
Fuzzy attribute openings based on a new fuzzy connectivity class.
Application to structural recognition in images

Olivier Nempont

TELECOM ParisTech,
CNRS UMR 5141 LTCI,

Paris, France
nempont@enst.fr

Jamal Atif

Unité ESPACE S140,
IRD-Cayenne/UAG,

Guyane française
atif@cayenne.ird.fr

Elsa Angelini

TELECOM ParisTech,
CNRS UMR 5141 LTCI,

Paris, France
angelini@enst.fr

Isabelle Bloch

TELECOM ParisTech,
CNRS UMR 5141 LTCI,

Paris, France
bloch@enst.fr

Abstract

In problems such as image segmen-
tation and recognition, the connec-
tivity of target objects is a key fea-
ture. In the mathematical mor-
phology framework, connected fil-
ters were derived from the classi-
cal connectivity theory but do not
take into account the imperfections
that can affect the image formation.
The aim of this paper is twofold:
(i) introduce a new class of connec-
tivity for fuzzy objects and (ii) de-
rive some associated attribute open-
ings. We show also that the lat-
ters can be performed efficiently us-
ing a component-tree representation.
We illustrate a potential use of these
filters in a brain segmentation and
recognition process.

Keywords: fuzzy connected fil-
ters, connectivity, hyperconnection,
mathematical morphology.

1 Introduction

In image segmentation and recognition, ob-
jects of interest are often constrained to be
connected. The definition of connectivity de-
pends on the selected representation of objects
and the axiomatization of classes of connectiv-
ity [9] and of hyperconnectivity [9, 2] provides
a rigorous framework to handle the concept
of connectivity, which leads to the design of
connected filters (e.g. [7]).

In this paper we deal with connectivity of
fuzzy objects and associated connected oper-
ators, in particular fuzzy attribute openings.
Object representation using fuzzy sets the-
ory [11] can lead to more robustness in prob-
lems such as image segmentation and recog-
nition. This robustness results to some ex-
tent from the partial recovery of the continu-
ity that is lost during the digitization process.
The initial definition of fuzzy connectivity [6]
provides a crisp characterization of the con-
nectivity of a fuzzy set. Its later extension [2]
leads to a characterization of the connectiv-
ity as a degree. This degree is however not
continuous with respect to the membership
function. Therefore we propose a new defi-
nition that exhibits better properties, in par-
ticular in terms of continuity. Based on this
connectivity notion, we define fuzzy attribute
openings that we use in a segmentation and
recognition context. We show that these op-
erators present nice regularity properties that
may lead to more robustness of the process.

We first recall in Section 2 some notations and
definitions on fuzzy sets, connections and con-
nected operators. Section 3 deals with fuzzy
connectivity notions and an efficient max-tree
representation. Section 4 presents a definition
of fuzzy attribute openings. In Section 5, we
define two practical filters that are illustrated
in a recognition process on a brain magnetic
resonance image (MRI).

2 Preliminaries

Fuzzy sets – Let X be the digital space Zn
endowed with a discrete connectivity cd. A
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fuzzy set on X will be denoted by its mem-
bership function µ : X → [0, 1]. We restrict
ourselves to fuzzy sets having a bounded sup-
port. We denote the α-cut by µα and by F
the set of fuzzy sets defined on X. (F ,≤)
is a complete lattice for the usual order on
fuzzy sets. The supremum ∨ and infimum ∧
are the max and min respectively. The small-
est element is denoted by 0F and the largest
element by 1F . As a metric on F we use:
d∞(µA, µB) = supx∈X |µA(x) − µB(x)|, and
(F , d∞) is a metric space, inducing a defini-
tion of continuity.

Connections and hyperconnections

Definition 1 [9] Let (L,≤) be a lattice. A
connected class, or connection, C is a family
of elements of L such that:

1. 0L ∈ C,
2. C is sup-generating,
3. for any family {Ci} of elements of C
such that

∧
i Ci 6= 0L, then

∨
iCi ∈ C.

Let us for instance consider the lattice of sub-
sets of X (P(X),⊆). On this lattice, we use
the usual connection Cd induced by the dis-
crete connectivity cd (such as 4-connectivity
in Z2). An element of Cd is then simply a
subset A of X that is connected in the sense
of cd (i.e. ∀(x, y) ∈ A2,∃x0 = x, x1, ..., xn =
y,∀i < n, xi ∈ A, and cd(xi, xi+1) = 1).

Connected components of an element A of a
lattice (L,≤), relatively to a connection C on
L, are the elements Ci of C such that: Ci ≤
A and ∄C ∈ C, Ci < C ≤ A (i.e. the largest
elements of C that are smaller than A) [9].

However some connectivities (fuzzy connectiv-
ity for instance) cannot be represented by a
connection. Dealing with such cases requires
to replace the infimum (

∧
) in condition 3 by

another overlap mapping ⊥ [9], leading to the
notion of hyperconnection.

Definition 2 [9, 2] Let (L,≤) be a lattice.
A hyperconnection H is a family of elements
of L such that:

1. 0L ∈ H,
2. H is sup-generating,
3. for any family {Hi} of elements of H

such that ⊥iHi 6= 0L, then
∨
iHi ∈ H.

The hyperconnected components of A ∈ L
are the elements Hi of H such that: Hi ≤
A and ∄H ∈ H,Hi < H ≤ A. For any two
hyperconnected components Hi and Hj of A,
either Hi = Hj or Hi⊥Hj = 0L. Moreover,∨
iHi = A, where the supremum is taken over

all connected components of A.

Connected operators – Connected oper-
ators, by definition, manipulate only con-
nected components of the processed image. A
generic definition for binary images can be de-
rived from the notion of partition. A parti-
tion P : X → P(X) satisfies the conditions
∀x ∈ X, x ∈ P (x) and ∀(x, y) ∈ X2, P (x) =
P (y) or P (x)∩P (y) = ∅. If C is a connection
on P(X), the partition is said connected if
∀x ∈ X,P (x) ∈ C. We consider in particular
the partition PAC which associates a point to
the connected component of A or Ā including
this point. In addition we say that a partition
P1 is finer than P2 if ∀x ∈ X,P1(x) ⊆ P2(x).

Definition 3 [4] An operator ψ : X → X is
connected according to C if for all A ⊆ X the

partition PAC is finer than P
ψ(A)
C .

This definition has been extended to grey-level
images considering the largest connected re-
gions that present a constant grey-level. Such
operators are known as flat zones filters [8].

However as will be specified next, the con-
nectivity of fuzzy sets is not represented by
a connection but by an hyperconnection and
the classical definitions of connected operators
cannot be applied. A first approach to extend
classical connected operators to fuzzy sets is
to apply the constraint over all α-cuts.

Definition 4 An operator ψ defined on F is

connected if ∀µ ∈ F ,∀α ∈ [0, 1], P (µ)α

C is finer

than P
(ψ(µ))α

C .

3 Connectivity of fuzzy sets

Fuzzy connectivity – The first definition
of fuzzy connectivity was proposed by Rosen-
feld [6].
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Definition 5 [6] The degree of connectivity
between two points x and y of X in a fuzzy
set µ (µ ∈ F) is defined as:

c1µ(x, y) = max
l∈Lx,y

l={x0=x,x1,...,xn=y}
min

0≤i≤n
µ(xi)

where Lx,y denotes the set of digital paths from
x to y, according to the underlying digital con-
nectivity cd defined on X.

Definition 6 [6] A fuzzy set is said connected
if all its α-cuts are connected (in the sense of
the connectivity on X).

This notion of connectivity is appropriately
represented by a hyperconnection on the
lattice (F ,≤). We will denote by H1

the hyperconnection containing all connected
fuzzy sets according to Definition 6. It is
obtained for the overlap mapping ⊥1 de-
fined as [2]: ⊥1({µi}) = 1 if ∀α ∈
[0, 1],

⋂
i{(µi)α | (µi)α 6= ∅} 6= ∅ and 0 other-

wise. We denote by H1(µ) the set of hyper-
connected components of µ.

An extension to a familly of hyperconnections
H1
τ = {µ ∈ F ,∀α ≤ τ, (µ)α ∈ Cd} was pro-

posed in [2]. Each H1
τ contains all fuzzy sets

whose α-cuts below level τ are connected. The
connectivity of a fuzzy set can thus be defined
as a degree, instead of a crisp notion, as fol-
lows: c1(µ) = sup{τ ∈ [0, 1] | µ ∈ H1

τ}.
As an illustration, the fuzzy sets in Figure 1(a)
and (b) have a degree of connectivity of 0.25
and 0.05, respectively. However, intuitively
we would rather say that the example in (b)
is more connected than the one in (a), which
seems to have two very distinct parts. The
degree of connectivity depends on the height
of the lowest minimum or saddle point, and
not on its depth. A small modification in (b)
would make the fuzzy set fully connected, il-
lustrating that this definition is not continu-
ous.

A new class of fuzzy connectivity – We
now propose another extension of the classical
fuzzy connectivity expressed by Definition 6.

Definition 7 The connectivity degree be-
tween two points x and y in a fuzzy set µ is

 

 

0.75

0.25
 

 

0.05

0.05

(a) (b)

Figure 1: The degree of connectivity of the
fuzzy set in (c) is equal to 0.25, and in (d) to
0.05, although it seems to be more connected.

defined by: c2µ(x, y) = 1 − min(µ(x), µ(y)) +
c1µ(x, y).

Definition 8 The connectivity degree of a
fuzzy set µ is defined as: c2(µ) =
min(x,y)∈X2 c2µ(x, y).

It is easy to show that c2(µ) is achieved for
x such that µ(x) = maxx′∈X µ(x′), and for y
belonging to a regional maximum. Roughly
speaking, the connectivity degree of a fuzzy
set now depends on the depth of the deepest
saddle point in the fuzzy set. On the exam-
ples illustrated in Figure 1, it can be observed
that the fuzzy set in (a) is 0.25−connected
(1 − 0.75), while the fuzzy set in (b) is
0.95−connected. In the later case, if one of
the modes is progressively shrinking to 0, the
degree of connectivity will evolve smoothly to-
wards 1. This is expressed formally by the
following result.

Proposition 1 For fixed x and y, the map-
ping associating µ to c1µ(x, y) is continuous
and Lipschitz, and the mapping associating µ
to c2µ(x, y) is continuous and 2-Lipschitz. The
mapping associating µ to c2(µ) is continuous
and 2-Lipschitz.

Let us now define: H2
τ = {µ ∈ F | c2(µ) ≥ τ}.

Proposition 2 For each τ ∈ [0, 1], H2
τ de-

fines a hyperconnection.

We denote by H2
τ (µ) the set of hypercon-

nected components of µ and we will speak of
τ -hyperconnected components.

Tree representation – From an algorith-
mical point of view, the obtention of the τ -
hyperconnected components and their pro-
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cessing can benefit from an appropriate rep-
resentation. Since the α-cuts are a core com-
ponent of our definitions, we can rely on the
usual max-tree [7] representation of a func-
tion. From now on, we assume that the val-
ues of α are quantified, in a uniform way. For
each level α of the quantification, nodes of a
tree are associated with the connected com-
ponents (in the sense of Cd) of the α-cut of
the considered fuzzy set. Edges are induced
by the inclusion relation between connected
components for two successive values of α. A
fuzzy set µ is then bi-univoquely represented
by a tree T (µ), with:
• V the set of vertices of the tree (if v ∈ V,
h(v) denotes its altitude, i.e. the value of
α corresponding to this node),

• R the root of the tree,
• L the set of leaves,
• if v ∈ V, P vT (µ)(h) is the subset of V that

contains all the nodes belonging to the
chain from the root to v and of altitude
less or equal to h.

There are several algorithms for computing
the tree, a very recent one being of quasi-linear
complexity [5].

Proposition 3 The set H1(µ) = {µi} of
1−hyperconnected components of µ is isomor-
phic to the set of leaves L, and T (µi) =
P liT (µ)(h(li)), where li is the leaf associated
with µi.

We denote by ST (µ) the set of subtrees
of T (µ) which satisfy ∀S ∈ ST (µ), ∀v ∈
S,P vT (µ)(h(v)) ⊆ S. We define two operators
on ST (µ):

εrT (µ)(S) =
∨
l∈L P

l
T (µ)(max(0, hSl − r)),

δrT (µ)(S) =
∨
l∈L P

l
T (µ)(min(h(l), hSl + r)).

The first one corresponds intuitively to a con-
traction of size r of the input subtree S (but
it is not rigorously an erosion) and the second
one to a dilation of size r.

Proposition 4 The set of τ−hyperconnected
components of a fuzzy set µ is isomorphic
to the set of leaves of ε1−τT (µ)(T (µ)). A
τ−hyperconnected component of µ can then
be obtained by a dilation of size (1 − τ) of a
1−hyperconnected component of ε1−τT (µ)(T (µ)).

Figure 2 illustrates in (b) the component
tree T (µ) of the fuzzy set shown in (a).
The 1−hyperconnected component (c) corre-
sponds to one regional maximum of (a), the
corresponding subtree is shown in black (b).
The results of a contraction of size 0.4 of T (µ)
and the dilation of size 0.4 of one of its con-
nected components are shown in (d) and (e),
respectively, providing exactly the sub-tree as-
sociated with one 0.6−hyperconnected com-
ponent of µ (f).

(a) (b) (c)

(d) (e) (f)

Figure 2: (a) Fuzzy set. (b) Component
tree (the α-cuts are quantizied with a step
0.2), with a subtree in black corresponding to a
1−hyperconnected component (c). (d) Subtree
corresponding to the contraction of size 0.4 (in
black). (e) A 0.6−hyperconnected component (in
black and red) obtained by dilation of one con-
nected component (in red) of the contraction and
the corresponding image (f).

4 Attribute openings applied to

fuzzy sets

4.1 Attribute openings based on a

crisp criterion

We focus here on segmentation and recogni-
tion tasks. In this context we suppose that
the aim is to extract a connected object A rep-
resented by its membership function µA and
that a first approximation µA ≥ µA of this
structure (from grey-level prior for instance)
is known. Besides we have some prior knowl-
edge about A expressed as a criterion function
fC : F → {0, 1} such that fC(µA) = 1.
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The operator on F defined as:

ξ(µA) =
∨
{ν ∈ H2

τ |ν ≤ µA et fC(ν) = 1},
(1)

satisfies the property µA ≤ ξ(µA) ≤ µA. The
resulting fuzzy set is thus a better approxima-
tion of µA than µA. We can notice that this
operator is increasing, idempotent and anti-
extensive and is thus a morphological open-
ing.

However without any condition on fC the
computation of such a filter requires to eval-
uate the criterion over all elements of H2

τ

smaller than µA and has an exponential com-
plexity. To overcome this, we can take advan-
tage of the following property: ∀ν ∈ H2

τ , ν ≤
µA ⇒ ∃µi ∈ H2

τ (µA), ν ≤ µi. If we restrict
ourselves to increasing criteria, the computa-
tion of ξ(µA) can be performed over the τ -
hyperconnected components of µA, the most
time consuming operation being the tree com-
putation in quasi-linear time [5]. The filter
rewrites:

ξ(µA) =
∨
{ν ∈ H2

τ (µA)|fC(ν) = 1}. (2)

This filter is connected in the sense of defini-
tion 4. Moreover it only processes connected
components of µA and corresponds then to the
intuitive notion of attribute openings.

This definition is illustrated in Figure 3. The
criterion is defined as a minimal area of 10000
(the area of a fuzzy set is defined as S(µ) =∑

x∈X µ(x)). During the tree (b) computa-
tion from the fuzzy set (a), we compute for
each node the associated area. We then ob-
tain the 0.6-hyperconnected components (b)
and (c). Their areas are respectively 8612
and 11520 and can be easily obtained from
the nodes area. The first one does not sat-
isfy the criterion. The second one does and
is the resulting subtree in this case (c) which
represents the fuzzy set (d).

4.2 Extension to a fuzzy criterion

The filter proposed in the previous section
only manages crisp criteria. It follows that
it is not continuous since a small modification
of the input set may result in the modifica-
tion of a complete connected component. To

0

434

375

283

4179

753

254

320 2572

1922

253

248

201

458

Area : 8612

(a) (b)

0

434

375

283

4179

753

254

320 2572

1922

253

248

201

458

Area : 11520

(c) (d)

Figure 3: (a) Fuzzy set. Two 0.6-hyperconnected
components (b) et (c) in red (the nodes are labeled
by their area). The second one satisfies the crite-
rion (c) whereas the first one does not. (d) Re-
sulting fuzzy set.

overcome that and to achieve more robustness
in the filtering process, we extend in this sec-
tion the previous definition to fuzzy criteria.
For instance the minimal area criterion can be
represented by a membership function (corre-
sponding for instance to a linguistic value such
as "large"). The satisfaction of the criterion
is thus defined as a degree.

We propose to preserve connected fuzzy sub-
sets whose maximum membership degree is
less or equal than the satisfaction degree of
the criterion (which guarantees the idempo-
tence of the filter):

ξµf
(µA) =

∨
{ν ∈ H2

τ |
ν ≤ µA and max

x∈X
ν(x) ≤ µf (ν)}. (3)

This operator is also a morphological opening
and reduces to Equation 1 if µf is crisp.

Proposition 5 If µf is continuous and k-
Lipschitz, then the mapping associating µ to
ξµf

(µ) is continuous and max(1, k)-Lipschitz.

For computational purposes, we also assume
that µf is increasing. We can show that Equa-
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tion 3 then rewrites as:

ξµf
(µA) =

∨
µi∈H2

τ (µA)

∨
m∈[0,1]

{min(µi,m)|

m ≤ µf (min(µi,m))}. (4)

This leads to a fast computation of ξµf
(µA)

since we only have to handle the τ -
hyperconnected components "levelled" at m
(i.e. min(µi,m)).

We illustrate this definition in Figure 4. The
criterion is here defined as a membership func-
tion µS : R+ → [0, 1] (b) representing a min-
imal area. First we extract from the tree
(which represents the fuzzy set (a)) the 0.6-
hyperconnected components. One is shown in
(c). These components are then progressively
levelled from 1 to 0 and the satisfaction degree
of the criterion µS(S(ν)) is computed for each
levelled subtree. If the level is less or equal to
this degree we add the levelled subtree to the
resulting subtree (d). We show for the 0.6-
hyperconnected component in (c) the area at
different levels, the satisfaction degree of the
criterion µS and finally whether the levelled
subtree has to be added to the result or not.

5 Filtering

We propose in this section two connected fil-
ters that can be used in a segmentation and
recognition process, implementing the idea of
deriving an estimation of µA from a first rough
overestimation µA and a criterion.

5.1 Marker inclusion based

We define a criterion from another estimation
µA of µA, such that µA ≤ µA (µA is a marker
of the target object):

ξ1µA
(µA) =

∨
{ν ∈ H2

τ |ν ≤ µA and µA ≤ ν}.
(5)

However, as illustrated in Figure 5, this fil-
ter is not continuous with respect to µA. The
marker in dashed red (b) satisfies the inclusion
constraint with two connected components of
(a). A small modification of this marker leads
in (c) to the satisfaction of the constraint with

4000 6000 8000 10000 12000
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  AreaLevel µS Criterion
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(c)

(d) (e)

Figure 4: (a) Fuzzy set. (b) µS in red plain,
in dashed blue the values (S(min(µi,m)),m).
One 0.6-hyperconnected component (c). For
each level m, we show the area of min(µi,m),
µS(S(min(µi,m))) and the satisfaction of the cri-
terion maxx∈X ν(x) ≤ µS(S(ν)). Resulting sub-
tree (d) and associated fuzzy set (e).

the four connected components. In (d) the in-
cluded set is not strictly included in any con-
nected component of (a). The filter thus re-
turns an empty set.

 

 

 

 

 

 

 

 

(a) (b) (c) (d)

 

 

 

 

 

 

 

 

(e) (f) (g) (h)

Figure 5: Filtering of a fuzzy set (a) by various
markers (in red) according to Equation 5 (b-d) or
Equation 6 (e-h). The result is displayed in blue.

Instead of considering a strict inclusion, we
can rely on a fuzzy one, based on Lukasiewicz
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operator [3]: µ≤(µA, µB) = minx∈X min(1, 1−
µA(x) + µB(x)). The filter defined by Equa-
tion 3 then writes:

ξ2µA
(µA) =

∨
{ν ∈ H2

τ | ν ≤ µA and

max
x∈X

ν(x) ≤ µ≤(µA, ν)}. (6)

Proposition 6 Let α = maxx∈X µA(x). The
result of the connected filter defined in Equa-
tion 5 is (α− (1− τ))−hyperconnected.

The results of this filter are also illustrated in
Figure 5 (e-h). We can notice that the input
fuzzy set is now progressively filtered when the
marker gets larger and larger. Intuitively, hy-
perconnected components verifying the inclu-
sion constraint are kept, while the other ones
are reduced to a level corresponding to the de-
gree of satisfaction of the constraint.

Proposition 7 The mapping associating µA
to ξ2µA

(µA) is continuous and Lipschitz, such

as the mapping that associates µA to ξ2µA
(µA).

We illustrate now this connected filter on a
brain recognition task in Figure 6. As an ex-
ample, we want to extract the right lateral
ventricle from a brain MRI (a). We rely on
anatomical knowledge expressed as spatial re-
lations between structures [1], and on grey
level information. This allows us to obtain
an over-estimation µLV r as close as possible
to the structure of interest. We define µGlLV r

representing the knowledge on grey levels, so
as to have µLV r ≤ µGlLV r

(b). Once the brain
has been segmented, it becomes possible to
represent the central location of the ventri-
cles inside the brain (c), so as to guarantee
µLV r ≤ µSpLV r

. The conjunctive fusion of
µSpLV r

and µGlLV r
is shown in (d), and pro-

vides an over-estimation µLV r. Although the
over-estimation has been strongly reduced, it
still exhibits several connected components.
We illustrate now the effect of ξ2µLV r

(µLV r),
based on a marker µLV r defined as a fuzzy
set having a support reduced to one point
centered in the right lateral ventricle, with
a membership value taking values 1 (which
mostly selects the right ventricle), 0.75, 0.5
and 0 (which does not filter), respectively (e–
h). A potential application of this approach

is to perform a filter, preserving connectivity
properties, and being more or less strong de-
pending on the confidence we may have in the
marker.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: (a) One axial slice of a 3D brain MRI.
(b) Grey level information: µGlLV r . (c) Central
location inside the brain: µSpLV r . (d) Conjunc-
tive fusion. (e–h) Results of the connected filter
specified by Equation 6 using a marker centered
in the right ventricle, with maximal value 1, 0.75,
0.5, 0, respectively.

5.2 Fuzzy area opening

Area opening is one of the well known con-
nected operators [10]. It filters connected
components over a minimal area criterion, and
can be formulated as:

ξSmin
(A) =

∨
{c ∈ C|c ≤ A et S(c) ≥ Smin},

where C is a connection over X and S a func-
tion that returns the area. In the example de-
veloped above we used a criterion based on the
area of fuzzy objects. However it may be more
appropriate to consider a fuzzy measure [3]:
µS(µ)(v) = supS(µα)≥v α. We can notice that
this membership function is decreasing. If we
consider as a criterion a minimal area Smin we
obtain:

ξ1Smin
(µA) =

∨
{ν ∈ H2

τ |ν ≤ µA and

max
x∈X

ν(x) ≤ µS(ν)(Smin)}.

For more flexibility in recognition tasks, it is
more appropriate to represent the criterion by
a membership function µSmin

: R+ → [0, 1]

658 Proceedings of IPMU’08



(for instance a ramp function replacing the
crisp threshold). The filter then rewrites:

ξ2µSmin
(µA) =

∨
{ν ∈ H2

τ |ν ≤ µA and

max
x∈X

ν(x) ≤ max
v∈R+

min(µS(ν)(v), µSmin
(v))}.

Figure 7 illustrates these filters. The fuzzy
set (a) contains 7 objects of increasing area.
Their fuzzy area µS(µ)(v) is represented in
(b). We first apply ξ21202 (c). All α-cuts of
the 1-hyperconnected components that satisfy
the criterion are selected. The use of a mem-
bership function (b) as criterion leads to more
robustness of the filter (d).

Proposition 8 The mapping that associates
µ to ξ2µSmin

(µ) is continuous and Lipschitz, as
well as the mapping that associates µSmin

to
ξ2µSmin

(µ).

0 2000 4000 6000
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0.2

0.4

0.6

0.8

1

(a) (b) (c) (d)

Figure 7: (a) Fuzzy set that contains 7 objects.
(b) µS(µ)(v) for each object in blue and µSmin in
dashed red. (c) ξ11202. (d) ξ2µSmin

.

Figure 8 illustrates this filter on a brain MRI
example. We filter an overestimation µLV of
the lateral ventricles (b) according to a min-
imal volume prior represented by the mem-
bership function µSmin

. The resulting fuzzy
subset ξ2µSmin

is shown in (c). Some compo-
nents corresponding in particular to the sulci
are efficiently removed and we thus obtain a
better approximation of the lateral ventricles,
which can serve as a very good initialization
for a precise segmentation process.

6 Conclusion

In this paper we have introduced a new defini-
tion of connectivity for fuzzy objects and as-
sociated fuzzy attribute openings. This con-
nectivity tends to overcome some drawbacks
of classical definitions. We have shown that
the associated attribute openings exhibit some

(a) (b) (c)

Figure 8: (a) One axial slice. (b) µLV . (c)
ξ2µSmin

(µLV ).

nice continuity properties that are of prime
importance in image segmentation and recog-
nition tasks. Two specific attribute openings
were presented and illustrated as a component
of a recognition process of brain MRI.
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