this node, a similitude S(fa

i , pa), with pa the corresponding attribute value
of p, is computed,

• the particle is then propagated into the sub-trees with the membership value:

µ�S(fa
i , pa) (7)

where � is a t-norm (here the min is chosen).

In our experimentation the similitude measure between two fuzzy sets f and h was defined as:10

S(f, h) =

∫

x
min(f(x), h(h))dx

∫

x
h(x)dx

Thus, when a particle is passed through the whole tree, we get for each leaf a degree for the particle to arrive
in this one (µl). To make a final decision, the results of the leaves are aggregated using a t-conorm ⊥. This
results in two degrees µA and µA:

µA = ⊥
l∈L

µl

µA = ⊥
l∈L

µl
(8)

with L the set of leaves tagged as A, and L the set of leaves tagged as A.

In our case, two trees, which are working directly on the fuzzy attributes previously computed and aggregated,
are constructed (one per assumption). For each finding in space, the aggregation of segmentations using a priori
is processed in the corresponding tree. Thus each finding is processed by the two trees in parallel, resulting in
four satisfaction degrees of the following properties: the finding is/is not circumscribed, and the finding is/is not
spiculated.

4.3.3 Tree construction

To construct the trees, we use a recursive algorithm on each node, which relies on a training database of particles
labeled as class A or class A. This algorithm starts from the root and works as follows:

• choose the most discriminant attribute,

• compute density node tests for the two branches from the database,

• make every particule from the database pass through both sub-trees (using Equation 7) and iterate the
process on them,

• stop when a purity criterion is reached, or when there is no more attribute (all have been used).

The purity of a leaf can be expressed as:
P

µ(p)
p/class(p)=A

P

p
µ(p) ≥ t or

P
µ(p)

p/class(p)=A
P

p
µ(p) ≥ t (9)

with t the purity threshold, p the elements of the training database and µ(p) the degree they arrive in the leaf
with.

Thus we mainly need a way to select the best attribute, and a procedure to compute density functions for
that node. To achieve the last step, for each class a fuzzy histogram is computed: each fuzzy attribute value is
normalized by the area under its curve, and weighted by the degree it enters the node with. The area of the
fuzzy attribute histogram is also normalized to 1. This is equivalent to say that we impose for the histograms to
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Figure 6. Histogram computation. Original histogram (a) processed with a median filter and a mean filter (b) then
reconstructed (c) and finally extended (d).

Figure 7. Test functions for a node. The two unextended histograms (dashed line) are not suitable to classify a particle
(dotted line) that has a value not represented by the population used for their construction. The extended version of
these histograms (solid line) does not suffer from this limitation.

contain an equal number of attribute values in order to be able to compare them. To be more robust to noise
and to be able to generalize the learning data, this histogram is processed using median and mean filters, then
reconstructed and its maximum is extended to the domain limit (see Figure 6) resulting in a suitable density
function. The last extension step is important since it allows to make a decision for particules that have values
outside the range used for learning as shown in Figure 7.

Using these density functions, it is possible to evaluate how discriminant an attribute a is according to
the training database elements arriving in a given node Sk with membership values µSk

using an entropy gain
measure11 defined as:

Gain(Sk, a) = Entropy(Sk) −
∑

b∈sub−branches

|Cb|a
Sk

|
|Ca

Sk
|Entropy(Sb|a

k ) (10)

with:

Ci
Sk

=
∑

µSk
(x)

class(x)=1 ∧ x∈supp(Sk)

CSk
=

∑

i

Ci
Sk

PSk
i =

Ci
Sk

CSk
Entropy(Sk) = −∑

i

PSk
i log2P

Sk
i

and for a given branch b, S
b|a
k the elements of the training database valued by their membership degree when

they arrive in the sub-branch b (µSk
(p)�S(fa

b , pa)).

Some other approaches exist like contrast measurements,2,10 but they seems to be unsuitable for noisy/non
discriminant attributes.

The leaves’ labels are simply assigned according to the most representative (sum weighted with membership
degrees) class of elements arriving in these ones.

5. DECISION MAKING

For each finding, we have two fuzzy particles (one per assumption) processed by two distinct fuzzy decision trees.
It is then possible that the two trees do not make consistent decisions: for instance, a finding can be said to be
spiculated and circumscribed at the same time.
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In case of conflict between the two models, a confidence degree is computed on the outputs (A and A) of
each tree:10

DA =
|µA − µA|
µA + µA

Such a degree represents how much a tree is confident in its decision: if µA and µA are very close to each other,
it is most likely that the tree is unable to make a decision for the considered particle. Using these confidence
degrees (Dcir and Dsp), the outputs (membership values µsp, µsp, µcir and µcir to the classes spiculated, not
spiculated, circumscribed and not circumscribed) of the trees can be weighted in order to get the most suitable
decision:

{
the mass is circumscribed if max(Dcirµcir,Dspµsp) > max(Dcirµcir,Dspµsp)
the mass is spiculated otherwise

6. RESULTS

As previously said, only the segmentation/classification parts of the approach was evaluated. After describing
the database used, we discuss results obtained for each part of the method.

6.1 Database

The DBT data sets used in this study have been acquired with a GE DBT investigational device at the Mas-
sachusetts General Hospital (MGH), Boston, MA, USA. For each breast, 15 projected views have been acquired
over an angular range of 30 degrees. To guarantee an overall patient dose that is not superior to the dose
delivered in standard mammography, the dose per projection image is reduced to approximately 10 % of the
dose delivered to the patient during a mammography examination. All acquisitions have been performed in
a medio-lateral oblique (MLO) view. No clinical ground truth was available for the image data (neither radi-
ologists reports nor histology results). We have therefore performed a screening of selected cases with several
medical imaging experts. The screening of the clinical cases was first performed on slices reconstructed with
Simultaneous Algebraic Reconstruction Technique12 (SART). We have then identified the corresponding ROIs
in the tomographic projection images. The set of 23 breast masses have been identified from 9 different DBT
data sets. The database consists of 16 spiculated breast masses and 7 circumscribed breast masses. Because of
the reduced dose in the projected views, some of the masses are very difficult to distinguish in these images. For
the same reason, the database presents a considerable challenge for testing our CAD framework.

Due to the size of the data base, the leave-one-out method was most suitable to validate the approach: each
element of the data base is classified with trees trained with the remaining elements.

6.2 Contour extraction

Some segmentation results for both active contours models are illustrated in Figure 8 on a circumscribed mass and
a spiculated one. In the case of the circumscribed mass, even if contours obtained for the spiculated assumption
are less regular, a large number of contours fits the actual contour well. In the case of the spiculated lesion,
the contour given by the expert is more subjective. This justifies the extraction of several contours, and thus
the usage of the fuzzy sets framework. The contours obtained for the two assumptions are rather different: the
circumscribed model is unable to get the spicules whereas the other model succeeds.

6.3 Feature extraction

Examples for computation of cumulated attributes applied on a clinical ROI containing a circumscribed breast
mass and for a clinical ROI containing a spiculated breast mass are illustrated in Figure 9. For the circumscribed
mass a high compacity (around 0.8) has been measured for most candidate contours in the projected views. This
information is translated to the cumulated fuzzy attribute where values around 0.8 for the compacity of the
particle are indicated to be most representative for the particle. For the spicualted mass in Figure 8(d) lower
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Figure 8. Segmentation results: a circumscribed mass segmented by an expert (a), using circumscribed (b), and spiculated
(c) a priori, and a spiculated mass segmented by an expert (d), using circumscribed (e) and spiculated (f) a priori.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Aggregation of fuzzy attributes extracted from ROI containing a circumscribed (resp. spiculated) lesion presented
in Figure 8(a) (resp. Figure 8(d)): (a) (resp. (e)) corresponding membership functions to the class contour, (b) (resp.
(f)) attribute values for the set of candidate contours for the attribute compacity, (c) (resp. (g)) superposition of the
membership funtions of the fuzzy attribute and (d) (resp. (h)) the resulting membership function for the cumulated fuzzy
attribute. In (a-c) (resp. (e-g)) the different curves represent values for different projected views. The solid black line
corresponds to the 0-degree projection depicted in Figure 8(a) (resp. Figure 8(d)) and Figure 8(b) (resp. Figure 8(e)).

compacity values have been computed. Furthermore, the variance of the different projected views is higher than
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in the one obtained for the circumscribed case. This leads to a higher ambiguity in the cumulated fuzzy attribute
function. Values between 0.2 and 0.45 seem to be equally representative of the particle. The obtained cumulated
fuzzy attributes express that a high compacity is characteristic for the circumscribed breast mass in Figure 8(a)
while a low compacity is characteristic for the spiculated breast mass in Figure 8(d). This corresponds well to
the intuitive interpretation of the respective examples.

6.4 Classification

Figure 10(a) provides error rates for the classification part: in 57% of the cases both trees give a good classifica-
tion, in 39% they disagree, and in 4% they are both wrong. Using confidence degrees some conflicting cases can
be resolved, resulting in a total classification error rate equal to 9% (see Figure 10(b)). This clearly shows the
gain of using two different assumptions to characterize the lesions: only one segmentation model would not be
sufficient (the circumscribed and spiculated models are wrong in respectively 13% and 30% of the cases).

Along the iterations of the leave-one-out process, the tree corresponding to the circumscribed assumption
was mostly constructed using three attributes: the compacity, the mean gradient value on the contour and the
mean gradient orientation compared to the center of the mass on the contour. In addition, the second tree
corresponding the spiculated hypothesis was relying on the mean of the gradient within the ROI.

(a) (b)

Figure 10. Classification error rates. Unmerged results from both classifiers (a), and final classification error rate (b).

7. CONCLUSION

We have proposed a global scheme for mass detection/classification based on fuzzy sets. This approach relies
on two key ideas. First, fuzzy sets are used to handle uncertainty until all the information from different
projections is available (aggregation of fuzzy attributes). Second, two hypotheses are made in order to be
validated or invalidated during similar processes (only the a priori information introduced in the segmentation
process changes). This last step can lead to conflict in the decision since the two processes associated to the
former hypotheses are independent. For that reason we introduced a way to resolve such cases.

This segmentation/classification approach has been evaluated on a data base composed of 23 real masses.
Even if statistics about the error rates obtained with such a small database are not completely reliable, the
results tend to validate the approach to make two different assumptions and to try to validate/invalidate them.
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