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Automatic brain tumor segmentation using symmetry analysis and deformable models
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We propose a new general automatic method for segmenting brain tumors in 3D MRI. Our method is applicable

to different types of tumors. A first detection process is based on selecting asymmetric areas with respect to the

approximate brain symmetry plane. Its result constitutes the initialization of a segmentation method based on a

combination of a deformable model and spatial relations, leading to a precise segmentation of the tumors. The results

obtained on different types of tumors have been evaluated by comparison with manual segmentations.

Keywords: Segmentation, symmetry plane, deformable Models, spatial relations, brain tumors, MRI.

1. Introduction

The segmentation of brain tumors in magnetic res-

onance images (MRI) is a challenging and difficult

task because of the variety of their possible shapes,

locations, image intensities. The aim of this paper is

to contribute to this domain, by proposing an origi-

nal method, which is automatic and general enough

to address the variability issues.

Existing methods are classically divided into re-

gion based and contour based methods, and are usu-

ally dedicated to full enhanced tumors or specific

types of tumors. In the first class, Clark et al. [1]

have proposed a method for tumor segmentation us-

ing knowledge based and fuzzy classification, where

a learning process prior to segmenting a set of images

is necessary. Other methods are based on statistical

pattern recognition techniques such as [2–4]. These

methods fail in the case of large deformations in the

brain. Existing contour based methods are not fully

automatic and need some manual operation for ini-

tialization. Lefohn et al. [5] have proposed a semi-

automatic method using level sets. Another segmen-

tation method based on level sets was introduced by

Ho et al. [6] that uses T1-weighted images both with

and without contrast agent for tumor detection. A

method by deformable model and neural network was

introduced by Zhu and Yang [7] that processes the

image slice by slice and is not a real 3D method.

In this paper we introduce a fully automatic

method for the segmentation of different types of tu-

mors in 3D MRI, based on a combination of region

based and contour based methods. In the first step,

described in Section 2, we use the mid-sagittal ap-

proximate symmetry plane and detect tumors as an

asymmetry with respect to this plane. In the second

step, detailed in Section 3, a precise segmentation is

obtained using an original combination of deformable

models and spatial relations. Results are then pre-

sented in Section 4.

2. Tumor detection based on symmetry

In this section we detail the first step of the proposed

approach, by explaining our method to compute the

symmetry plane of the brain and then the method to

detect tumors based on this plane.

2.1. Computation of the approximate

symmetry plane

As proposed in [8], the computation of the approxi-

mate symmetry plane is expressed as a registration

problem. A degree of similarity between the image

and its reflection with respect to a plane is com-

puted. The best plane is then obtained by maximiz-

ing this similarity. This optimization is performed

using downhill simplex method and is initialized by

the plane obtained from principal inertia axes, which

proves to be close to the global optimum.

Let u be a unit vector in R3 and Πu,d a plane

in R3 orthogonal to the vector u and passing at the

distance d from the coordinate origin. We denote by

eu,d(f) the reflection of image f with respect to the

plane Πu,d: eu,d(f)(x, y, z) = f(eu,d(x, y, z)). An im-

age f is called reflection symmetrical if there exists

a reflection plane Πu,d such that eu,d(f) = f .
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The idea is to compute a symmetry measure

µu,d(f) of the image f with respect to an arbitrary

reflection plane Πu,d, and to find the plane leading to

the maximal symmetry degree and the corresponding

value of symmetry measure µ(f):

µ(f) = max
u∈S2, d∈R+

µu,d(f). (1)

In this case the symmetry measure µu,d(f) can be de-

fined as the similarity between images f and eu,d(f).

In this work we use the following symmetry measure:

µu,d(f) = 1−
||f − eu,d(f)||

2

2||f ||2
.

2.2. Tumor detection

In our previous work [9] we have used the fuzzy pos-

sibilistic C-means (FPCM) classification algorithm

for tumor detection and we obtained good results

for detecting hyper intensity tumors (full enhanced

tumors). However this method is difficult to general-

ize to any type of tumor while keeping it automatic.

Therefore we suggest another approach, using the

approximate symmetry plane.

(a) (b)

(c) (d)

Fig. 1. (a) One axial slice of the original 3D image. (b) Brain

mask and symmetry plane. (c) Another example. (d) Brain

mask of image (c) with symmetry plane.

Pathological brains are usually not symmetric,

thus the symmetry plane is computed on the seg-

mented brain. In the normal brain, it has been ob-

served that the symmetry plane of the grey level

brain image and of the segmented brain are approx-

imately equal. The segmentation of the brain is per-

formed as in [10]. The algorithm summarized in sec-

tion 2.1 is then applied on the binary image of the

brain. Applying this method to images containing

tumors provides a good approximation of the mid-

sagittal plane, despite the asymmetry induced by the

tumors, thanks to the preliminary segmentation of

the brain. This is illustrated in Figure 1.

Now tumors can be detected by evaluating this

asymmetry with respect to the obtained plane. We

assume that tumors are localized in only one hemi-

sphere. This hemisphere is found by comparing the

grey level characteristics (mean and standard devi-

ation) of grey matter, white matter and CSF com-

puted in the whole image on the one hand, and in

each hemisphere on the other hand. Let Hn denote

the histogram of grey levels in the normal hemisphere

and Hp the histogram in the pathological hemi-

sphere. The histogram differenceHs = Hp−Hn pro-

vides useful information about new intensity classes

induced by the tumor. In the case of a tumor with-

out edema (as in Figure 1(c)) a positive peak can be

observed in Hs that shows the tumor intensity range

(see Figure 2(a)) and we can use a thresholding and

morphological operations to extract the tumor (Fig-

ure 2(b)).

In the case of a tumor with edema (as in Fig-

ure 1(a)) we observe two peaks in Hs (Figure 3(a)).

Because the intensity of edema is always lower than

the intensity of the tumor, the first peak correponds

to the edema and the second peak to the tumor. We

have considered the peaks with more than 300 vox-

els, this threshold being based on the analysis of Hs

for several normal brains.

The negative peaks observed in Hs correspond

to normal tissues, around the tumor and the edema,

since these tissues are less represented in the hemi-

sphere containing the pathology than in the other

hemisphere. These tissues can therefore been ob-

tained automatically (Figures 2(c) and 3(c)). They

will be used for introducing spatial relations in the

next section.
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(a)

(b) (c)

Fig. 2. (a) Graph of Hs for image (c) of Figure 1. (b) Ex-
tracted tumor after morphological operations. (c) Tissues
around the tumor.

(a)

(b) (c)

Fig. 3. (a) Graph of Hs for image (a) of Figure 1. (b) Ex-

tracted tumor after morphological operations. (c) Tissues

around the tumor.

3. Refined segmentation

In this section we detail the second step of the pro-

posed approach: the previous detection of the tumor

is used to initialize a deformable model. We propose

to constrain this model by spatial relations between

the tumor and other tissues, as an adaptation of the

method described in [11] for normal brains.

3.1. Spatial relations constrained

deformable model

The evolution of the deformable surface X is de-

scribed by the following dynamic force equation [12]:

γ ∂X

∂t
= Fint(X) + Fext(X), where Fint is the inter-

nal force that specifies the regularity of the surface

and Fext is the external force that drives the sur-

face towards image edges. The chosen internal force

is Fint = α∇2X−β∇2(∇2X), where α and β respec-

tively control the surface tension and rigidity, and∇2

is the Laplacian operator. It is then discretized on the

simplex mesh using the finite difference method [12].

In our case, the external force is not only derived

from image edges but also constrains the deformable

model to satisfy spatial relations to the surrounding

tissues. The spatial relations are represented by fuzzy

sets in the image space [13], from which a new fuzzy

force is derived. The external force is then written

as [11]: Fext = λv + µFR where v is a classical ex-

ternal force such as gradient or balloon and FR is

the force attached to the spatial relationships.

3.2. Constrained deformable model for

tumor segmentation

Spatial relations are useful to guide the recognition

of objects in images since they provide an impor-

tant information about the spatial organization of

these objects. Two main classes of spatial relations

can be considered: topological relationships, such as

inclusion, exclusion and adjacency, and metric rela-

tionships such as distances and orientations. Here we

use a combination of topological and distance infor-

mation.

The evolution process of the deformable model

can be guided by a combination of several relations,

via information fusion tools. Here, two types of in-

formation are available: the initial detection and the

surrounding tissues. Therefore we use (i) the distance

from the initial segmented tumor, and (ii) the tis-

sues around the tumor which were obtained in the
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previous step. The idea is that the contour of the

tumor should be situated somewhere inbetween the

boundary of the initial detection and the boundary

of the normal tissues (excluding the background). A

fuzzy set representing the relation “near the tumor”

is defined as an increasing function of the distance.

A distance map in the normal tissues to its comple-

ment (tumor and background) is computed, and a

fuzzy set is derived again using an increasing func-

tion. These two relations are represented as fuzzy sets

in the image space. They are illustrated in Figure 4.

(a) (b) (c)

Fig. 4. Spatial relations used for segmentation on two exam-

ples. (a) Near the tumor. (b) Relation provided by the normal
tissues. (c) Fusion of the two relations.

These relations are combined using a conjunc-

tive fusion operator (a t-norm), leading to a fuzzy

set µR. The resulting fuzzy set provides high values

in the region where both relations are satisfied, and

lower elsewhere. The fuzzy force is derived from this

fusion as [11]:

FR(x) = −(1− µR(x))
∇d(x)

‖∇d(x)‖

where d is a distance map to the kernel of µR (i.e.

points x for which µR(x) = 1). The classical exter-

nal force is calculated by Generalized Gradient Vec-

tor Flow [12] based on an edge map obtained from

Canny-Deriche edge detection.

4. Results and conclusion

We have applied the method to 10 different real 3D

T1-weighted MRI (of size 256 × 256 × 124). These

images contain tumors with different sizes, intensi-

ties, shapes and locations. This allows us to illus-

trate the large field of application of our method.

The evaluation of the segmentation results was per-

formed through a quantitative comparison with the

results of a manual segmentation. Let us denote by

A the manually segmented tumor and B the tumor

segmented by our method. We used three measures

to evaluate the results, as proposed in [14] which are:

• overlap: |A∩B|
|A∪B| ;

• Hausdorff distance between A and B,

defined as max(h(A,B), h(B,A)) where

h(A,B) = maxa∈Aminb∈B d(a, b), and

d(a, b) denotes the Euclidean distance be-

tween a and b (a and b are points of A and

B respectively);

• the signed distances from the surface of B to

the surface of A are computed, and the ab-

solute average value of distances is derived.

The segmentation results for the two cases of

Figure 1 are shown in Figure 5. In the first case,

the initial detection based on symmetry analysis only

provides a part of the tumor. The whole tumor is suc-

cessfully recovered by the second segmentation step

using the deformable model and the spatial relations.

Even in the second case, where the initial detection is

already quite good, the second step provides a more

precise boundary of the lesion.

The quantitative results obtained by comparing

the automatic segmentations with the available man-

ual segmentations are provided in Table 1 for 10

cases. For the overlap, all values are greater than

85% (note that values above 70% are generally con-

sidered as good results), and most of them are greater

than 91%. The distance-based evaluations should

be compared to the voxel size, which is typically

1 × 1 × 1.3 mm3 for all images. The Hausdorff dis-

tance in these 10 cases is always less than five voxels,

and often even smaller. It should be noted that this

measure is particularly severe since it is a maximum

distance and provides the error for the worst point in

the segmentation. The average distance is less than

one voxel, which means that in average the auto-

matic contour is very close to the manual one (less

than one voxel distance). Due to the partial volume

effect, the obtention of more precise results would

require to work at sub-voxel level.
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All these results show the high accuracy of the

proposed method, which was also confirmed by a vi-

sual evaluation performed by medical experts.

(a) (b) (c)

Fig. 5. Final segmentation results on two different cases.
(a) Initial detection superimposed on an axial slice. (b) Fi-
nal segmentation. (c) Result superimposed on a sagittal slice.

Table 1. Evaluation of the segmentation results of tumors on a

few 3D MR images for which a manual segmentation was available.

Dataset Overlap (%) Hausdorff (mm) Average (mm)

Tumor 1 95.56 2.66 0.62
Tumor 2 91.32 5.20 1.41

Tumor 3 96.12 1.32 0.41
Tumor 4 88.24 1.51 1.21

Tumor 5 90.08 3.14 1.15
Tumor 6 91.21 2.40 1.01

Tumor 7 95.05 4.02 1.29
Tumor 8 85.86 3.62 1.31
Tumor 9 88.63 4.91 0.92
Tumor 10 91.63 3.83 0.84

As a conclusion, the proposed hybrid algo-

rithm using region based and contour based methods

proves to be efficient to segment brain tumors in 3D

MR images. Its application to several datasets with

different tumor sizes, intensities and locations shows

that it can automatically detect and segment very

different types of brain tumors with a good quality.

Our method can be applied as well to T2-weighted

images or FLAIR images. However it may fail in the

case of a symmetrical tumor across the mid-sagittal

plane, but this case is very rare. Future works aims

at combining several modalities such as T2-weighted

and FLAIR to develop the segmentation of edema

and infiltration around the tumors.
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