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Abstract

Sequential methods for knowledge-
based recognition of structures re-
quire to define in which order the
structures have to be recognized.
We propose to address this problem
by integrating pre-attention mech-
anisms, in the form of a saliency
map, in the determination of the or-
der. As pre-attention mechanisms
extract knowledge from an image
without object recognition in ad-
vance and do not require any a pri-
ori knowledge on the image, they
provide useful knowledge for guid-
ing object segmentation and recog-
nition. Additionally, we make use
of generic knowledge of the scene,
expressed as spatial relations, since
they play a crucial role in model-
based image recognition and inter-
pretation due to their stability com-
pared to many other image appear-
ance characteristics. Graphs are
well adapted to represent this infor-
mation, and finding an order then
amounts to find a path in a graph.
The proposed algorithms are applied
on brain image understanding.
Keywords: pre-attention, saliency
maps, fuzzy sets, spatial relations,
graph, segmentation, cognitive vision
and image understanding.

1 Introduction

Sequential segmentation is a new approach for
complex scene analysis where objects are seg-

mented in a predefined order, starting from
the simplest object to segment to the most dif-
ficult one, according to a generic model of the
scene. The model encodes knowledge about
the objects characteristics as well as about
their spatial arrangement.

One of the difficulties raised by this approach
is the choice of the most appropriate order
that defines the sequence of objects to be
segmented. In [5], knowledge about objects
and their relations is encoded in a graph and
the segmentation sequence corresponds to a
path in this graph. The choice of the order is
thus expressed as a path optimization prob-
lem. However this preliminary method relies
on an atlas and does not directly take into
account the information issued from the im-
age. Therefore it is not appropriate for com-
plex applications such as pathological cases
in medical image processing, that may devi-
ate substantially from the generic model (the
atlas). In this paper, we propose a new ap-
proach to this problem integrating informa-
tion extracted from the data, based on the
notion of saliency.

An established way to model visual system
is pre-attentional and attentional mechanisms
[15]. Basically, the pre-attentional step pur-
pose is to guide the attentional step to se-
lect salient parts in the scene. This selec-
tion allows the attentional process to focus
only on the salient part (object or region)
and thus reduces the computational cost of
this mechanism. We can easily draw some
similarities between the sequential segmenta-
tion scheme and the visual system, the pre-
attentional mechanism corresponding to the
selection of the region of space where the next
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object could belong to, and the attentional
mechanism to the segmentation of the object
(and to its interpretation). In such a way the
sequential segmentation framework is viewed
as a scene exploration and analysis process
which constitutes our main contribution in
this paper. Another contribution is to dis-
cuss and to design an operational framework
of such a paradigm where a pre-attentional
mechanism is introduced in the process of op-
timizing the segmentation path.

This article is organized as follows. We
present in Section 2 the sequential segmen-
tation process framework, particularly the
model and the process of optimization of the
segmentation path. In Section 3, a brief
overview of the modeling of the visual sys-
tem is given as well as a presentation of the
pre-attentional mechanism used in the follow-
ing section. Then we present in Section 4 a
way to evaluate what information is given by
the attentional mechanism. Then, Section 5
presents a way to integrate the saliency map
into the segmentation process. Experiments
and results are presented in Section 6 on an
example of brain image understanding and
Section 7 draws some conclusions.

2 Optimized segmentation path for
sequential segmentation

In our sequential segmentation framework,
the graph is defined as follows: a vertex repre-
sents an object and a directed edge between
two structures A and B carries at least one
spatial relation between these structures. In
the following, we use fuzzy representations of
spatial relations, since they are appropriate to
model the intrinsic imprecision of several rela-
tions (such as “close to”, “behind”, etc.), the
potential variability (even if it is reduced in
normal cases) and the necessary flexibility for
spatial reasoning [1]. Here, the representation
of a spatial relation is computed as the region
of space in which the relation R to the struc-
ture A is satisfied. The membership degree
of each point corresponds to the satisfaction
degree of the relation at this point. Figure 3
(b) and (c) presents an example of a structure
and the region of space corresponding to the
region “to the left of” this structure.
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Figure 1: Left: A slice of a 3D brain magnetic
resonance image (MRI). Marked structures are:
LVl lateral ventricle, CDl caudate nucleus, THl
Thalamus and PUl Putamen. Right: A graph of
anatomical structures. Starting from the lateral
ventricle, the path to the putamen is optimized
as proposed in [5]. Each edge carries a spatial
relation and is valued by a fuzzy measure of sat-
isfiability between the fuzzy representation of the
spatial relation and the target object.

In [5], we proposed two methods to automat-
ically deduce a segmentation path from the
graph. In the first one, each edge of the graph
is valued with a fuzzy measure (like a M-
measure of satisfiability [2]) between the rep-
resentation of the spatial relation carried by
the edge and a model of the target structure.
The resulting graph is optimized according to
a criterion. Figure 1 shows an example of such
a graph with the valuation of each edge by a
fuzzy measure of satisfiability. In the other
method, a representation of the path is com-
puted as the union of the representation of all
spatial relations carried by the edge compos-
ing the path. Then, the representation of the
path is valued with a fuzzy measure (a fuzzy
entropy [8]) and the selected path is the “less
fuzzy” one according to this measure.

Atlas drawback In both cases, we have to
use a representation of the structure extracted
from an atlas. But the atlas is only a rough
representation and individual anatomy can
substantially deviate from it. Furthermore, it
does not provide any information about the
difficulty of segmenting each structure in a
real image (from a mathematical and algorith-
mical point of view). Hence, instead of consid-
ering one resulting path from a given atlas, we
propose now to rely on image information in a
complete data-driven approach. This leads to
a segmentation path that is adapted to each
image and to the segmentation difficulties in-
herent to the structures in that image, which
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is consistent with the idea of sequential seg-
mentation in which easier structures are han-
dled before the difficult ones.

3 Visual system and
pre-attentional mechanisms

We propose to introduce a pre-attentional
mechanism into our sequential segmentation
framework. We briefly introduce in this
section the usual visual system models and
the relations between attentional and pre-
attentional steps, and the computation of the
saliency map used in our experiments. One
of the most challenging problems of machine
vision is modeling the visual system and par-
ticularly the visual attention system which
allows us to efficiently deal with the com-
plexity of information by processing only the
most important part of it. Such a modeling
has been used for problems like visual search
[10, 13] or image exploration [9], among oth-
ers. The structure of the visual system has
also been used to design artificial retinas [3].

Basic features are used to detect the saliency,
like colors, intensity and orientation [6], but
also motion, depth, etc. In [4], a visually
salient feature is defined as “a feature or
stimulus that differs from its immediate sur-
round in some dimensions and the surround
is reasonably homogeneous in those dimen-
sions.” In data-driven approaches, these fea-
tures guide the attention, while in model-
driven approaches, some top-down knowledge
has to be included. The processing of these
features may be parallelized and computed
on the whole image. This task, to guide the
attention, is referred to as a pre-attentional
step. If there is a priori knowledge or a task
to achieve, i.e. for example, answer a ques-
tion like “how many people are represented
in this picture?” then the attention is differ-
ently driven [16].

Relations between pre-attentional and atten-
tional tasks are sequential in most approaches
and the attention is moved to the location in-
dicated by the pre-attentional step. Never-
theless, psychophysical experiments seem to
indicate that these two steps are in fact in-
tertwined. Finally, most approaches consider
that between these two steps, the attention is

Figure 2: Example of saliency map with en-
hanced contrast for visualization purpose.

focused on a location [6, 14] (space-based ap-
proaches), and the other on objects or groups
of objects [11]. In [12] a method which is both
space-based and object-based is presented.

Among the pre-attentional mechanisms, we
focus on the saliency map. This mecha-
nism allows selecting area (space-based ap-
proaches) using some basic features easily
computable on every type of images.

Saliency-maps Koch and Ullman pro-
posed a method to compute a saliency map for
scene analysis [6]. This approach uses three
basic features: intensity, color and orienta-
tion. For each feature, the difference between
a location and its immediate surrounding is
computed. The intensity feature corresponds
to the difference of contrast. For color, two
oppositions of colors are computed: between
red and green on the one hand, and between
blue and yellow on the other hand. And for
orientation, four directions are considered, us-
ing Gabor filters. Overall, seven features are
considered. Nine scale spaces are created with
dyadic Gaussian pyramids for each feature
and six maps are derived by center-surround
difference (denoted by ⊕ in the following) be-
tween the fine and the coarse scales of the
pyramid.

Finally, all maps corresponding to a same fea-
ture are normalized, and a conspicuity map
per feature (the sum of all corresponding
maps) is computed. Then the three conspicu-
ity maps are merged with a weighted mean to
produce the saliency map. The most salient
location is then detected using a winner-take-
all neural network (space-based approach).
The next salient location is an iteration of the
winner-take-all algorithm, after occlusion of
the previous most salient location. Figure 2
presents an example of a saliency map.

This approach is a data-driven bottom-up ap-
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proach, and the only top-bottom connections
are for the occlusion of the most salient lo-
cation. But more top-bottom connections are
required to define proto-objects [14], an exten-
sion of the first method recently presented. In
this case, the saliency map is computed as in
the original method, but once the most salient
location is detected, a feedback connection al-
lows finding which conspicuity map, and then
which map, produces this salient location (or
contributes the most). Then, a proto-object is
defined as the connected component (a pixel
belongs to the component if one of its neigh-
bors is in the component, and if its value is
higher than a threshold) at the same location
of the most salient location of the saliency
map, on the map which produces it.

Inclusion of the model In the sequen-
tial segmentation framework, we use a generic
model of the image, represented as a graph
where each vertex is an object of the image
and where edges represent spatial relations,
as presented in Section 2. Since objects are
iteratively segmented, we focus our attention
on an object, by using known spatial relations
with previously segmented objects. There-
fore, we propose to constrain the analysis of
the saliency map by our knowledge to com-
pute saliency only at relevant locations, i.e.
close to the target object. This location is de-
fined by the fusion of the fuzzy subsets repre-
senting known spatial relations between previ-
ously segmented objects which have an edge
in the graph with the target object. Figure
3 presents a saliency map and its restriction
around an object which allows exploring the
area of the image around the object.

4 Saliency evaluation on manually
segmented structures

The sequential segmentation framework de-
scribed in [5] makes use of generic knowledge
and an atlas (segmented database). It there-
fore cannot take into account the intrinsic seg-
mentation difficulties of each object. These
difficulties may vary strongly with respect to
the object features: shape, homogeneity, tex-
ture, boundaries or image noise. Depending
on the data, some generic rules could be con-
structed, (i.e. this object is more difficult to

segment than this other one). However such
rules are not necessarily valid for each image.
We make the assumption that the information
of saliency is directly related to the segmenta-
tion difficulties: an object with a salient bor-
der will be much simpler to segment than an
object with a less salient border. We therefore
propose a method to exploit saliency informa-
tion and compare all the areas of saliency cor-
responding to the previously segmented ob-
jects. The area of saliency for an object cor-
responds to the saliency map masked by the
segmentation (a binary map) of this object
and eventually its surrounding.

Depending on the class of segmentation al-
gorithms, we may not be interested in the
same features of the objects. If we consider
an edge-based segmentation algorithm, then
we consider that the most important feature
to take into account for image segmentation
is the border of the object. In this case, the
interesting part of the object should be ex-
tracted for example as the difference between
a dilation and an erosion of the segmenta-
tion of the object, in order to focus on the
surrounding of the border and to remove the
center part of the object. In a region-based
segmentation, the whole object is extracted
depending on a homogeneity criterion. The
saliency map is masked, in this case, by the
extracted object.

Once the saliency for the surrounding of each
object has been extracted, an histogram of the
saliency map is computed. A saliency distri-
bution for each object is then computed af-
ter normalization. Therefore, we estimate the
segmentation difficulty as a comparison of the
histograms of saliency. In our experiments
histograms are compared via their energy, de-
fined as e(H) =

∑
N h(n)2, where H is a his-

togram with N bins. Figure 6 presents two
histograms of several objects from two images.
Section 6 presents some experiments and re-
sults of this algorithm.

5 Using saliency for image
interpretation

Here, image segmentation is seen as a scene
exploration process, where only a small region
of space is analyzed at a given time. Also, the
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(a) (b) (c) (d) (e)

Figure 3: (a) A slice of a 3D Magnetic Resonance Image. (b) Left lateral ventricle. (c) Fuzzy subset
corresponding to the spatial relation “left of” (b). (d) A slice of the saliency map of MRI presented in
(a). (e) Saliency around the ventricle.

exploration of a new area of space uses the
previously explored area, (i.e. the segmented
objects are used to learn the scene context and
to segment the remaining parts of the scene).
The process is guided using a pre-attentional
mechanism, here a saliency map, which in-
dicates the most salient area of space in the
search domain. This area is computed using
the already known part of the scene and the
spatial relations existing between these ob-
jects and the objects still to be found. Figure
4 presents the general scheme of the method.

Initialisation. A first object is considered
as known and segmented. This object could
have been detected using saliency in the im-
age. But the choice of this initial object is
strongly related to the data (in brain imag-
ing, the lateral ventricle could be segmented
using a completely different scheme for exam-
ple).

Search domain. For each known segmented
object, the area of space close to this object
will be explored. This area is expressed by
the fuzzy representation in the image space
of the spatial relation “close to” i.e. the area
of space where the spatial relation is satisfied
(the support of this relation). This area is a
first restriction of the scene to the specific part
where the exploration of the scene will be con-
ducted. The union of the area of all objects
in relation with a target object will define the
search domain. This domain is a binary area.
The saliency search domain is the masking of
the saliency map of the whole image by the
search domain. Later, this area will again be
restricted using the spatial relations between
the known (i.e. recognized and segmented)
objects and the set of target objects.

Graph filtering. The generic model of the
data indicates all the objects of the scene, but
depending on the variability of the data, some
objects could disappear from the current im-

age, and new objects may appear as well (like
a tumor in medical imaging). In [5], the ex-
ploration of the scene relies on the shape of
the target object, and thus makes the assump-
tion that the generic model is always valid, i.e.
that each object from the graph is present and
no new object can be taken into account. The
adaptation to pathological cases is realized by
introducing the degree of stability of spatial
relations into the process as proposed in [7].
Here, the exploration relies on the previously
recognized objects only and not on the shape
of the target object. Instead, the saliency of
the area will be evaluated.

The set of target objects can be filtered to
obtain the objects which have a spatial re-
lation defined in the generic model with an
already known object. Likewise, the set of
known objects is reduced to the objects which
have a spatial relation with an object that
is still to be recognized. The obtained sub-
graph forms a bipartite graph composed by
both sets of known and target objects, and
by set of edges representing the spatial rela-
tions between both groups of vertices. Explo-
ration of the scene consists then in moving a
vertex from the set of target vertices to the
set of known vertices, and the selection of the
moving vertex is realized by the comparison of
the saliency of each object area in the search
domain, which corresponds to a model-driven
exploration of the scene.

Spatial localtion of a structure. For each
object of the target set, its spatial relations
with the set of known objects are represented
by the in-edges (oriented edges which target
is this vertex) of the corresponding vertex in
the graph. The fuzzy representations of these
spatial relations are computed in the image
space as the portion of space where the spatial
relations are satisfied according to a reference
object. Each pixel represents the satisfaction
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Figure 4: Block diagram of the proposed method to include a pre-attentional mechanism into sequential
segmentation.

of the relation between 0 (not satisfied) and
1 (completely satisfied). Since more than one
spatial relation could exist between two ob-
jects of the scene, the graph is attributed,
with an edge interpretor which computes the
merged representation of all spatial relations
defined between two vertices of the graph.
In our experiments, the representations are
merged using a t-norm. The conjunction of
all fuzzy representations in the image space
gives an area of space which includes the spa-
tial location of the target object. Note that
this spatial location could cover a large part of
the image space, particularly if the only spa-
tial relation between two objects is a relation
of direction.

Structure selection. Finally, for each can-
didate vertex, a search area and a saliency
histogram are computed. This search area re-
lies in combining the spatial relations derived
from the generic graph and the ones computed
from the image domain. We select the next
object to segment by an analysis of this his-
togram. Among other measures, the energy of
the histogram (as previously defined) is kept
as a criterion of selection and allows selecting
the most salient area and then the next object
to segment.

This method allows us to directly take into
account the information extracted from the
current image and does not rely on a repre-
sentation of the target objects during the pro-
cess.

6 Application on human brain
structures recognition

Saliency map in 3D MR images
Saliency maps, especially according to Koch
and Ullman, are usually computed on 2D nat-
ural images with a sufficient spatial resolution
in order to produce the requested scale of the
dyadic pyramid. In the case of 3D magnetic
resonance image (MRI), spatial resolution of
the image is often small. The IBSR database1

images used during our experiments have the
following size: 256 × 256 × 128. We limit
our pyramid to 7 scales (including the orig-
inal scale). The fine scales used to com-
pute maps are 1, 2 and 3. The coarse scales
are the fine scales plus a δ ∈ {2, 3}, i.e.
1 ⊕ 2, 1 ⊕ 3, 2 ⊕ 2, 2 ⊕ 3, . . . . Finally, the
saliency map is computed with the size of the
third level of the dyadic pyramid.

MRI provides only one channel which is con-
sidered as an intensity in the computation.
Since there is no color channel, color features
are not considered. For orientation, we use a
similar approach as in 2 dimensions, but on
3 different planes defined by the axis x and
y for the first plane, x and z for the second,
y and z for the last one. We considered 4
directions for each plane and removed the du-
plicates. Finally, 9 maps are extracted. Note
that we could extract more planes allowing to

1Internet Brain Segmentation Repository. The MR
brain data sets and their manual segmentations were
provided by the Center for Morphometric Analysis at
Massachusetts General Hospital and are available at
http://www.cma.mgh.harvard.edu/ibsr/
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take into account more directions thus better
isotropy.

Experiments have been conducted using a
manually segmented database of human brain
3D MRI (IBSR database). This database is
composed by 18 brain images with their seg-
mentations. The parameters of the member-
ship functions used to computed the represen-
tation of the spatial relations are learned on
a database of healthy case (IBSR) and patho-
logical cases (5 differents cases, corresponding
to different types of brain tumor).

Saliency on manually segmented struc-
tures The histogram in Figure 5 presents
the saliency for each of the three structures
on all images, and it shows the variation of
saliency, although the IBSR data set is quite
uniform. This variation shows that the mea-
sure of saliency takes into account specific in-
formation about each image.

Table 1: Saliency measures (energy measure of
saliency histogram) for 3 anatomical structures,
white matter (LWM) and gray matter (LGM) for
all images of the IBSR database. LCN: left cau-
date nucleus, LTH: left thalamus and LPU: left
Putamen.

LCN LTH LPU LWM LGM
0.065 0.057 0.068 0.026 0.015
0.097 0.064 0.095 0.041 0.020
0.039 0.033 0.042 0.027 0.017
0.050 0.031 0.054 0.026 0.017
0.038 0.028 0.107 0.027 0.018
0.054 0.038 0.099 0.038 0.025
0.039 0.024 0.046 0.023 0.018
0.040 0.026 0.046 0.020 0.014
0.039 0.026 0.061 0.026 0.020
0.045 0.030 0.060 0.027 0.014
0.037 0.025 0.048 0.019 0.011
0.033 0.029 0.032 0.026 0.017
0.037 0.033 0.069 0.031 0.020
0.046 0.030 0.061 0.025 0.017
0.033 0.026 0.044 0.017 0.014
0.032 0.025 0.044 0.022 0.015
0.045 0.032 0.049 0.022 0.020

Table 1 presents saliency measures for 3
anatomical structures of the human brain plus
the same measure for the white matter and
the gray matter. These measures (energy
of the histogram) are always high for the 3
anatomical structures. Figure 6 presents some
histograms of saliency for these structures.
Histograms of saliency for gray and white
matter are in most cases larger and lower than
histograms for other structures, and partic-
ularly the histogram of caudate nucleus and
putamen. Thus, there is more saliency in the
area of the anatomical structure than in ar-
eas of gray or white matter, which does not
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CaudateNucleus
Putamen
Thalamus

Figure 5: The histogram of the saliency of each
structure for all images in the database.

present much information. Comparing struc-
tures, it appears that the thalamus has gen-
erally lower values (it has less well defines
boundaries). Hence it can be expected that
it segmentation will be more difficult.

Sequential segmentation Starting from
the lateral ventricle, we are looking for the
next structure to segment. Table 2 presents
the measures of saliency for the two structures
connected to the lateral ventricle in the graph,
the caudate nucleus and the thalamus. De-
pending on the image, one or the other struc-
ture is selected, leading to a different path to
explore the scene.

Table 2: Measure of saliency corresponding to
both structures connected to the ventricle, for
each image in the IBSR database.

LLV LLV LLV LLV
Image to to Image to to

LCN LTH LCN LTH
1 0.035 0.030 11 0.018 0.023
2 0.048 0.044 12 0.017 0.018
3 0.018 0.019 13 0.017 0.018
4 0.018 0.019 14 0.019 0.022
5 0.017 0.017 15 0.017 0.017
6 0.022 0.022 16 0.017 0.016
8 0.017 0.018 17 0.014 0.016
9 0.016 0.018 17 0.014 0.016
10 0.021 0.021 18 0.019 0.019

7 Conclusion

We have presented a sequential segmentation
framework viewed as a scene exploration pro-
cess, and guided by a pre-attentional mech-
anism, here a saliency map. We show that
saliency provides information about the in-
trinsic difficulties of segmentation of any ob-
ject of the scene. The association of saliency
information and structural information ex-
pressed as fuzzy spatial relations is exploited
to optimize a segmentation path in which the
most difficult structures appear at the end.
Hence their segmentation can benefit of all846 Proceedings of IPMU’08
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Figure 6: Histograms of saliency for 4 anatomical structures, white matter and gray matter of the left
hemisphere in a 3D MRI. Left histogram: the saliency is high for all structures, ventricle and caudate
saliency histograms are clearly distinct from putamen and thalamus ones. Right histogram: in this
example the saliency is lower and all histograms are intertwined. In both cases, saliency of white matter
and gray matter are lower than saliency of internal structures.

information gathered during the segmenta-
tion of easier structures. First experiments
on brain images illustrate the potential of the
proposed approach. These experiments will
be further developed and evaluated in our fu-
ture work, in particular in pathological cases.
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