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ABSTRACT
This paper presents a technique to reconstruct 3D breast
ultrasound images at high resolution from anisotropically
degradated volume acquisitions. Volumes are acquired by
scanning the breast tissue with a 2D probe at different an-
gles, showing different directional degradations induced
by the point spread functions. We present a new tech-
nique to reconstruct the original volume based on estimat-
ing the spatial degradation from orthogonal views, and re-
constructing the original volume through a regularized op-
timization technique. Results on synthetic andin vivo data
show a better performance of this method in comparison to
other spatial compounding techniques.
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1 Introduction

In this paper, we tackle the problem of obtaining high res-
olution breast volume ultrasound scans. Breast ultrasound
echography, or sonography, has many benefits in compari-
son to other modalities, such as being non-invasive, having
a good contrast resolution and being cost effective. How-
ever, it has a limited spatial resolution if we compare it to
the standard x-ray mammography [4][6].

Obtaining a volume rather than two-dimensional
slices permits a complete visualization of tissues, a more
accurate quantification and better independency of the
practitioner’s use. However, echographic volume acqui-
sition is quite challenging. Our method uses a two-
dimensional probe attached to a robotic arm, which lin-
early scans the tissue obtaining parallel slices of the vol-
ume. This method has some drawbacks, principally the
limited resolution in the elevational plane of the linear ar-
ray probe. On the other hand, real three-dimensional echo-
graphic probes are still quite recent, and they have a more
limited field of view, which would not suffice for this ap-
plication.

We address the limited resolution problem by ob-
taining different scans in different directions, in order to
compensate the different point spread functions. However,
by having multiple volumes two new problems have to

be solved: registration between the different volumes and
combination of the information of each volume to recon-
struct the original volume. A method for registration is pro-
posed in [5], based on elastic registration by block match-
ing and Thin-plate spline interpolation (see Section 2). The
volume reconstruction technique from different anisotropic
scans has been addressed for other modalities, such as in
[7]. The novelty of our method consists in adapting this
reconstruction technique to the breast sonography applica-
tion. We also present a new technique to estimate the point
spread function. These contributions are presented in Sec-
tion 3.

In Section 4 we present the output of our technique
with synthetic andin vivo data. Results show better tis-
sue delineation than a volume averaging, which is the usual
spatial compounding technique.

2 Acquisition and Pre-processing

2.1 Data Acquisition

All ultrasonic data have been obtained with a Philips L12-
5 50 mm broadband linear array, with 192 elements and an
operating range from 12 to 5 MHz. The field of view of a
single two-dimensional acquisition is 5x5 cm. Volume data
sets are obtained by linear scanning with a robotic arm with
encoded positions. A final volume is interpolated from the
two-dimensional slices, forming a volume of 5x5x5 cm for
each scan.

Different scans using different orientations are ob-
tained, namely at 0, 45, 90 and 135 degrees of the scanning
direction. The system has been calibrated with a reference
phantom to compensate the offsets between the different
views. For this study we will limit ourselves to the use of
the 0 and 90 degrees acquisitions, which we will denote as
v0 andv90 as short notation forv0(x, y, z) andv90(x, y, z).

The B-scan refers to the conventional two-
dimensional ultrasound image of the volume acquired at 0
degree with respect to the scanning direction, the elevation
scan refers to the perpendicular plane to the B-scan and
parallel to the scanning direction, and the C-scan refers to
the plane perpendicular both to the B-scan and elevational
planes, as shown in Figure 1.
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Figure 1. B-scan, C-scan, and E-scan (elevational scan)

2.2 Registration

Alignment of the volumes is necessary prior to their fusion.
There are many factors which may contribute to the poor
registration of the different volumes, including motion of
the patient, mechanical encoding errors of the scanning de-
vice and estimation errors of the speed of sound. Different
tissues may have different speeds of sound causing an er-
ror in the position of tissues when converting echo arrival
times to spatial coordinates. Fusion of volumes without
good alignment will lead to blur artifacts.

In order to align the volumes, a regularized block-
matching algorithm described in [5] was used. It is based
on a Thin-Plate spline regularization of the displacement
field obtained by different block matching along the vol-
ume. We are using a block size of 5x5x5 mm and summed
squared differences as similarity metric. Table 1 shows the
positioning errors for a typical case. The first row shows
the displacement errors before correction, and the second
row after correction. The first column shows the mean dis-
placement in thex axis, the second column in they axis
and the third in thez axis (depth), which shows to be the
best registered. The fourth column shows the total mean
displacement, of the order of 400µm, which corresponds
to about 2 pixels. The maximal displacement and the 90%
percentile are reported in the fifth and sixth columns re-
spectively. The registration method successfully decreased
the mean displacement error and the 90% percentile error,
while still some maximal errors occur, due to spurious mea-
surements.

d̄x d̄y d̄z mean max perc90%

before 0.258 0.244 0.068 0.419 1.078 0.826
after 0.164 0.173 0.069 0.287 1.179 0.466

Table 1. Registration errors (mm)

3 Reconstruction

In order to reconstruct the original volumev from acqui-
sitionsṽθ, we make the hypothesis that each acquisition is

a version of the original volume linearly degradated by a
point spread functionhθ, that is,vθ = hθ ∗ v. First of
all, we will model the point spread functioñhθ and es-
timate model’s parameters from acquisitionsvθ. We will
then estimate a volumẽv which best satisfies the relation-
ship vθ = h̃θ ∗ ṽ for a given set of acquisitions. In other
words, we will find the volume that best estimates our ac-
quisitions given the estimated point spread functions. To
do so, we define an energy termQ which accounts for dif-
ferences between the acquisitions and the estimated acqui-
sitions, which will be minimized to obtain the optimal esti-
mated volumẽv:

Q =
∑
θ

∥∥∥vθ − h̃θ ∗ ṽ
∥∥∥

2

(1)

As explained in section 3.2, we also define a regular-
ization termΨ to guarantee both the smoothness of the so-
lution and the convergence to a global minimum. A weight-
ing factorλ is defined to balance the contribution of the
termsQ andΨ, defining a global energyE as:

E = Q + λ ·Ψ (2)

The optimal estimated volumẽv is the one that min-
imizes energyE, ṽ = arg min

ṽ
E. We use the conjugate

gradient algorithm to minimize this energy, as explained in
section 3.3.

3.1 Point spread function estimation

We can assume that the point spread function has an ori-
ented Gaussian shape which depends on the acquisition
depth, i.e. thez component. This assumption relies on the
fact that the point spread function in the far field is theo-
retically the Fourier Transform of the apodization function,
which in our case, is close to a Gaussian function. This
assumption was corroborated for measurements on a phan-
tom composed by small bubbles (Figure 2).

For each depth, we estimate the point spread function
of vθ by finding the equivalent Gaussian blur to the volume
scanned in the perpendicular direction. This is an adapted
version of the blind multichannel deconvolution technique
described in [3]. For instance, to obtain the point spread
functionh0, we degradev90 with a Gaussian blur and we
find the variance that gives the best match betweenv0 and
h̃0 ∗ v90. We denote byvθ⊥ the volume acquired in a per-
pendicular direction. Our model contains only one param-
eter to estimate, which is the varianceσ of the Gaussian
kernel. Optimization of this parameterσ was performed
with the golden search technique [2]. We have:

h̃θ(z) = 1
σ(z)

√
2π

e−( ~xθ)2/2σ(z)2 (3)

with:

σ = arg min
σ

∥∥∥vθ − h̃θ ∗ vθ⊥

∥∥∥
2

(4)



Figure 2. B-scan of bubble phantom
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Figure 3. Elevational point spread function variance for
bubble phantom (solid) and in-vivo data (dashed)

Figure 3 shows the dependency ofσ with depth in the
phantom and inin vivo data. We observe a discrepancy of
about 50µm at middle depth, but an overall good correla-
tion.

3.2 Regularization

The reconstruction problem described in Equation 1 is an
ill-posed problem. Therefore, we introduce a regulariza-
tion termΨ in order to preserve the smoothness of the final
solution. It is based on the norm of some functionψ ap-
plied over the neighbor difference operator∆i along each
dimension.

Ψ =
∑
x

∑
y

∑
z

ψ(ṽ(x, y, z)− ṽ(x− 1, y, z))+
∑
x

∑
y

∑
z

ψ(ṽ(x, y, z)− ṽ(x, y − 1, z))+
∑
x

∑
y

∑
z

ψ(ṽ(x, y, z)− ṽ(x, y, z − 1))

(5)

or in shorter notation,

Ψ = ‖ψ(∆xṽ)‖1 + ‖ψ(∆y ṽ)‖1 + ‖ψ(∆z ṽ)‖1 (6)

where‖•‖1 represents the normL1.
As suggested in [7], we use a Huber function to

smooth uniform areas, while preserving discontinuities.
This is needed to both smooth speckle areas while preserv-
ing edges and features. A classical Tikhonovϕ-function
is not well suited to this application since it would also
smooth discontinuities as well.

The Huber function is defined as [1]:

ψ(x) =
{

x2, for |x| ≤ α
2α |x| − α2, for |x| > α

(7)

and its derivative

ψ′(x) =
{

2x, for |x| ≤ α
2αsign(x), for |x| > α.

(8)

The regularization parameterα can be seen as a
threshold level where we swap from an area to be smoothed
to a contour to be preserved.

The regularization parameterλ in Equation 3 controls
the amount of regularization applied in the global energy
E, that is, the smoothness of the final solution. The values
used in this study areλ = 2.5 andα = 1.5, both tuned man-
ually to obtain a good visual trade-off between smoothness
and fine detail resolution.

3.3 Optimization

Iterative minimization of the energy was performed with
the conjugate gradient approach. Although strict convexity
of the energy function with this regularization term cannot
be guaranteed since it depends on each image [7], we have
found robust convergence with this technique. To avoid
local minima, it is important to properly initialize the esti-
mated volumẽv. We have chosen to initialize the system
with the average of the two images, which turns out to be
robust and lead to accurate results.

4 Results

4.1 Simulation

We have artificially added noise and blurred a 2D natural
image to test the algorithm. In order to mimick ultrasound
noise characteristics, we have added speckle noise such as
vnoisy = v+n ·v, wheren is uniformly distributed random
noise with zero mean. For this experiment, we have used
var(n) = 0.005, which represents a peak noise of slightly
more than 10% in the final images. The noisy image was
blurred with an oriented Gaussian kernel at 0 and 90 de-
grees with a varianceσ of 2, 5 and 8 pixels.



Figure 4 shows both noisy and blurred versions of the
original image forσ = 5, which would represent a sim-
ulation of the acquisitions in our system, the average of
these acquisitions and the reconstructed image with our al-
gorithm. Visual inspection clearly shows superior image
quality of the reconstructed image, with finer details. Root
Mean Squared Error (RMSE) comparison shown in Table 2
corroborates the improvement of the technique for different
degradation levels.

σ(pixels) v0 v90 vavg vrec

2 17.86 14.69 13.95 8.33
5 25.08 21.98 20.99 11.71
8 29.73 26.76 25.46 16.67

Table 2. Root Mean Squared Error for simulation data, for
speckle noisevar(n)=0.005.

4.2 In-vivo data

Figure 5 shows a C-scan of a breast tissue for the 0 degree
acquisition, the 90 degrees acquisition, the average and the
reconstructed volume. The 0 degree acquisition has been
acquired by scanning the ultrasound probe from top to bot-
tom of the image, therefore we can see vertical blur due to
the limited elevational resolution. On the other hand, with
the 90 degrees acquisition, which has been obtained from
left to right, we see an horizontal blur. The average vol-
ume does not show a predominant direction of blur, and
smoothes out the speckle noise. However, edges are also
blurred turning into poor tissue delineation and lack of de-
tails. The reconstructed volume shows a better resolution
with finer details.

Figure 6 shows a B-scan of a breast tissue. It cor-
responds to a B-scan of the 0 degree acquisition, providing
highest image quality we are expecting. The 90 degrees ac-
quisition is blurred by the limited elevation resolution. The
average volume shows a resolution level slightly better than
the 90 degrees acquisition, but not as good as the 0 degree
acquisition. Speckle is smoothed out, but some of the finer
details are also smoothed out. The reconstructed volume
shows a better resolution and tissue delineation, preserving
the resolution of the 0 degree acquisition.

On the other hand, Figure 7 shows an elevational scan
of the breast tissue. It corresponds to a B-scan of the 90
degrees acquisition, that is, the same case as the B-scan
but interchanging the place between the 0 degree and the
90 degrees acquistions. Here again, the average volume
shows poor resolution but good speckle attenuation, while
the reconstructed volume shows better tissue delineation.

0 deg

90 deg

Average

Reconstructed

Figure 4. Image with synthetic degradation. From top to
bottom: 1. Acquisition at 0 degree, 2. Acquisition at 90
degrees, 3. Average, 4. Reconstructed volume



5 Conclusions

We have presented a system which overcomes the limited
elevational resolution by acquiring multiple volumes at dif-
ferent angles and reconstructing a single data set from these
acquisitions. The reconstructed data preserve the features
of individual acquisitions while successfully maintaining
the best spatial resolution of each acquisition, reducing spa-
tial degradation. This leads to better tissue delineation and
finer details. Volume reconstruction also cancels out uncor-
related structures such as speckle. Comparing to volume
averaging, we observed that on large areas, speckle reduc-
tion is apparently better filtered by a simple averaging. We
can foresee to combine these two techniques, averaging in
speckle areas and the reconstructed volume in the detail ar-
eas.
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Figure 5. C-scan. From top to bottom: 1. Acquisition at 0
degree, 2. Acquisition at 90 degrees, 3. Average volume,
4. Reconstructed volume
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Figure 6. B-scan. From top to bottom: 1. Acquisition at 0
degree, 2. Acquisition at 90 degrees, 3. Average volume,
4. Reconstructed volume
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Figure 7. Elevation scan. From top to bottom: 1. Acquisi-
tion at 0 degree, 2. Acquisition at 90 degrees, 3. Average
volume, 4. Reconstructed volume


