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Abstract

As well as words in text processing, image regions are poly-
semic and need some disambiguation. If the set of representa-
tions of two different objects are close or intersecting, a region
that is in the intersection will be recognized as being possi-
bly both objects. We propose here a way to disambiguate re-
gions using some knowledge on relative spatial positions be-
tween these regions. Given a segmented image with a list of
possible objects for each region, the objective is to find the best
set of objects that fits the knowledge. A consistency function is
constructed that attributes a score to a spatial arrangement of
objects in the image. The proposed algorithm is demonstrated
on an example where we try to recognize backgrounds (sky, wa-
ter, snow, trees, grass, sand, ground, buildings) in images. An
evaluation over a database of 10000 images shows that we can
reduce the number of false positive while keeping almost the
same recognition rate.

1 Introduction

Recognizing regions as individual entities is an old and still
very active issue in computer vision. Many learning methods
have been developed for this purpose, but most of them focus
on single regions. However, an image contains many regions
which are in relationships with each others, and such informa-
tion is not often exploited. The results of individual region
recognition should be consistent in the whole image. For ex-
ample, detecting a grass region above a sky region does not
make sense even if each object is individually recognized with
a good probability. Relative spatial relationships can easily be
used here to tell there is a contradiction, and to try to solve it.

Furthermore, individual region recognition will never reach
perfection, because in image processing, regions are prone to
ambiguity at least as much as words in text processing. Two
regions can have exactly the same texture, color and form, but
represent completely different objects depending on their con-
text in the image.

In order to solve that issue, Carbonetto et al [4] proposed to
learn the co-occurrences of objects using a database annotated
at image level. A Markov random field is trained that takes
the neighbors into account when classifying a region. In this
approach, the presence of an airplane can be used for example
to make the difference between sky and water.

In this paper, we propose a different image region disambigua-
tion based on the knowledge of how regions should be spa-
tially arranged. In a different field, a similar approach has been
proposed in [11] to improve the recognition of musical scores:
structural information such as relationships between symbols
and musical rules is used to choose the best hypothesis among
three for each detected symbol.

In our approach, the image is first segmented into regions,
and each region is analyzed individually using a Support Vec-
tor Machine which returns several hypotheses with associated
probabilities. The object recognition algorithm used for our
background recognition example is described in Section 2.
We then compute relative spatial relationships between regions
(Section 3). Then, the different hypotheses for all the regions of
the image are compared. The final recognition is achieved by
maximizing the hypotheses probabilities under the constraint
of generating a spatially consistent description of the image.
The maximum of the consistency function proposed in Sec-
tion 4 meets these criteria.

Such a reasoning can be used in any spatially structured scene
(satellite imaging, medical imaging,...). An example for back-
ground recognition in photograph images is given in Section 5
where backgrounds are of eight types: sky, water, snow, trees,
grass, sand, ground and buildings.

2 Backgrounds recognition

Recognizing backgrounds using low-level features has first
been proposed in 1997 by N.W.Campbell et al. [3]. Subsequent
work improved results by considering about ten backgrounds
and testing on larger databases [12, 1, 7]. The approach is al-
ways similar: color and texture features (Color Histograms,
Edge Direction Histograms, Wavelet,...) are computed, and
a learning algorithm (Neural Network, Support Vector Ma-



chine,...) is trained to classify backgrounds. All published
methods reported good results ranging from 84% and 99% de-
pending on the background. These results are very good, but
they can not reach 100% because of different backgrounds hav-
ing the same color and texture. Furthermore, they have not
been working on false positives (backgrounds that are detected
for a region that does not represent a background) which should
be minimized too. Our goal is to use the spatial informations to
improve the recognition rate while reducing the false positives.

For the segmentation step, we applied the fast implementation
of waterfall based on graphs developed by B. Marcotegui and
S. Beucher [8], which is both fast and efficient for color im-
ages. We parameterized it so that we obtain at most twenty
regions. Then, for each region, a 512-bins texture local edge
patterns histogram [6] and a 64-bins color histogram (each R,
G and B plane is quantified into 4 values) are used as features
for learning. A binary Support Vector Machine (SVM) that re-
turns probability values [5] is then learned for each class, tak-
ing the background we want to learn as the positive class, and
the other backgrounds as negative samples. We want to recog-
nize eight types of backgrounds (sky, water, snow, trees, grass,
sand, ground, buildings), so this will result in the learning of
eight binary SVMs.

As we aim at dealing with overlapping classes, binary SVMs
are not really appropriate if all images are weighted equally.
Let us consider the case where we have only two classes:sky
andwater. A sky-SVM (resp. water-SVM) is learned withsky
(resp.water) as the positive class andwater (resp.sky) as the
negative class. If the positive and negative samples have the
same weights, these two SVMs will give the same results: if a
region is classified by the sky-SVM asskywith a probability of
80%, then it will be classified aswaterby the water-SVM with
a probability of 20% (ornon skywith a probability of 80%).
What we want is that a region that belongs to theskyandwater
classes is given a good probability for both.

A solution consists in giving more weight to the positive class.
Then, the same region can be learned asskywhen trained the
sky-SVM, whereas it will be recognized aswaterby the water-
SVM. For more details on how to obtain probabilities with bi-
nary SVMs and on how to weight data, see [5]. For each re-
gion, we keep the hypotheses for which the returned probabil-
ity is above 30%, and we add the hypothesis that the object is
unknown with a probability of 30%.

The effect of weights on learning is outlined in Figure 1. We
consider two overlapping classes ’x’ and ’o’ (for example, ’x’
can be thesky class and ’o’ thewater class. When learned
with equal weights, the frontier leant between the two classes
does not depend on which class is the positive sample as the
problem is symmetrical. However, if we apply a more impor-
tant weight on the positive class when learning, object in the
overlapping region will be learned as ’x’ when ’x’ is the pos-
itive class, and as ’o’ when ’o’ is the positive class. We used
a weight of three which means that misclassifying a positive
sample costs as much as misclassifying three negative samples.

Figure 1: Example of the effect of weights for classification.
Left image: Same weight for positive and negative samples.
Right image: a weight of 3 is applied for the positive examples
and a weight of 1 for the negative examples thus better high-
lighting the intrinsic ambiguity of the data in the overlapping
area.

3 Relative spatial relationships

Relative spatial relationships have been studied mainly in the
field of artificial intelligence. In image processing, it is sparsely
applied. The main applications are model-based structure
recognition in medical images, and linguistic description of im-
ages. Many techniques have been proposed in order to compute
these relationships, among which angle histograms, force his-
tograms and mathematical morphology methods. A review and
comparison of relative spatial relationships computing methods
for image processing can be found in [2].

We are computing four relationships: above, below, left of, and
right of using the angle histogram method presented in [9]. An
angle histogram is computed between two regions considering
all possible pair of points. For each pair, the angle made be-
tween this segment and the horizontal axis (Figure 2) is added
in the histogram.

Figure 2: Spatial relation between two points of two regions.

Then, this histogram is normalized and multiplied by a fuzzy
function which is a square cosine function centered in 0 radian
(resp.π/2, π, and3π/2) to obtain the percentage with which
the right of (resp. above, left of, and below) relationship is ver-
ified (See Figure 3). For example, ifh is the angle histogram
”R2 is right of R1” is verified with the confidence<right de-



fined by:

<right =
π/2∑

θ=−π/2

h(θ) ∗ cos2(θ)

This gives the relation of regionR2 regardingR1: an angle of
0 radian means thatR2 is right ofR1, and thatR1 is left of R2.

Figure 3: Square cosine functions used as a fuzzy set for the
four directions.

In order to compute them faster, only 500 pixels are kept for
large regions. When choosing these 500 pixels, we must be
careful that they are representative of the shape of the region.
We achieve this by sorting the pixels in a list in the reading or-
der (the top left pixel is the first, the bottom right is the last),
and picking one out of that list regularly. We checked that this
extraction of significant pixels provides a very good approxi-
mation of the real relation obtained when preserving all pixels.
This method presents the advantage of being fast to implement
and compute.

4 Consistency function

The aim of the consistency function is to evaluate which hy-
potheses are best, taking into account the knowledge of how
objects should be spatially arranged, the probabilities of object
detection returned by the SVMs and the spatial relationships
between the regions in the image. The following function has
been used to measure the consistency of a given set of back-
grounds with their spatial relationships:

Given N regionsRi in the image that may be backgrounds
according to the SVMs, we compute a consistency formula for
a each possible hypothesis. We noteBi a background attributed
to the regionRi. An hypothesis can be for example:B1 =
sky,B2 = unknown,B3 = water, meaning that ”region 1 is
sky, region 2 is not a background, and region 3 is water”. We
propose using the following formula:

C(Image) =
N∑

i,j=1
i 6=j

∑
<

C(Ri(Bi), Rj(Bj))

where

C(Ri(Bi), Rj(Bj))
= P (Bi) ∗ P (Bj) ∗ (Ri<Rj) ∗ Eval(Bi,<, Bj)

• P (Bi) is the probability of detection of the background
Bi for the regionRi returned by the SVM.

• < is a spatial relationship between two backgrounds.

• (Ri<Rj) is the degree of confidence for the relative spa-
tial relationship< between the regionsRi andRj . If for
example regionRi is 80% above regionRj , 10% below
and 10% right of it, then ”RiaboveRj = 0.8.

• Eval(Bi,<, Bj) is a knowledge based function. It returns
a value representing if a relation(Bi,<, Bj) between two
backgrounds is in agreement with the rules (+1), in con-
tradiction with them (-1), or not represented by them (0).

These notations will be illustrated on an example in Section 5.
Of course, this function can only be applied if there are two or
more regions: with only one region, no relative spatial position
can be computed.

Finding the Maximum of this function is achieved trying all the
possibilities. We have typically no more than 4 backgrounds in
the image, and 3 hypotheses for each, which gives 81 combi-
nations, so it is reasonable. If we had more combinations, we
could use algorithms such as simulated annealing or other op-
timization methods.

In order to analyze this function, let us imagine an image with
three backgrounds. Several cases are possible:

1. Each couple of backgrounds is compatible
(Eval(Bi,<, Bj) > 0). Then, the contribution of
each couple is positive, the global score is also positive,
and labeling a region as unknown will lessen that score, so
the best score is obtained when keeping all backgrounds.

2. Two backgrounds B1 and B2 are incompati-
ble (Eval(B1,<, B2) < 0), but are compatible
with B3. Then, the score depends mostly on the
consistency of each couple of backgrounds. If
C(R1(B1), R2(B2)) + C(R1(B1), R3(B3)) > 0
and C(R1(B1), R2(B2)) + C(R2(B2), R3(B3)) > 0
then all three backgrounds are kept, else, the background
B1 or B2 whose consistency withB3 is the smallest is
labeled as unknown. When all three backgrounds are
kept, the final scene description remains inconsistent, and
we would need more knowledge (for example a fourth
background) to solve it.

3. A backgroundB1 is inconsistent with the two othersB2

andB3, butB2 andB3 are consistent. Then, the contribu-
tion of B1 is negative in both couples, giving the unknown
label will increase the score. The combination (B2, B3) is
better has it gives a positive score.B1 alone gives a score
of zero.



4. All three couples of backgrounds are inconsistent. Then,
each couple has a negative contribution, and the global
score is always negative. The best score is 0: we keep the
background whose probability of detection is the highest,
the two others are labeled unknown.

In general, if all couples of regions are inconsistent, then a best
score of 0 will be obtained for all combinations where we keep
only one region, or no region so that we have multiple global
maxima. In this case, we keep the region whose individual
recognition rate is the higher.

If we can find at least 2 regions which are not contradictory, it
ensures that the best score is above 0, and that the best combi-
nation will contain several regions.

When comparing the results of detection before and after ap-
plying spatial reasonings, we typically have three kinds of
modification for a given region: the label can be kept, the label
can be changed into another background, or the region can be
considered as not being a background.

5 An example

We now apply this consistency function on an example where
we look for backgrounds in photograph images. Eight back-
grounds have been considered: sky, water, snow, trees, grass,
sand, ground and buildings. These backgrounds can be classi-
fied into three groups according to their relative position to the
skyline. The first group (groupA) contains backgrounds that
are always above the skyline, the second group (groupB) those
which can cross the skyline, and the third group (groupC) those
always below the skyline. The following groups are therefore
defined: groupA ={ sky}

groupB ={ trees, buildings}
groupC ={ water, grass, snow, sand, ground}

We are not willing to detect skyline, but these groups allow us
to build simple rules. The Eval function that explicits these
rules is developed in Table 1.

Considering this table, we noticed that the above-right relation-
ship causes some errors in the final detection. Consider for
example an image containing a green region recognized as ei-
ther trees or grass located top right of a water region. When
computing the fuzzy relationships of these two regions, we
get 50% right and 50% above. For the (trees, water) couple,
only the above relationship is taken into account with the rule
(groupB, above, groupC) = 1. The consistency is then:

C = P (trees) ∗ P (water) ∗ (0.5) ∗ 1

whereas for the (grass, water) couple, both relations are taken
into account via the rule(groupC, any, groupC) = 1, which
gives the following:

C = P (grass) ∗ P (water) ∗ (0.5 + 0.5) ∗ 1

(A,<, B) Eval(A,<, B)
(groupA, above, groupB) +1
(groupA, below, groupB) −1
(groupA, above, groupC) +1
(groupA, below, groupC) −1
(groupB, above, groupA) −1
(groupB, below, groupA) +1
(groupB, above, groupC) +1
(groupB, below, groupC) −1
(groupC, above, groupA) −1
(groupC, below, groupA) +1
(groupC, above, groupB) −1
(groupC, below, groupB) +1
(groupA, any, groupA) +1
(groupB, any, groupB) +1
(groupC, any, groupC) +1

otherwise 0

Table 1: Description of theEval function.anyrelationships is
one of the four ”above, below, right of and left of”.

So, thegrasshypothesis is clearly unfairly more advantaged
than thetrees. To overcome this issue, the relationships are
modified when considering two elements that are not in the
same group: the above and below relation are stretched by the
same factor so that their sum equals 100%. The two consis-
tency functions shown above as example are then comparable.

Let us take an example where a wrong background is corrected.
In the image in Figure 4, the sky (region 1) is detected has be-
ing snow (44%), sky (43%) or unknown (30%); the region 2 is
buildings (36%) or unknown (30%); region 3 is not recognized
because of an imprecise segmentation and region4 is recog-
nized as ground (42%) or unknown (30%).

Figure 4: Image example and its segmentation. Four regions
are detected as possible backgrounds

The scores returned by the consistency function for each hy-



pothesis are given in Table 2.

region 1 region 2 region 3 score
unknown unknown unknown 0

sky unknown unknown 0
snow unknown unknown 0

unknown buildings unknown 0
sky buildings unknown 0.31

snow buildings unknown -0.32
unknown unknown ground 0

sky unknown ground 0.36
snow unknown ground 0.37

unknown buildings ground 0.28
sky buildings ground 0.96

snow buildings ground 0.34

Table 2: Scores for the consistency function applied on the im-
age in Figure 4.

The individual regions detection gives1=snow, 2=buildings,
4=ground as the best set, whereas the consistency function is
maximum for1=sky, 2=buildings, 4=ground. The second best
hypothesis is1=snow, 2=unknown, 4=groundwhich is also
consistent and has a better score than1=snow, 2=buildings,
4=groundwhich is not.

More examples are given in Figures 5, 6, 7 and 8.

Region Without SR With SR
1 sky sky
2 grass trees
3 trees trees
4 buildings buildings

Figure 5: Comparison of background detection without Spatial
reasoning (SR) and with Spatial reasoning. In this example, the
incorrect grass label has been changed into trees because it was
conflicting with the buildings and the trees detected below it

Region Without SR With SR
1 snow sky
2 trees trees
3 sky sky

Figure 6: The trees and the sky invalidate the snow hypothesis,
and validate the sky alternative.

Region Without SR With SR
1 water sky
2 trees trees
3 grass trees
4 trees trees
5 sky unknown

Figure 7: The sky label is changed into unknown for the street.
The presence of trees in regions 2 and 4 also allow to resolve
the water/sky ambiguity for Region 1 and the grass/trees ambi-
guity for Region 3



Region Without SR With SR
1 sky sky
2 tree tree
3 tree tree
4 tree tree
5 sky snow

Figure 8: An example with an image from the Internet. The
sky hypothesis has been discarded for the region 5. It has been
replaced with snow (instead of water) because the reflected
clouds have a texture and color closer to snow than to water.
This is an example of the limitation of our algorithm which is
unable to resolve the snow/water confusion.

6 Results

Our algorithm has been evaluated on a database of 10000
manually annotated images where 4076 come from the Corel
database [13] and 5924 from the CLIC database’s kernel [10].
The background learning database contains about 300 images
extracted from the Corel database, but not from the CLIC
database.

The evaluation process is the following: each image is first seg-
mented, then each region whose size is greater than 5% of the
image is classified by each Support Vector Machine to get the
list of candidate backgrounds with their probability. The com-
bination that keeps the backgrounds with the higher probability
without any spatial reasoning is the result ”before applying spa-
tial relationships”. The combination that maximizes the con-
sistency function described above is the result ”after applying
spatial relationships”. Duplicate labels in an image after auto-
matic classification are removed, for example, if a sky region is
segmented into two regions, and both are correctly classified,
then we just keep one. A label present in both the automatic
classification and the manual annotation is a correct classifica-
tion. A label found by the automatic classification that is not in
the manual annotation is a false positive.

For example, if an image contains sky, trees and water, these

will be the three elements reported in the manual annotation.
Then, we suppose that the sky is segmented into two regions
recognized as sky, the trees are recognized and the water is rec-
ognized as snow. The automatic annotation is thensky, sky,
trees. We eliminate duplicate labels:sky, trees. In this ex-
ample,skyandtreesare two correct classification,water is an
undetected background (we are not interested in them in this
article), andsnowis a false positive.

On this 10000 images database, 4124 images were classified as
containing at least two backgrounds by the background recog-
nition classifier without applying any spatial reasoning. As the
algorithm has no effect on images with one or no background,
we tested it on these 4124 images. Because the algorithm can
just change an existing background label into another back-
ground label, or into the unknown label, it tends to reduce the
number of backgrounds in images. Nevertheless, we do not
lose too much backgrounds, and it even preserves images with
more than five backgrounds

it is not too destructive as we can see in Table 3.

Number of images
Nb before after
0 0 0
1 0 116
2 1419 1518
3 1390 1336
4 803 723
5 371 314
6 104 88
7 27 20
8 9 8
9 1 1

Table 3: Number of images containingNb backgrounds before
and after applying spatial relationships analysis.

Table 4 shows the ”ratio of correct classification rate” and the
”ratio of false positive rate” obtained with the addition of spa-
tial reasoning. The ”ratio of correct classification rate” (resp.
false positive rate) is defined as the correct classification rate
(resp. false positive rate) without spatial reasoning divided by
the same rate obtained when spatial reasoning is applied. The
ideal ratio for the correct classification would be 100% or more.
A ratio of 100% is achieved if no correct background is elimi-
nated. A ratio greater than 100% is obtained when an incorrect
background is changed into a correct background. That is the
case here for thegroundbackground. We notice also that the
ratio of false positive is below the ratio of correct classification
for all backgrounds, which is encouraging.

One of the most common error is to confuse snow with sky.
The algorithm corrects well this case as can be seen in Ta-
ble 4: 54.1% of false positive snow detections are modified
(changed to another background or removed) when applying
the spatial reasoning. Other common mistakes are sky/water
and grass/trees.



Ratio of Ratio of
Background correct classification false positive

sky 98.9% 81.1%
water 97.5% 87.1%
trees 98.9% 91.0%

buildings 98.3% 94.2%
grass 92.1% 83.4%
snow 80.0% 45.9%

ground 105.0% 88.2%
sand 88.9% 85.7%

average mean 94.9% 81.7%
weighted mean 98.1% 86.8%

Table 4: Ratio of correct classification and false positive when
applying the spatial reasoning. The weighted mean takes into
account the number of each background.

Within the 4611 images containing two or more backgrounds,
we recognized 13410 backgrounds among which 760 (5.7%)
have been modified by the consistency analysis. These modifi-
cations can be classified into 5 sets:

1. a label is modified from an incorrect background to a cor-
rect one (good)

2. a label is modified from a correct background into another
correct background (not good, but not bad). This can hap-
pen for example in images containing both trees and grass.
If the two corresponding regions have been merged by the
segmentation, then, changing its label from trees to grass
will not change the number of correctly identified back-
grounds in the image

3. a label is modified from a correct background to an incor-
rect background (bad)

4. a label for a correct background is removed (bad)

5. a label for an incorrect background is removed (good)

The distribution of these modifications is reported in Table 5.

Kind of modification Number of images
1 14 (1.8%)
2 2 (0.3%)
3 41 (5.4%)
4 70 (9.2%)
5 633 (83.3%)

Table 5: Number of images concerned by each modification

The prevalent modification made is the removal of a incorrect
background (83.3%) which was the primary goal we wanted
to achieve. Concerning the modification of a background into
another background, 5.4% are worsening the classification,
whereas only 1.8% are enhancing it. So, we would score better
if we do not do these kinds of modification (kinds 1, 2 and 3),

just keeping the possibility of changing a background into the
unknown label (kinds 4 and 5).

The main reason why a correct background is removed is be-
cause an incorrect background is detected somewhere else in
the image, and has a high probability of detection with no
other cadidates. It is mostly due to non-background regions
recognized as background regions. For example, tigers are of-
ten classified as trees or grass, elephants are often classified as
buildings, and street as water or sky thus disturbing the spa-
tial analysis. This can not be solved in the closed world of
eight backgrounds, except if we give some images of animals
as examples of non-background images, that is if we create a
ninth class that contains everything that is not a background.
We recently tried to add some images in this ninth class, and it
strongly reduces the false positive rate. However, this is haz-
ardous, and the images have to be selected carefully so that they
do not overlap with too much with backgrounds which would
result in reducing the detection rate.

Another alternative to creating this ninth class would be to
change the learning method from binary classifiers to density
estimator such as one-class SVM. We should also consider
working on the weights applied for learning. Currently, the
weight is fixed to 3 for the positive class, and 1 for the nega-
tive class. We plan to try to automatically choose this weight
to handle unbalanced data, because each background does not
have the same number of samples.

7 Conclusion

Results are promising, as the objective function is still simple
but ensures that the final set of backgrounds found is consistent
in most cases. An evaluation made on a 10000 images database
shows that it can remove a lot of false detections, with the
drawback of removing also some correct classifications. Fu-
ture work aims at improving the learning method and dealing
with more objects. To achieve this, we may introduce two spa-
tial relationships: inside and surround. We are also planning to
automatically learn the spatial relationships of objects.
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