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Abstract—We propose a method for combining humanitarian 
mine detection sensors based on possibility theory. Firstly, 
different features are extracted from the sensor data. Possibility 
distributions are then derived from the features based on prior 
information. After that, the combination of possibility degrees is 
performed in two steps, on separate sensor level and between the 
sensors. Combination operators are chosen to account for the 
different characteristics of the sensors. The final decision is 
obtained by thresholding the fusion result. Promising results 
have been obtained on a set of real mines and  
non-dangerous objects. In particular a 100% mine recognition 
rate was achieved, with a limited number of false alarms. 

Keywords - humanitarian mine detection; information 
modeling; possibilistic fusion. 

I. INTRODUCTION  
Despite the great efforts and motivation of research teams 

around the world, there is no single sensor used for 
humanitarian mine detection that can reach the necessarily high 
detection rate in all possible scenarios. As a result, a very 
attractive way towards finding a solution is in taking the best 
from several complementary sensors. One of the most 
promising sensor combinations consists in an imaging metal 
detector (MD), a ground-penetrating radar (GPR) and an 
infrared camera (IR). We propose here a method based on 
possibility theory for combining these sensors, which can be 
easily adapted for other sensors and their combinations.  

Most of the efforts made in the field of fusion of dissimilar 
mine detection sensors are based on statistical approaches [1, 
2]. They provide good results for a particular scenario, but they 
ignore or just briefly mention that, once more general solutions 
are looked for, several important problems have to be faced in 
this domain of application [3]. Namely, the data have the 
following characteristics: (i) they are not numerous enough to 
allow for a reliable statistical learning; in case of humanitarian 
demining, it is necessary to have the highest possible detection 
rate with the highest possible confidence, which asks inevitably 
for an unrealistic number of samples per mine type for 
statistical learning; (ii) they are highly variable depending on 
the context and conditions; (iii) they do not give precise 
information on the type of mine (ambiguity between several 
types). In addition, it is not possible to model every object 
(neither mines nor objects that could be confused with them). 

In a previous work [4], a method based on belief function 
framework has been proposed. Here we propose an alternative 
approach, based on possibility theory, in order to take 
advantage of the flexibility in the choice of combination 
operators [5, 6]. This is exploited here to account for the 
different characteristics of the sensors to be combined. 

According to the general scheme of fusion as described in 
[7], the main steps of our approach include modeling of the 
available information and data (Section II), combination, i.e. 
the actual fusion step (Section III) and a final decision step 
(Section IV). Preliminary results are reported in Section V. 

II. INFORMATION MODELING 
From the data provided by the three types of sensors, a 

number of features are extracted, as in [4]. These features 
concern: 

• the shape (elongation and ellipse fitting) as well as the 
area of the object observed using the IR sensor,  

• the size of the metallic area in MD data,  

• the burial depth, the ratio between object size and its 
scattering function as well as the propagation velocity 
(thus the type of material) of the observed object using 
the GPR sensor.  

As an example, Fig. 1 contains a preprocessed B-scan 
(vertical slice in the ground, along the scanning direction) of 
GPR data. Due to the principles of operation of GPR, an object 
leaves hyperbolic signature in a B-scan. If this hyperbola is 
correctly detected, as illustrated in Fig. 1, the three GPR 
features can be directly related to the extracted hyperbola 
parameters [8]. 

Possibility distributions are then derived from the features 
based on prior information, such as the usual size of mines or 
the typical burial depth.  

A. IR features 
First two IR features, elongation and ellipse fitting, provide 

information mainly on regularity. We denote by π1I (MR) and 
π2I (MR) the possibility degrees of being a regular-shaped mine 
(MR), derived from these two features. Similarly,  π1I (MI)  and  
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Figure 1.  An example of GPR data (B-scan after background removal) and 
the extracted hyperbola  

π2I (MI) denote the possibility degrees of being an irregular-
shaped mine (MI). Then, possibility degrees of being a regular- 
shaped friendly object (FR) and irregularly shaped friendly 
object (FI) are defined too, and are denoted by π1I (FR) and π1I  
(FI) for elongation feature and by π2I (FR) and π2I (FI) for 
ellipse fitting feature. 

We calculate r1 as the ratio between minimum and 
maximum distance of bordering pixels from the center of 
gravity (we work on thresholded images) and r2 as the ratio of 
minor and major axis obtained from second moment 
calculation, from which the following possibility degrees are 
derived:  

 π1I (MR) = π1I (FR) = min (r1, r2),  (1) 

 π1I (MI) =π1I (FI) =1-π1I (MR).  (2) 

In case of ellipse fitting, let Aoe the part of object area that 
belongs to the fitted ellipse as well, Ao the object area, and Ae 
the ellipse area. Then we define: 

 
















 −−==

e

oe

o

oe
II A

A
A

AFRMR 5,5min,0max)()( 22 ππ ,(3) 

 )(1)()( 222 MRFIMI III πππ −== .  (4) 

Note that in cases where there is a reliable information that 
all mines have a regular shape, the possibility degrees of being 
MR can be reasigned to mines of any shape (M) while the 
possibility degrees of being MI can be reasigned to friendly 
objects of any shape (F).  

The area directly provides a degree π3I (M) of being a mine. 
Namely, since the range of possible antipersonnel (AP) mine 

sizes is approximately known, a degree of possibility of being a 
mine is derived as a direct function of the measured size: 
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where aI is the actual object area on the IR image, while the 
approximate range of expectable mine areas is between aImin 
and aImax (for AP mines, it is reasonable to set aImin = 15 cm2 
and aImax = 225 cm2). On the contrary, friendly objects can be 
of any size, so the measured size is uninformative about the 
possibility of being a friendly object. Hence, the possibility 
degree is set to one whatever the value of the size: 

 π3Ι (F) =1.  (6) 

B. MD features 
In reality, MD data are usually saturated and data gathering 
resolution in the cross-scanning direction is typically very 
poor, so the MD information used consists of only one feature, 
which is the width of the region in the scanning direction, w 
[cm]. As friendly objects can contain metal of any size, we 
define: 

 πMD (F) =1. (7) 

On the contrary, if there is some knowledge on the expected 
sizes of metal in mines, we can assign possibilities to mines as, 
e.g.: 
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C. GPR features 
All three features of GPR provide information about mines.  

In case of burial depth information (D), friendly objects can 
be found at any depth, while it is known that there is some 
maximum depth up to which AP mines can be expected. 
Typically, AP mines can rarely be found buried below 25 cm 
(Dmax), sometimes even much shallower, the depth being 
limited mainly by their activation principles. However, due to 
soil perturbations, erosions etc., mines can, by time, go deeper 
or shallower than the depth at which they were initially buried. 
Thus, for this GPR feature, possibility distributions for mines, 
π1G(M), and friendly objects, π1G(F), can be modeled as 
follows:  

 π1G(M) = 2
max )/cosh(

1
DD

, (9) 

 π1G(F) = 1.  (10) 
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Another GPR feature exploited here is the ratio between 
object size and its scattering function, d/k. Again, friendly 
objects can have any value of this feature, while for mines, 
there is a range of values that mines can have, and outside that 
range, the object is quite certainly not a mine: 
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 π2G(F) = 1,  (12) 

where m  is the d/k value at which the possibility distribution 
reaches its maximum value (here, m = 700, chosen based on 
prior information), and p  is the width of the exponential 
function (here, p = 400).  

Finally, propagation velocity, v, can provide information 
about object identity. Here, we extract depth information on a 
different way than in the case of the burial depth feature [8], 
and we preserve the sign of the extracted depth. This 
information indicates whether a potential object is above the 
surface. If that is the case, the extracted propagation velocity 
should be close to c = 3⋅108 m/s, the propagation velocity in 
vacuum. Otherwise, if the sign indicates that the object is 
below the soil surface, the value of v should be around the 
values for the corresponding medium, e.g., from 5.5⋅107 m/s to 
1.73⋅108 m/s in case of sand: 
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where vmax is the value of velocity with the highest possibility 
for mines (here, for sand, it is 0.5⋅ (5.5⋅107 +1.73⋅108) = 
1.14⋅108 m/s,  and for air, it is equal to c), and h is the width of 
the exponential function (here, h = 6⋅107 m/s). If the extracted 
velocity value differs significantly from expected values for 
that medium, it can be expected that there is no object (so mine 
as well) indeed so, again, friendly objects can have any value 
of the velocity: 

 π3G(F) = 1.  (14) 

III. COMBINATION 
The combination of possibility degrees is performed in two 

steps. The first one applies on all features derived from one 
sensor. The second one combines results obtained in the first 
step for all three sensors. 

Let us first detail the first step for each sensor. For the IR 
sensor, the proposed combination is: 

 
π Ι (Μ)= π3Ι (Μ)+ (1−π3Ι (Μ))⋅max(π1Ι (ΜR), π1Ι (ΜΙ))⋅       
                max(π2Ι(MR), π2Ι (ΜR)). (15) 

Since mines can be regular or irregular, the safest way to 
combine information about regularity is by using a disjunctive 
operator (here the max), to be sure not to miss a mine. The two 
shape constraints (elongation and ellipse fitting) should be both 
satisfied to have a high degree of possibility of being a mine. 
Therefore they are combined in a conjunctive way (here using 
a product). Finally, the object is possibly a mine if it has a size 
in the expected range, or if it is not in the expected range, but 
satisfies the shape constraint, hence the final combination. 

In case of GPR, it is possible to have a mine if the object is 
at shallow depths and its dimensions resemble a mine and the 
extracted propagation velocity is appropriate for the medium. 
Thus, the combination of the obtained possibilities for mines is 
performed using a t-norm, expressing the conjunction of all 
criteria. Here the product t-norm is used: 

 π G(Μ)= π1G(Μ)⋅π2G(Μ)⋅π3G(M). ( 16 ) 

For MD, as there is just one feature used, there is no first 
combination step and the possibility degrees obtained using (7) 
and (8) are directly used.  

The second combination step is performed using the 
algebraic sum: 

      π (Μ) = πI (Μ) +πMD(Μ) +πG(Μ)− π Ι (Μ)⋅πMD(Μ)− πΙ (Μ)⋅ 
             πG(Μ) − πMD(Μ)⋅πG (Μ) +πΙ (Μ)⋅πMD(Μ) ⋅π G(Μ), (17) 

leading to a strong disjunction [5, 9], since the final possibility 
should be high if at least one sensor provides a high possibility. 
This operator is also chosen based on the fact that it is better to 
assign a friendly object to the mine class than to miss a mine. 

IV. DECISION 
The final decision is simply obtained by thresholding the 

fusion result for M. As almost all possibility degrees obtained 
at the fusion output are either very low or very high, the 
selected regions having very low values of π (M)  (below 0.1) 
are classified as F, and the ones with very high values (above 
0.7) are classified as M. There are only a few regions at which 
the resulting possibility degree for M has an intermediary 
value. In these cases, as mines must not be missed, the decision 
is M. In future work, an alternative will be to derive the 
combination rule for F as well, compare the final values for M 
and F and derive an adequate decision rule.   

 

V. RESULTS  
The proposed approach has been applied to a set of known 

objects, buried in sand, leading to 36 alarmed regions, 
corresponding to 21 mines (M), 7 placed false alarms (PF, 
friendly objects) and 8 false alarms caused by clutter (FN, with 
no object). 

The results are very promising, since all mines are 
classified correctly with the proposed approach, as can be seen 
in  Table I.  In each  cell  of  this  table, the  number   given   in  
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TABLE I.  THE CORRECT CLASSIFICATION RESULTS 

Sensors Classified 
correctly IR MD GPR Fusion 

M 
(total: 21) 

18  
(18) 

9 
(9) 

12 
(13) 

21 
(21) 

PF 
(total: 7) 

0 
(4) 

0 
(4) 

2 
(6) 

1 
(7) 

FN 
(total: 8) 

0 
(1) 

0 
(0) 

6 
(7) 

6 
(8) 

 
 

preprocessing step for further analysis, i.e. feature extraction 
and classification. The second fusion step is important, since a 
decision taken after the first one provides only 18 mines for IR, 
9 for MD and 12 for GPR. This illustrates the interest of 
combining heterogeneous sensors. The results are also slightly 
better than those obtained previously using the belief function 
method (19 mines detected). This is due to the increased 
flexibility at the combination level. False alarms with no 
objects are correctly identified (6). The placed false alarms are 
not so well detected (only 2 are correctly recognized as friendly 
objects). This is not surprising since our model is designed in 
order to favor the detection of mines. This is also the type of 
results expected from deminers. 

All results have been obtained with the models proposed in 
Section II, with the same parameters. It should be noted that 
although the general shapes of the possibility distributions is 
important and has been designed based on prior knowledge, 
they do not need to be estimated very precisely, and the results 
are robust to small changes in these functions. What is 
important is that the function are not crisp (no thresholding 
approach is used) and that the rank is preserved (for instance an 
object with a feature value outside of the usual range should 
have a lower possibility degree than an object with a typical 
feature value). There are two main reasons that explain the 
experienced robustness: (i) these possibility distributions are 
used to model imprecise information, so they do not have to be 
precise themselves; (ii) each of them is combined in the fusion 
process (Section III) with other pieces of information, which 
diminishes the importance and the influence of each of them. 
 

VI. CONCLUSION 
A novel method for fusion of features extracted from 

heterogeneous sensor data has been proposed, in the 
framework of a humanitarian demining project. The sensors, 
based on radar techniques, metal detectors or infrared images, 
provide complementary information about the nature of the 
observed object. We have shown that an appropriate modeling 

of the data they provide, along with their combination in a 
possibilistic framework allow better decision making, i.e. a 
better differentiation between mines and friendly objects. The 
decision rule is designed so as to detect all mines, at the price 
of a few confusions with friendly objects. This is a requirement 
of this particular application domain since it is obviously better 
to ask a deminer to search for an object that is finally friendly 
than to assure him that an object is friendly while it is a mine. 
Still the number of false alarms remains limited in our results.  

Future work aims at more extensive testing of the proposed 
approach. It should be noted that the proposed modeling is 
flexible enough to be easily adapted to the introduction of new 
pieces of information about the types of objects and their 
characteristics, as well as of new sensors. 
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