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In this paper we highlight a few features of the semantic gap problem in image interpretation. We show that semantic

image interpretation can be seen as a symbol grounding problem. In this context, ontologies provide a powerful

framework to represent domain knowledge, concepts and their relations, and to reason about them. They are likely to be

more and more developed for image interpretation. A lot of image interpretation systems rely strongly on descriptions

of objects through their characteristics such as shape, location, image intensities. However, spatial relations are

very important too and provide a structural description of the imaged phenomenon, which is often more stable and

less prone to variability than pure object descriptions. We show that spatial relations can be integrated in domain

ontologies. Because of the intrinsic vagueness we have to cope with, at different levels (image objects, spatial relations,

variability, questions to be answered, etc.), fuzzy representations are well adapted and provide a consistent formal
framework to address this key issue, as well as the associated reasoning and decision making aspects. Our view is

that ontology-based methods can be very useful for image interpretation if they are associated to operational models
relating the ontology concepts to image information. In particular, we propose operational models of spatial relations,
based on fuzzy representations.
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1. Introduction

The literature acknowledges several attempts to-

wards formalization of some domains. For instance

in medicine, noticeable efforts have led to the de-

velopment of the Neuronames Brain Hierarchyc and

the Foundational model of anatomy (FMA)d at the

University of Washington, or Neuranate in Paris at

CHU La Pitié-Salpêtrière. Generic formalizations of

spatial concepts were also developed and specified in

different fields, for spatial reasoning in artificial in-

telligence, for Geographic Information Systems, etc.

In a parallel domain, well formalized theories for

image processing and recognition appeared in the im-

age and computer vision community.

Noticeably, both types of developments still re-

main quite disjoint and very few approaches try to

use the abstract formalizations to guide image in-

terpretation. The main reason is to be found in

the so called “semantic gap”, expressing the diffi-

culty to link abstract concepts with image features.

This problem is also related to the symbol grounding

problem.

In this paper we highlight a few features of the

semantic gap problem in image interpretation. We

show that semantic image interpretation can be seen

as a symbol grounding problem in Section 2. In this

context, ontologies provide a powerful framework to

represent domain knowledge, concepts and their rela-

tions, and to reason about them. Therefore, they are

likely to be more and more developed for image in-

terpretation. We briefly explain the potentials of on-

tologies towards this aim in Section 3. A lot of image

interpretation systems rely strongly on descriptions

of objects through their characteristics such as shape,

location, image intensities. However, spatial relations

are very important too, as explained in Section 4, and

provide a structural description of the imaged phe-

nomenon, which is often more stable and less prone

to variability than pure object descriptions. We show

that spatial relations can be integrated in domain on-

tologies. Because of the intrinsic vagueness we have

to cope with, at different levels (image objects, spa-

tial relations, variability, questions to be answered,

etc.), fuzzy representations are well adapted and pro-
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vide a consistent formal framework to address this

key issue, as well as the associated reasoning and de-

cision making aspects. This question is addressed in

Section 5. Our view is that ontology-based methods

can be very useful for image interpretation if they

are associated to operational models of spatial re-

lations (and other concepts), in particular based on

fuzzy representations. These operational models con-

tribute to reduce the semantic gap. We provide some

hints on this integration in Section 6.

As a typical application where all these issues

are raised, we illustrate our purpose with examples

in brain image interpretation.

2. Semantic gap in image interpretation

and symbol grounding

The symbol grounding problem has been first in-

troduced in artificial intelligence by Harnad in [1],

as an answer to the famous Searle’s criticisms of

artificial systems [2]. It is defined in [1] through

the fundamental question: How is symbol meaning

to be grounded in something other than just more

meaningless symbols. As underlined in the literature,

symbol grounding is still an unsolved problem (see

e.g. [3]).

In the robotics community, this problem was ad-

dressed as the anchoring problem [4]: a special

form of symbol grounding needed in robotic systems

that incorporate a symbolic component and a rea-

soning process. The anchoring process is defined as

the problem of creating and maintaining the corre-

spondence between symbols and sensor data that refer

to the same physical object.

In our case, artificial systems are not robotic sys-

tems but image interpretation systems. As the for-

mer, they incorporate a symbolic component. Some

similarities between Anchoring and Pattern Recog-

nition have been underlined in [5], in order to assess

the potentiality of using ideas and techniques from

anchoring to solve the pattern recognition problem

and vice versa. Similarly, we argue that image in-

terpretation could greatly benefit from such a cor-

respondence. Indeed, the image interpretation prob-

lem can be defined as the automatic extraction of the

meaning of an image. The image semantics cannot be

considered as being included explicitly in the image

itself. It rather depends on prior knowledge on the

domain and the context of the image. It is therefore

necessary to ground the digital representation of an

image (perceptual level) with the semantic interpre-

tation that a user associates to it (linguistic level).

In the image indexing and retrieval community, this

problem is called the semantic gap problem, i.e.

the lack of coincidence between the information that

one can extract from the visual data and the interpre-

tation of these data by a user in a given situation [6].

Our view is that image interpretation can be seen

as a symbol grounding problem, i.e. the dynamical

process of associating image data to human interpre-

tations by taking into account the influence of exter-

nal factors such as the social environment (applica-

tion domain, interpretation goal, ...) or the physical

environment of the interpretation. Indeed, image in-

terpretation is the process of finding semantics and

symbolic interpretations of image content. This prob-

lem has the same nature as the physical grounding of

linguistic symbols in visual information in the case

of natural language processing systems [7,8]. In our

case, linguistic symbols are application domain con-

cepts defined by their linguistic names and their def-

inition.

Example: In cerebral image interpretation, con-

cepts can be: brain: part of the central nervous sys-

tem located in the head, caudate nucleus: a deep

gray nucleus of the telencephalon involved with con-

trol of voluntary movement, glioma: tumor of the

central nervous system that arises from glial cells,...

Rather than being constrained by a grammar

and a syntax as in a formal or natural language, the

concepts are organized in a semantic knowledge base

which describes their semantics and their hierarchi-

cal and structural dependencies.

Example: The human brain is a structured scene

and spatial relations are highly used in the anatom-

ical brain description (e.g. the left thalamus is

to the left of the third ventricle and below the lat-

eral ventricle).

This structural component, in the form of spatial

relations, plays a major role in image interpretation.

This aspect is detailed in Section 4.

Ontologies are useful to represent the semantic

knowledge base. They entail some sort of the world

view, i.e. a set of concepts, their definitions and their

relational structure which can be used to describe

and reason about a domain. This aspect is detailed

in Section 3.

As underlined by Cangelosi in [9], a symbol

grounding mechanism, as language itself, has both
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an individual and a social component. The individ-

ual component called Physical Symbol Ground-

ing refers to the ability for a system to create an

intrinsic link between perceptions and symbols. The

Social Symbol Grounding refers to the ability to

communicate with other systems by the creation of a

shared lexicon of perceptually-grounded symbols. It

is strongly related to the research on human language

origins and evolution where external factors such as

cultural and biological evolution are primordial.

Fig. 1. Physical and external symbol grounding for image

interpretation.

In the case of image interpretation systems, these

two components of the symbol grounding are also es-

sential and take the following form: on the one hand,

the physical symbol grounding consists of the in-

ternal creation of the link between visual percepts

(image level) and a known semantic model of the

part of the real world which concerns the application

domain (domain semantic level). On the other hand,

in order to enable communication and interoperabil-

ity with humans or other systems, this grounded in-

terpretation must capture a consensual information

accepted by a group. As a consequence a social ex-

ternal symbol grounding component raises for

image interpretation. Moreover, image interpretation

systems operate in a dynamic environment which is

prone to changes and variations. The interpretation

process is highly influenced by external factors such

as the environmental context, the perception system

or the interpretation goal and it has to adapt itself to

these external factors. As a consequence, image in-

terpretation is a distributed and adaptive process be-

tween physical symbol grounding and external sym-

bol grounding as shown in Figure 1.

3. Ontologies for image interpretation

In knowledge engineering, an ontology is defined as

a formal, explicit specification of a shared conceptu-

alization [10]. An ontology encodes a partial view of

the world, with respect to a given domain. It is com-

posed of a set of concepts, their definitions and their

relations which can be used to describe and reason

about a domain. Ontological modeling of knowledge

and information is crucial in many real world appli-

cations such as medicine for instance [11].

Let us mention a few existing approaches in-

volving jointly ontologies and images. By using on-

tologies, the physical symbol grounding consists in

ontology grounding [12], i.e. the process of as-

sociating abstract concepts to concrete data in im-

ages. This approach is considerably used in the im-

age retrieval community to narrow the semantic gap.

In [13], the author proposes to ground, in the im-

age domain, a query vocabulary language used for

content-based image retrieval using supervised ma-

chine learning techniques. A supervised photograph

annotation system is described in [14], using an anno-

tation ontology describing the structure of an anno-

tation, irrespectively of the application domain, and

a second ontology, specific to the domain, which de-

scribes image contents. Another example concerns

medical image annotation, in particular for breast

cancer [15], and deals mainly with reasoning issues.

But image information is not direcly involved in these

two systems. Other approaches propose to ground in-

termediate visual ontologies with low level image de-

scriptors [16–18], and are therefore closer to the im-

age interpretation problem. In [19], the enrichment

of the Wordnet lexicon by mapping its concepts with

visual-motor information is proposed.

As the main ontology language OWL is based

on description logics, a usual way to implement the

grounding between domain ontologies (or visual on-

tologies) and image features is the use of concrete

domains as shown in Figure 2.

Description logics [20] are a family of knowledge-

based representation systems mainly characterized

by a a set of constructors that enable to build

complex concepts and roles from atomic ones. A

semantics is associated with concepts, roles and indi-
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Table 1. Description logics syntax and interpretation.

Constructor Syntax Example Semantics

atomic concept A Human AI ⊆ ∆I

individual a Lea aI ∈ ∆I

Top > Thing >I = ∆I

Bottom ⊥ Nothing ⊥I = ∅I

atomic role r has-age RI ⊆ ∆I ×∆I

conjunction C uD Human u Male CI ∩DI

disjunction C tD Male t Female CI ∪DI

negation ¬C ¬ Human ∆I \ CI

existential restriction ∃r.C ∃has-child.Girl {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}
universal restriction ∀r.C ∀has-child.Human {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ RI ⇒ y ∈ CI}
value restriction 3 r.{A} 3has-child.{Lea} {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ⇒ y = aI}

number restriction (≥ nR) (≥ 3 has-child) {x ∈ ∆I | |{y | (x, y) ∈ RI}| ≥ n}
(≤ nR) (≤ 1 has-mother) {x ∈ ∆I | |{y | (x, y) ∈ RI}| ≤ n}

Subsumption C v D Man v Human CI ⊆ DI

Concept definition C ≡ D Father ≡ Man u CI = DI

∃ has-child.Human

Concept assertion a : C John:Man aI ∈ CI

Role assertion (a, b) : R (John,Helen):has-child (aI , bI) ∈ RI

viduals using an interpretation I = (∆I , ·I), where

∆I is a non empty set and ·I is an interpretation

function that maps a concept C to a subset CI of

∆I or a role r to a subset RI of ∆I × ∆I . Con-

cepts correspond to classes. A concept C represents

a set of individuals (a subset of the interpretation do-

main). Roles are binary relations between objects.

Table 1 describes the main constructors and a syntax

for description logics.

Concrete domains are expressive means of de-

scription logics to describe concrete properties of

real world objects such as their size, their spatial

extension or their color. They are of particular in-

terest for image interpretation, as illustrated in Fig-

ure 2. Indeed, they allow performing anchoring for

a particular application, hence reducing the seman-

tic gap. This grounding approach using description

logics and concrete domains has been used by sev-

eral authors [21,22] for the automation of semantic

multimedia annotation.

Fig. 2. Importance of concrete domains in image interpreta-

tion.

4. Importance of spatial relations

Spatial relations between objects of a scene or an im-

age is of prime importance, as highlighted in different

domains, such as perception, cognition, spatial rea-

soning, Geographic Information Systems, computer

vision. In particular, the spatial arrangement of ob-

jects provides important information for recognition

and interpretation tasks, in particular when the ob-

jects are embedded in a complex environment like

in medical or remote sensing images [23,24]. Human

beings use extensively spatial relations in order to

describe, detect and recognize objects: they allow to

solve ambiguity between objects having a similar ap-

pearance, and they are often more stable than char-

acteristics of the objects themselves (this is typically

the case of anatomical structures).

Many authors have stressed the importance of

topological relations, but distances and directional

relative position are also important, as well as more

complex relations such as “between”, “surround”,

“among”, etc. Freeman [25] distinguishes the follow-

ing primitive relations: left of, right of, above, be-

low, behind, in front of, near, far, inside, outside,

surround. Kuipers [24,26] considers topological rela-

tions (set relations, but also adjacency which was not

considered by Freeman) and metrical relations (dis-

tances and directional relative position).

Spatial reasoning can be defined as the domain of

spatial knowledge representation, in particular spa-

tial relations between spatial entities, and of reason-

ing on these entities and relations (hence the im-
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portance of relations). This field has been largely

developed in artificial intelligence, in particular us-

ing qualitative representations based on logical for-

malisms. In image interpretation and computer vi-

sion, it is much less developed and is mainly based on

quantitative representations. In most domains, one

has to be able to cope with qualitative knowledge,

with imprecise and vague statements, with polysemy,

etc. This calls for a common framework which is both

general enough to cover large classes of problems and

potential applications, and able to give raise to in-

stantiations adapted to each particular application.

Ontologies appear as an appropriate tool towards

this aim. This shows the interest of associating on-

tologies and spatial relations for symbol grounding

and image interpretation. Figure 3 illustrates a part

of an ontology of spatial relations [27].

Fig. 3. Excerpt of the hierarchical organization of spatial re-
lations in the ontology of [27].

As mentioned in [28], several ontological frame-

works for describing space and spatial relations have

been developed recently. In spatial cognition and lin-

guistics, the project OntoSpacef aims at developing

a cognitively-based commonsense ontology for space.

Some interesting works on spatial ontologies can also

be found in Geographic Information Science [29] or in

medicine concerning the formalization of anatomical

knowledge [30–32]. All these ontologies concentrate

on the representation of spatial concepts according

to the application domains. They do not provide an

explicit and operational mathematical formalism for

all the types of spatial concepts and spatial rela-

tions. For instance, in medicine, these ontologies are

often restricted to concepts from the mereology the-

ory [31]. They are therefore useful for qualitative and

symbolic reasoning on topological relations but there

is still a gap to fill before using them for image in-

terpretation.

Example: internal brain structures are often de-

scribed trough their spatial relations, such as: the

left caudate nucleus is inside the left hemi-

sphere; it is close to the lateral ventricle; it is

outside (left of) the left lateral ventricle; it is

above the thalamus, etc. In case of pathologies,

these relations are quite stable, but more flexibility

should be allowed in their semantics [33].

This example raises the problem of assigning se-

mantics to these spatial relations, according to the

application domain: what do concepts such as “close

to” or “left” mean when dealing with brain images?

Should this meaning be adapted depending on the

context (possible pathology, etc.)? These questions

can be addressed by using fuzzy models.

5. Importance of fuzzy representations

Usually vision and image processing make use of

quantitative representations of spatial relations. In a

purely quantitative framework, spatial relations are

well defined for some classes of relations, unfortu-

nately not for intrinsically vague relations (such as

directional ones for instance). Moreover they need a

precise knowledge of the objects and of the types of

questions we want to answer. These two constraints

can be relaxed in a semi-qualitative framework, us-

ing fuzzy sets. This allows to deal with imprecisely

defined objects, with imprecise questions such as are

these two objects near to each other?, and to provide

evaluations that may be imprecise too, which is use-

ful for several applications, where spatial reasoning

under imprecision has to be considered. Note that

this type of question also raises the question of pol-

ysemy, hence the need for semantics adapted to the

domain. This is an important question to be solved

in the symbol grounding and semantic gap problems.

Fuzzy set theory finds in spatial information pro-

cessing a growing application domain. This may be

fhttp://www.ontospace.uni-bremen.de/twiki/bin/view/Main/WebHome
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explained not only by its ability to model the inher-

ent imprecision of such information (such as in image

processing, vision, mobile robotics...) together with

expert knowledge, but also by the large and pow-

erful toolbox it offers for dealing with spatial infor-

mation under imprecision. This is in particular high-

lighted when spatial structures or objects are directly

represented by fuzzy sets. If even less information

is available, we may have to reason about space in

a purely qualitative way, and the symbolic setting

is then more appropriate. In artificial intelligence,

mainly symbolic representations are developed and

several works addressed the question of qualitative

spatial reasoning (see [34] for a survey). For instance

in the context of mereotopology, powerful represen-

tation and reasoning tools have been developed, but

are merely concerned by topological and part-whole

relations, not by metric ones.

Limitations of purely qualitative spatial reason-

ing have already been stressed in [35], as well as the

interest of adding semiquantitative extension to qual-

itative value (as done in the fuzzy set theory for lin-

guistic variables [36,37]) for deriving useful and prac-

tical conclusions (as for recognition). Purely quanti-

tative representations are limited in the case of im-

precise statements, and of knowledge expressed in

linguistic terms. As another advantage of fuzzy repre-

sentations, both quantitative and qualitative knowl-

edge can be integrated, using semi-quantitative (or

semi-qualitative) interpretation of fuzzy sets. These

representations can also cope with different levels of

granularity of the information, from a purely sym-

bolic level, to a very precise quantitative one. As al-

ready mentioned in [25], this allows us to provide a

computational representation and interpretation of

imprecise spatial constraints, expressed in a linguis-

tic way, possibly including quantitative knowledge.

Therefore the fuzzy set framework appears as a cen-

tral one in this context. Several spatial relations have

led to fuzzy modeling, as reviewed in [23].

Spatial reasoning aspects often imply the combi-

nation of various types of information, in particular

different spatial relations. Again, the fuzzy set frame-

work is appropriate since it offers a large variety of

fusion operators [38,39] allowing for the combination

of heterogeneous information (such as spatial rela-

tions with different semantics) according to different

fusion rules, and without any assumption on an un-

derlying metric on the information space. They also

apply on various types of spatial knowledge repre-

sentations (degree of satisfaction of a spatial rela-

tion, fuzzy representation of a spatial relation as a

fuzzy interval, as a spatial fuzzy set, etc.). These op-

erators can be classified according to their behavior,

the possible control of this behavior according to the

information to combine, their properties, and their

specificities in terms of decision [40]. For instance,

if an object has to satisfy, at the same time, several

spatial constraints expressed as relations to other ob-

jects, the degrees of satisfaction of these constraints

will be combined in a conjunctive manner, using a

t-norm. If the constraints provide a disjunctive in-

formation, operators such as t-conorms are then ap-

propriate. It is the case for example for symmetrical

anatomical structures that can be found in the left or

right parts of the human body. Operators with vari-

able behavior, as some symmetrical sums, are inter-

esting if the aim is a reinforcement of the dynamics

between low degrees and high degrees of satisfaction

of the constraints. In particular, this facilitates the

decision since different situations will be better dis-

criminated.

Let us come back to ontologies from the point

of view of uncertain knowledge and imprecise infor-

mation. A major weakness of usual ontological tech-

nologies is their inability to represent and to rea-

son with uncertainty and imprecision. As a conse-

quence, extending ontologies in order to cope with

these aspects is a major challenge. This problem

has been recently stressed out in the literature. Sev-

eral approaches have been proposed to deal with

uncertainty and imprecision in ontology engineering

tasks [41,42]. The first approach is based on proba-

bilistic extensions of the standard OWL ontology lan-

guageg by using Bayesian networks [43,44]. The prob-

abilistic approach proposes to first enhance the OWL

language to allow additional probabilistic markups

and then to convert the probabilistic OWL ontology

into the directed acyclic graph of a Bayesian net-

work with translation rules. As the main ontology

language OWL is based on description logics [20],

another approach to deal with uncertainty and im-

precision is to use fuzzy description logics [45–48].

Fuzzy description logics can be classified according

ghttp://www.w3.org/TR/owl-features/
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to the way fuzziness is introduced into the descrip-

tion logics formalism. A good review can be found

in [49]. In particular, a common way for description

logics with concrete domains is to introduce fuzzi-

ness by using fuzzy predicates in concrete domains

as described in [50].

Another approach is to introduce fuzziness di-

rectly in the concrete domains, which then become

fuzzy concrete domains. This is particularly interest-

ing for image interpretation.

Example: Using fuzzy representations of spatial

relations in the image domain leads to restricted

search area for the caudate nucleus, based on the

knowledge that it is to the right and close to the lat-

eral ventricles. This is illustrated in Figure 4.

(a) (b)

(c) (d)

Fig. 4. (a) The right ventricle is superimposed on one slide of
the original image (MRI here). The search space of the object

“caudate nucleus” corresponds to the conjunctive fusion of the
spatial relations “to the right of the right ventricle” (b)
and “close to the right ventricle” (c). The fusion result is

shown in (d).

Example: Typically brain image interpretation

may have to cope with abnormalities such as tumors.

Our system allows instantiating generic knowledge

expressed in the ontology to adapt to the specific pa-

tient’s case. The fuzzy representations provide an ef-

ficient way to represent inter-individual variability,

which are a key point in such situations. They can

be further revised or specified according to the visual

features extracted from the image and matched with

the symbolic representation.

Using fuzzy representations, it is possible to deal

with such cases, for instance by enlarging the areas

where an object can be found, which amounts to re-

lax the definition of the fuzzy relation.

In summary, fuzzy representations have several

advantages:

• they allow representing the imprecision

which is inherent to the definition of a con-

cept; for instance, the concept “close to” is

intrinsically vague and imprecise, and its se-

mantics depends on the context in which ob-

jects are embedded, on the scale of the object

and on their environment;

• they allow managing imprecision related to

the expert knowledge in the concerned do-

main;

• they constitute an adequate framework for

knowledge representation and reasoning, re-

ducing the semantic gap between symbolic

concepts and numerical information.

6. Towards the integration of ontologies,

spatial relations and fuzzy models

To conclude this presentation, we summarize ongoing

developments carried out in our team, towards the

construction of a spatial relation ontology enhanced

with fuzzy representations and its use for image in-

terpretation. This work aims at integrating all im-

portant features underlined in this paper. A global

scheme of our approach is provided in Figure 5.

Our recent work addresses the important prob-

lems highlighted in this paper in several ways [27,52].

We propose to reduce the semantic gap between

numerical information contained in the image and

higher level concepts by enriching ontologies with

a fuzzy formalism layer. More specifically, we intro-

duce an ontology of spatial relations and propose to

enrich it by fuzzy representations of these relations

in the spatial (image) domain. The choice of spa-

tial relations is motivated on the one hand by the

importance of structural information in image inter-

pretation, and on the other hand by the intrinsically

ambiguous nature of most spatial relations. This on-

tology has been linked to the part of FMA related to

brain structures, as illustrated in Figure 5.

As another contribution, this enriched ontology

can support the reasoning process in order to rec-

ognize structures in images, in particular in medical

imaging. Different types of reasoning become then

possible: (i) a quite general reasoning may consist

in classifying or filtering ontological concepts to an-
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Fig. 5. Overview of our framework. Ontological engineering is used to represent the symbolic knowledge useful to interpret

cerebral images. In particular, a spatial relation ontology is used to enrich the brain ontology by the description of the spatial

structure of the brain. A graph based representation of the brain including learned fuzzy representations of spatial relations is

derived from the generic model and from an image database. This graph is used to guide the segmentation and the recognition

of cerebral structures. This framework is also useful to deal with pathological cases by an adaptation of the knowledge and the

reasoning process. The second scheme displays a part of an ontology of brain anatomy (excerpt of the FMA [51]) enhanced with
our fuzzy spatial relations ontology. The concepts of the spatial relation ontology are prefixed by p1.
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swer some queries; (ii) at a more operational way,

the ontology and the fuzzy representations can be

used to deduce spatial reasoning operations in the

images and to guide image interpretation tasks such

as localization of objects, segmentation, and recog-

nition. An illustration is provided in Figure 6 for the

recognition of internal brain structures.

Fig. 6. The right lateral ventricle corresponds to the spatial
region R1 in the image. The domain ontology describes spatial

relations between several grey nuclei and the lateral ventricles.
These relations are exploited to identify each individual struc-

ture.

Fig. 7. An axial slice of a 3D MRI, with segmented tumor
and some anatomical structures.

Another enrichment of the model consists of

the representation of domain knowledge by graphs,

which include fuzzy models of spatial relations, used

to guide the recognition of individual structures in

images [53]. The inclusion of such structural mod-

els, as intermediate representation domains between

symbols and images, deals with the physical sym-

bol grounding problem, and also contributes to re-

duce the semantic gap. However pathological cases

may deviate substantially from generic knowledge.

We propose to adapt the knowledge representation to

take into account the possible influence of patholo-

gies on the spatial organization, based on learning

procedures. We also adapt the reasoning process,

based on graph based propagation and updating.

These features of our approach are detailed in [52].

A result is illustrated in Figure 7.

The enriched ontology contributes to reduce the

semantic gap and to answer some symbol ground-

ing questions, which are difficult and still open prob-

lems in image interpretation. It provides tools both

for knowledge acquisition and representation and for

its operational use. It has an important potential in

model-based recognition that deserves to be further

explored, in particular for medical image interpre-

tation. The framework described in this section fo-

cuses on spatial relations, but similar principles can

be applied to other types of information that could

be involved in image interpretation.
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