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Abstract

In this paper, we propose an ex-
tension of connected filters into the
fuzzy set framework. We introduce
a modeling of imprecision via the in-
troduction of the fuzzy umbra image
concept which allows us to express
fuzzy connected operators for fuzzy
gray scale images. Using this new
tool, a set of filters families is pro-
posed and their properties are dis-
cussed. The expression of classical
filters in this new framework and
the introduction of a new filter ded-
icated to the processing of Digital
Breast Tomosynthesis (DBT) vol-
umes are also described.

Keywords: Fuzzy connected filters,
fuzzy umbra images.

1 Introduction

Connected filters [9] are powerful filters
widely used to simplify images. Since they
rely on the definition of connected compo-
nents (CC), they may in some cases not han-
dle perfectly the imprecision contained in im-
ages (e.g. with the presence of noise, two
non connected components can become con-
nected). However, expressing images using
fuzzy sets allows modeling gradual connec-
tivity, and thus can overcome this limitation.
For this reason it makes sense to extend this
kind of operator to fuzzy sets. Some other ap-
proaches exist to extend the notion of connec-

tivity as proposed in [12, 2]. However, fuzzi-
ness on gray levels has not been considered so
far.

First the concept of fuzzy umbra image, which
is suitable to model imprecision present in
gray scale images is proposed (Section 2), then
a definition of connected operators for fuzzy
subsets is introduced in order to extend them
to grayscale images (Section 3). Finally, the
expression of standard operators within this
framework is discussed (Sections 4-6), and
a new operator used to mark circumscribed
masses in DBT volumes is proposed as an il-
lustrative example (Section 7).

Note that due to the lack of space, most of
the time, only a sketch of the proofs will be
given.

2 Fuzzy umbra images

In the following developments, the notations
presented in Table 1 will be used.

Definition 2.1. F ∈ F is a fuzzy umbra im-
age (FUI) iff ∀p ∈ Ω,∀g1 ∈ E, ∀g2 ∈ E g1 ≤
g2 ⇒ F (p, g1) ≥ F (p, g2).

A fuzzy umbra image is a direct extension of
the crisp umbra image concept: the dimen-
sion of the nD gray scale image is increased
to get a (n + 1)D binary image. In our case,
imprecision in gray scale images is expressed
using fuzzy sets in the umbra images. Thus,
for a fuzzy umbra image (F ), ∀p ∈ Ω,∀g ∈ E:
F (p, g) represents the satisfaction degree of
the property: the image intensity is greater
or equal to g at point p.
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Table 1: Notations.
Ω image bounded domain with a dis-

crete connectivity
E gray scale set
I set of natural images I : Ω → E

S set of fuzzy sets defined on Ω (Ω →
[0, 1])

F set of fuzzy sets defined on Ω × E
(Ω× E → [0, 1])

2Ω set of sets included in Ω (Ω →
{0, 1}). Obviously, we have: 2Ω ⊂
S.

2Ω×E set of sets included in Ω× E ( Ω×
E → {0, 1}). Obviously, we have:
2Ω×E ⊂ F .

K set of fuzzy subsets defined on R+

(R+ → [0, 1])
[0, 1]S set of fuzzy subsets included in S.

Definition 2.2. The image-to-FUI conver-
sion operator um : I → 2Ω×E , which de-
scribes a conversion process of a gray scale
image into an umbra image is defined as:

∀I ∈ I,∀p ∈ Ω,∀g ∈ E
um(I)(p, g) =

{
1 if I(p) ≥ g
0 otherwise

Since images in I do not explicitly hold im-
precision, the resulting umbra image is crisp,
but can still be interpreted as a fuzzy subset.

We denote by fα the α-cut of the set f (f ∈
S), for α ∈ [0, 1]. The same notation will be
used for α-cuts of fuzzy sets in F .

Definition 2.3. The FUI-to-image conver-
sion operator im : [0, 1] × F → I is defined
as:

∀α ∈ [0, 1],∀F ∈ F ,∀p ∈ Ω
imα(F )(p) = sup{g ∈ E/F (p, g) ≥ α}

This operator provides a way to come back
into the gray scale image domain from a fuzzy
umbra image. Since this last one is fuzzy, it
is necessary to have a way to deal with im-
precision (gray scale images cannot represent
it). Here this is done using an α-cut, which
allows to come back directly to the gray scale
domain by removing imprecision.

a b c

Figure 1: Filtering of a crisp set (a) with
a connected operator (b) and with a non-
connected operator (c).

3 Families of fuzzy connected
operators

Definition 3.1. An operator φ : S → S
is fuzzy connected (FC) iff ∀f ∈ S,∀α ∈
[0, 1] (Cb(fα ∩ φ(f)α) ⊆ Cb(fα)) ∧ (Cb(fα ∩
φ(f)α) ⊆ Cb(fα))

with: Cb(N) = {set of CC of N} and N de-
notes the complementation.

In other words, each α-cut of the filtered im-
age is handled as in the crisp case. The idea is
that each CC of the background (resp. the ob-
ject) can become entirely object (resp. back-
ground) or stay as it. That is, a CC cannot
be modified and a connected operator cannot
create new contours: it can only keep or sup-
press them. Figure 1 illustrates this process.

Let Ψ = {ψl,F : S → S/l ∈ E,F ∈ F} be a
set of operators.
Definition 3.2. Ψ is a set of weak fuzzy con-
nected operators (SWFCO) iff:

∀l ∈ E,∀F ∈ F ψl,F is FC (1)
∀l ∈ E,∀F ∈ F ,∀f ∈ S ψl,F (f) ⊆ f (2)

where ⊆ denotes the classical inclusion on S.

A weak connected operator (ψl,F ) is the ex-
tension of an anti-extensive connected opera-
tor in the crisp case. The three indices have
different meaning, and may in some cases be
suppressed (examples will be shown in this
paper). Parameters l and F correspond to
external data that will be used in the defini-
tion of connected operators dedicated to fuzzy
umbra images. They will allow defining oper-
ators that rely not only on components em-
beding but also on an image content (for in-
stance the filtered one). This corresponds to
the extension of filters such as the volume lev-
elling [10].
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Definition 3.3. Ψ is a set of basic fuzzy con-
nected operators (SBFCO) iff:

Ψ is a SWFCO (3)
∀l ∈ E,∀(F, F ′) ∈ F2,∀(f, h) ∈ S2

(f ⊆ h) ∧ (F ⊆ F ′) ⇒ ψl,F (f) ⊆ ψl,F
′
(h)

(4)

Because these operators are increasing
(Eq. 4), a fuzzy umbra image operator
constructed using such a Ψ will be increasing
as it will be shown later.
Definition 3.4. Ψ is a set of ordered fuzzy
connected operators (SOFCO) iff:

Ψ is a SBFCO (5)
∀(l1, l2) ∈ E2,∀F ∈ F ,∀f ∈ S
l1 ≥ l2 ⇒ ψl1,F (f) ⊆ ψl2,F (f) (6)

Here, the definition of Ψ is refined by the in-
troduction of the increasingness with respect
to l. It will be shown later that this is a suffi-
cient condition to ensure that filtered FUI are
still FUI.

Let Ψλ be a set of functions parametrized by
λ ∈ R+: Ψλ = {ψl,Fλ : S → S/l ∈ E,F ∈ F}
Definition 3.5. Ψλ is a set of extended fuzzy
connected operators (SEFCO) iff:

∀λ Ψλ is a SOFCO (7)
∀(l1, l2) ∈ E2,∀(λ, µ) ∈ K2,
∀F ∈ F ,∀f ∈ S
(λ ≥ µ) ∧ (l1 ≥ l2) ⇒ ψl1,Fλ (f) ⊆ ψl2,Fµ (f)

(8)

∀l ∈ E,∀F ∈ F ,∀f ∈ S ψl,F0 (f) = f (9)

Here the definition of Ψ is refined by adding
a parameter λ with respect to which the op-
erator is decreasing. The idea is to provide a
framework to express fuzzy extinction filters.
Typically λ corresponds to a threshold on an
attribute (area, volume, etc.) computed on
fuzzy sets. Using this threshold, we can eval-
uate how a fuzzy connected component van-
ishes.

4 Extinction operators

Definition 4.1. S : S × S → [0, 1] is a simi-
larity measure iff [4]:

∀f ∈ S S(f, f) = 1 (10)
∀(f, h) ∈ S2 S(f, h) = S(h, f) (11)
∀(f, h, j) ∈ S3

min(S(f, h), S(h, j)) ≤ S(f, j) (12)

These properties mean that S has to be reflex-
ive (Eq. 10), symmetrical (Eq. 11) and max-
min transitive (Eq. 12).

Definition 4.2. The connectivity degree [8]
between two points p and p′ of Ω2 is
cµ(p, p′) = max

L∈{Pathp,p′}
(min
pi∈L

µ(pi))

where {Pathp,p′} denotes the set of all paths
from p to p′ according to the connectivity on
Ω.

Definition 4.3. The connected component
associated to a point p ∈ Ω is expressed [8]
as ∀p′ ∈ Ω Γpµ(p′) = cµ(p, p′).

Considering a Ψλ SEFCO, the notion of fuzzy
persistence of a fuzzy connected component at
a point of Ω in a FUI can be introduced using
the following definition:
Definition 4.4. The fuzzy persistence oper-
ator pers : F × E × Ω → K is defined as:

∀F ∈ F ,∀g ∈ E,∀p ∈ Ω,∀λ ∈ R+ ∈ Ω
pers(F, g, p)(λ) = S(ΓpF (∗,g),Γ

p

ψg,F
λ (F (∗,g)))

with F (∗, g) the fuzzy subset (f ∈ S) verify-
ing ∀p ∈ Ω f(p) = F (p, g).

For a gray level g, pers(F, g, p)(λ) corresponds
to the degree to which the component associ-
ated with p is still present after filtering by ψλ.
The resulting fuzzy quantity pers(F, g, p) rep-
resents how the component vanishes accord-
ing to λ (see Figure 2). This formulation aims
at representing the same concept as classical
extinction functions.

5 Fuzzy connected operators on
fuzzy gray scale images

Now, using the former definitions of con-
nected operators for fuzzy sets, we propose
a way to process fuzzy grayscale images.

Definition 5.1. Let Ψ be a SWFCO, the op-
erator δΨ : F → F associated to Ψ working
on fuzzy images is defined as ∀F ∈ F ,∀p ∈
Ω,∀g ∈ E δΨ(F )(p, g) = ψg,F (F (∗, g))(p).
Such a filter processes separately the fuzzy
subsets extracted from each gray level of the
umbra image. Nonetheless, thanks to the in-
dices g and F , corresponding to external data,
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Figure 2: Persistence (f) of a fuzzy connected
component ΓpF (∗,g) (c) from the set F (∗, g) (b)
extracted from an umbra image (a). (d) and
(e) represent Γp

ψg,F
λ (F (∗,g)) for increasing values

of λ.

information about the whole image can still
be retrieved.

Using the properties Ψ may have, let us dis-
cuss some properties such an operator δΨ in-
herits.

It would also be interesting to define another
type of operator like ψg,F

′
(F (∗, g)) with F ′ an

image different from the one to be filtered. In
this case F ′ would represent some real exter-
nal data.

Theorem 5.2. A filter associated to a Ψ
SOFCO returns a FUI if its input is a FUI.

Proof. This results from the anti-extensivity
(Eq. 4) and the increasingness (Eq. 6) of the
operators ψg,F .

Theorem 5.3. A filter δ constructed from a
Ψ SBFCO is increasing.

Proof. This is because the operators ψg,F are
increasing.

Theorem 5.4. A filter δ constructed from a
Ψ SWFCO verifying ψl,F (f) = ψl,F

′
(ψl,F (f))

is idempotent.

Proof. This comes directly from ψl,F (f) =
ψl,F

′
(ψl,F (f)).

The hypothesis about the lack of link between
F and F ′ is strong. Actually, idempotent fil-
ters are usually not relying on l and F . An

instance based on component cardinal will be
detailed later.

Theorem 5.5. A δΨ based on a Ψ SBFCO
that verifies ∀(F, F ′) ∈ F2,∀l ∈ E, ∀f ∈
S ψl,F (f) = ψl,F

′
(ψl,F (f)) is a morphologi-

cal filter (i.e. idempotent and increasing).

Theorem 5.6. A δΨ based on a Ψ SWFCO
is anti-extensive.

Proof. Anti-extensivity is inherited from the
anti-extensivity of the ψg,F .

Theorem 5.7. A δΨ based on a Ψ SBFCO
that verifies ∀(F, F ′) ∈ F2,∀l ∈ E, ∀f ∈
S ψl,F (f) = ψl,F

′
(ψl,F (f)) is an algebraic

opening (i.e. an anti-extensive morphological
filter).

In order to interpret filtered images that are
not FUI, an aggregation operator can be used.
This is a suitable way to pass from the umbra
image to the domain of the image, and allows
to deal with problems of interpretation that
can arise with thinning-like [3] operators (e.g.
creation of artificial edges).

Definition 5.8. The operator agg : F → S
is defined as:

∀F ∈ F , p ∈ Ω
agg(F )(p) = ⊥

g∈E
F (p, g)

with ⊥ : [0, 1]× [0, 1] → [0, 1] a t-conorm.

Figure 3 shows how agg works. In this ex-
ample, only components which lie in a given
size range are kept in the filtered image. The
aggregation operator enables to see where in
Ω the objects that verify this property are lo-
cated.

Ω

E

(a)

Ω

E

(b)

1

0
Ω

(c)

Figure 3: Aggregation (c) of a FUI image (a)
filtering result (b).
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6 Link with crisp connected
operators

We will now express how regular filters (e.g.
crisp attribute opening [11]) are expressed in
this new framework.
Definition 6.1. For any crisp set N , the con-
nected component associated to a point is de-
fined as:

∀(p, p′) ∈ Ω2

bΓpN (p′) =


1 if p and p′ are connected in

N or N
0 otherwise

The connectivity used in N and N can be dif-
ferent. For instance, using the 4-connectivity
in N will force to use use the 8-connectivity
in the background.

Definition 6.2. δ : F → F is a fuzzy ex-
tension of the operator G : I → I iff: ∀I ∈
I im1(δ(um(I))) = G(I).

Let A : Ω× E × I × 2Ω → R+ verifying:

∀g ∈ E,∀p ∈ Ω,∀I ∈ I,∀N ⊆ Ω,∀p′ ∈ Ω
p′ ∈ bΓpN ⇒ Ag,Ip′ (N) = Ag,Ip (N)

(13)

∀(g1, g2) ∈ E2,∀p ∈ Ω,∀I ∈ I,∀N ⊆ Ω,
g1 ≤ g2 ⇒ Ag1,Ip (N) ≥ Ag2,Ip (N) (14)

∀g ∈ E,∀p ∈ Ω,∀(I, I ′) ∈ I2,
∀N ⊆ Ω,M ⊆ Ω,
(I ≤ I ′) ∧ (N ⊆M) ⇒ Ag,Ip (N) ≤ Ag,I

′
p (M)

(15)

An operator A can be interpreted as a mea-
sure performed on a connected component of
a set N or N that contains p. This measure is
relying on data provided by the image I and
the gray level g.

Let A′ : Ω× E × I → R+ defined as:

∀g ∈ E,∀p ∈ Ω,∀I ∈ I,
A

′g
p (I) = Ag,Ip (X+

g (I))
(16)

with X+
g the threshold operator.

A′ represents a restricted version of A. Ac-
tually, a relation between N , g and I is in-
troduced: N is the thresolding of I at level
g.

Finally, the operator G : R+×I → I is intro-
duced and defined as: ∀λ ∈ R+,∀I ∈ I,∀p ∈

Ω Gλ(I)(p) = sup{g ∈ E/A′g
p (I) ≥ λ}. Ob-

viously, using Eq. 16 this can be rewritten as:
Gλ(I)(p) = sup{g ∈ E/Ag,Ip (X+

g (I)) ≥ λ}.
Gλ represents a connected filter that removes
maxima of I that do not satisfy a criterion
modeled by A. It will be shown later that
filters like volume levelling or area opening
can be expressed this way.
Theorem 6.3. An operator δΨλ

based on a
Ψλ =

{
ψg,Fλ : S → S/g ∈ E,F ∈ F , f ∈ S

}
, λ ∈

R+ with ∀p ∈ Ω:

ψg,Fλ (f)(p) = sup

{
α ∈ [0; f(p)]/
A
g,im1(Fα)
p (fα) ≥ λ

}

is a fuzzy extension of the operator Gλ ex-
pressed as:

∀I ∈ I,∀p ∈ Ω
Gλ(I)(p) = sup{g ∈ E/A′g

p (I) ≥ λ}

Proof. im1(δλΨ(um(I)))(p) can be rewritten as:

sup

{
g/sup

{
α ∈ [0, 1]/
A
g,im1(um(I)α)
p (X+

g (I)) = λ

}
≥ 1

}
.

Furthermore, using Eq. 15, it can be shown
that: ∀p ∈ Ω,∀g ∈ E A

g,im1(um(I)α)
p (X+

g (I)) ≤
A
g,im1(um(I)0)
p (X+

g (I)). Thus (because ∀α ∈
]0; 1] um(I)α = um(I)1, since um(I) is crisp):
im1(δλΨ(um(I)))(p) = sup{g/Ag,Ip (X+

g (I)) ≥
λ} = Gα(I).

Each element of this set Ψ can be interpreted
as the filtering of each α-cut of f and F . Here,
this is not Fα that is directly used but rather
im1(Fα). This can be seen as a way to gener-
ate an image in I from the α-cut of F , which
will be used as external data (as it is the case
for g) to perform the measures on the set f .
The quantity ψg,Fλ (f)(p) represents the maxi-
mal membership degree α for which a measure
on fα is greater or equal to a given threshold
λ. A concrete instance based on the cardinal
of a set will illustrate this formulation later.

Theorem 6.4. Ψ built from a A is SEFCO.

Proof. Using an α-cut decomposition, Eq. 13
leads to Eq. 1. Furthermore, Eq. 2 is ob-
viously verified (definition of ψg,Fλ ). Then
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Eq. 15 can be used to show Eq. 4. This re-
sults in a Ψ SBFCO. Eq. 8 can be proved us-
ing Eq. 14. And finally, by definition, we have
Eq. 9. For those reasons, Ψ is a SEFCO.

Using the former theorems, the extensions of
two regular filters (volume levelling and area
opening) can be introduced.

Let us define V ol : Ω× E × I × 2Ω → R+ as:

∀p ∈ Ω,∀g ∈ E,∀I : I,∀N ⊆ Ω
V olg,Ip (N) =

∑
y∈ bΓp

N

max(0, (I(y)− g))

This attribute corresponds to the volume in-
side max(0, I − g) on the domain defined by
the connected component of N that contains
p (see Figure 4).

V olg,I
p (N)

N

g

p

I

Figure 4: Computation of V olg,Ip .

Theorem 6.5. δΨV ol
λ

is a fuzzy extension of
the volume levelling GV olλ : I → I, λ ∈ R+

defined as: ∀I ∈ I,∀p ∈ Ω GV olλ (I)(p) =
sup{g ∈ E/V ol′gp (I) ≥ λ}.
with:

V ol′ : Ω× E × I → R+/∀g ∈ E,∀p ∈ Ω,
∀I ∈ I V ol

′g
p (I) = V olg,Ip (X+

g (I))

Proof. The operator V ol′ verifies the proper-
ties (13), (14) and (15). Using Theorem 6.3,
we derive that δΨV ol

λ
is a fuzzy extension of

GV ol.

Using the same approach, a similar result can
be obtained for the area opening.

Let us define Card : Ω×E×I×2Ω → R+ as:

∀p ∈ Ω,∀g ∈ E,∀I ∈ I,∀N ⊆ Ω
Cardg,Ip =

∑
y∈ bΓp

N

1

Theorem 6.6. δΨCard
λ

is a fuzzy extension of
the area opening GCardλ : I → I, λ ∈ R+

defined as: ∀I ∈ I,∀p ∈ Ω GCardλ (I)(p) =
sup{g ∈ E/Card′g

p (I) ≥ λ}.
with:

Card′ : Ω× E × I → R+/∀g ∈ E,∀p ∈ Ω,
∀I ∈ I, Card

′g
p (f) = Cardg,Ip (X+

g (I))

Proof. Card′ also verifies the properties (13),
(14) and (15), thus δΨCard

λ
is also a fuzzy ex-

tension of GCard.

7 Practical usage of fuzzy
connected operators

Now, we present a new filter modeled to mark
circumscribed masses in DBT volumes.

Definition 7.1. The set of the fuzzy con-
nected components of a fuzzy set is ex-
pressed using Q : S → [0, 1]S defined
as: ∀f ∈ S Q(f) = {Γpf/p ∈ Ω ∧
p is a point of a regional maximum of f}.

Using this definition there are as much fuzzy
connected component as maxima in the image
(see Figure 5).

1

0

(a)

1

0

(b)

1

0

(c)

1

0

(d)

Figure 5: Extraction of fuzzy connected com-
ponents (b, c, d) from a fuzzy subset (a).

Definition 7.2. Using the definition pro-
vided by [1], the fuzzy dilation D : S×S → S
can be expressed as:

∀(f, h) ∈ S2,∀p ∈ Ω
Dh(f)(p) = sup

p′∈Ω
{h(p− p′)⊤f(p′)}
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Definition 7.3. The fuzzy mean fmean :
F × S → R+ is computed as:

∀F ∈ F ,∀f ∈ S
fmean(F, f) =

P

p∈Ω
f(p)

P

g∈E

F (p,g)

fcard(f)

with fcard the fuzzy cardinal of a fuzzy set
as defined in [7].

This can be interpreted as counting the num-
ber of elements inside F weighted by their
membership to f (see Figure 6).

1 22.6632 1 1

F

f

1

0

1x0.5 1x1 1x3++
=1.8

0.5+1+1

Figure 6: Fuzzy mean computation.

Definition 7.4. The fuzzy contrast fctrast :
Ω×F × S → R is defined as:

∀F ∈ F ,∀f ∈ S,∀h ∈ S
fctrasth(F, f) = fmean(F, f)−

fmean(F,Dh(f) ∩ f)

with ∀f ∈ S,∀p ∈ Ω f(p) = 1− f(p).

The idea is here to subtract the mean inside
and outside the component. Inside the com-
ponent is modeled by f , and outside is de-
scribed by the intersection of f and the dila-
tion of f .

Let Ψmass = {ψFmass : S → S/F ∈ F} be an
operators set such that ∀f ∈ S,∀p ∈ Ω:

ψFmass(f)(p) =
max
h∈Q(f)

(min(h(p), tu1(fcard(h)))

⊤ max
h∈Q(f)

(min(h(p), ru2(fcomp(h)))

⊤ max
h∈Q(f)

(min(h(p), ru3(fctrast(F, h)))

with fcomp the fuzzy compacity of a fuzzy
set as defined in [7], t : R4 × R → [0, 1] the
trapeze function, r : R2×R → [0, 1] the ramp

function and where u1 ∈ R4, u2 ∈ R2 and
u3 ∈ R2 are some constants.

This Ψmass is composed of ψmass independant
to g. Each operator can be interpreted as
the aggregation of membership degrees cor-
responding to measures computed on the ob-
jects (fuzzy connected components) of f using
data of F . Here, the wanted objects that are
compact, contrasted and within a given size
range.

The gray scale operator δΨmass associated to
this Ψmass can be defined as:

∀F ∈ F ,∀p ∈ Ω,∀g ∈ E
δΨmass

(F )(p, g) = ψFmass(F (∗, g))(p)

Theorem 7.5. Ψmass is a SWFCO.

Proof. It can be shown that the ψg,F are
fuzzy connected using the fact that the max
and min are FC operators. Then the anti-
extensivity can be shown using the t-norm
monotony.

This family of operators provides weak prop-
erties compared to other families (SBFCO,
SOFCO or SEFCO), nonetheless, it can de-
fine an operator working on fuzzy images (F)
that is looking for objects verifying geometri-
cal properties in the image.

A practical usage of this filter, to mark cir-
cumscribed masses in a 3D mammography I
can be done using the following scheme:

• conversion of the mammography I to a
fuzzy umbra image F : processing us-
ing um, and imprecision introduction in
the umbra image for instance (note that
while the last step enables to use a mod-
eling of the image imperfections, this one
was skipped in the proposed example),

• computation of δΨmass(F ),
• partial defuzzyfication [5] using the oper-

ator agg.

Figure 7 illustrates a result from such a pro-
cess. Here, a slice (instead of the whole vol-
ume) of a breast reconstructed with iterative
techniques is filtered. The resulting image can
be interpreted for each pixel p of Ω as a mem-
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Figure 7: Filtering (b) of a digital breast to-
mosynthesis slice (a) using δΨmass .

bership degree to the class circumscribed ob-
ject. Furthermore, because of the fuzzy sets
usage, these degrees enable to evaluate how
much the objects verify the given criteria,
whereas it would not be possible with a crisp
formulation of the same filter (all or nothing
response). Thus the output of the filter may
be a suitable input for other processing like
classification using fuzzy decision trees [6].

8 Conclusion

A possible extension of connected filters into
the fuzzy set framework was proposed. This
formulation relies on the concept of fuzzy um-
bra images, which is a possible straightfor-
ward extension of umbra images which allows
expressing images with imprecision on their
gray levels.

The formulation proposed allows expressing
classical filters like area opening or volume
levelling, and thus seems to be a coherent ex-
tension for fuzzy images. Furthermore, us-
ing the flexibility provided by the fuzzy sets,
new filters can be designed like for instance a
detector of circumscribed objects, which may
be a good marker for circumscribed lesions in
DBT images.
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