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Abstract. The interest of graph matching techniques in the pattern
recognition field is increasing due to the versatility of representing knowl-
edge in the form of graphs. However, the size of the graphs as well as the
number of attributes they contain can be too high for optimization algo-
rithms. This happens for instance in image recognition, where structures
of an image to be recognized need to be matched with a model defined
as a graph.
In order to face this complexity problem, graph matching can be re-
garded as a combinatorial optimization problem with constraints and
it therefore it can be solved with evolutionary computation techniques
such as Genetic Algorithms (GAs) and Estimation Distribution Algo-
rithms (EDAs).
This work proposes the use of EDAs, both in the discrete and continuous
domains, in order to solve the graph matching problem. As an example,
a particular inexact graph matching problem applied to recognition of
brain structures is shown. This paper compares the performance of these
two paradigms for their use in graph matching.

1 Introduction

Many articles about representation of structural information by graphs in do-
mains such as image interpretation and pattern recognition can be found in the
literature [1]. In those, graph matching is used for structural recognition of im-
ages: the model (which can be an atlas or a map depending on the application)
is represented in the form of a graph, where each node contains information for
a particular structure and arcs contain information about relationships between
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structures; a data graph is generated from the images to be analyzed and con-
tains similar information. Graph matching techniques are then used to determine
which structure in the model corresponds to each of the structures in a given
image.

Most existing problems and methods in the graph matching domain assume
graph isomorphism, where both graphs being matched have the same number of
nodes and links. In some cases this bijective condition between the two graphs
is too strong and it is necessary to weaken it and to express the correspondence
as an inexact graph matching problem.

When the generation of the data graph from an original image is done with-
out the aid of an expert, it is difficult to segment accurately the image into
meaningful entities, that is why over-segmentation techniques need to be ap-
plied [1,2,3]. As a result, the number of nodes in the data graph increases and
isomorphism condition between the model and data graphs cannot be assumed.
Such problems call for inexact graph matching, and similar examples can be
found in other fields.

Several techniques have been applied to inexact graph matching, including
combinatorial optimization [4,5,6], relaxation [7,8,9,10,11], EM algorithm [12,13],
and evolutionary computation techniques such as Genetic Algorithms (GAs) [14,15].

This work proposes the use of Estimation Distribution Algorithm (EDA)
techniques in both the discrete and continuous domains, showing the potential
of this new evolutionary computation approach among traditional ones such as
GAs.

The outline of this work is as follows: Section 2 is a review of the EDA
approach. Section 3 illustrates the inexact graph matching problem and shows
how to face it with EDAs. Section 4 describes the experiment carried out and
the results obtained. Finally, Section 5 gives the conclusions and suggests further
work.

2 Estimation Distribution Algorithms

2.1 Introduction

EDAs [16,17,18] are non-deterministic, stochastic heuristic search strategies that
form part of the evolutionary computation approaches, where number of solu-
tions or individuals are created every generation, evolving once and again until
a satisfactory solution is achieved. In brief, the characteristic that most differ-
entiates EDAs from other evolutionary search strategies such as GAs is that the
evolution from a generation to the next one is done by estimating the probability
distribution of the fittest individuals, and afterwards by sampling the induced
model. This avoids the use of crossing or mutation operators, and the number
of parameters that EDAs require is reduced considerably.

In EDAs, the individuals are not said to contain genes, but variables which
dependencies have to be analyzed. Also, while in other heuristics from evolution-
ary computation the interrelations between the different variables representing
the individuals are kept in mind implicitly (e.g. building block hypothesis), in
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EDA

D0 ← Generate N individuals (the initial population) randomly

Repeat for l = 1, 2, . . . until a stopping criterion is met

DSe
l−1 ← Select Se ≤ N individuals from Dl−1 according to

a selection method

ρl(x) = ρ(x|DSe
l−1) ← Estimate the probability distribution

of an individual being among the selected individuals

Dl ← Sample N individuals (the new population) from ρl(x)

Fig. 1. Pseudocode for EDA approach.

EDAs the interrelations are expressed explicitly through the joint probability
distribution associated with the individuals selected at each iteration. The task
of estimating the joint probability distribution associated with the database of
the selected individuals from the previous generation constitutes the hardest
work to perform, as this requires the adaptation of methods to learn models
from data developed in the domain of probabilistic graphical models.

Figure 1 shows the pseudocode of EDA, in which we distinguish four main
steps in this approach:

1. At the beginning, the first population D0 of N individuals is generated,
usually by assuming an uniform distribution (either discrete or continuous)
on each variable, and evaluating each of the individuals.

2. Secondly, a number Se (Se ≤ N) of individuals are selected, usually the
fittest ones.

3. Thirdly, the n–dimensional probabilistic model that better expresses the
interdependencies between the n variables is induced.

4. Next, the new population of N new individuals is obtained by simulating
the probability distribution learned in the previous step.

Steps 2, 3 and 4 are repeated until a stopping condition is verified. The most
important step of this new paradigm is to find the interdependencies between
the variables (step 3). This task will be done using techniques from the field of
probabilistic graphical models.

Next, some notation is introduced. Let X = (X1, . . . , Xn) be a set of random
variables, and let xi be a value of Xi, the ith component of X. Let y = (xi)Xi∈Y
be a value of Y ⊆ X. Then, a probabilistic graphical model for X is a graphical
factorization of the joint generalized probability density function, ρ(X = x) (or
simply ρ(x)). The representation of this model is given by two components: a
structure and a set of local generalized probability densities.

With regard to the structure of the model, the structure S for X is a directed
acyclic graph (DAG) that describes a set of conditional independences between
the variables on X. PaS

i represents the set of parents –variables from which
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an arrow is coming out in S– of the variable Xi in the probabilistic graphical
model, the structure of which is given by S. The structure S for X assumes that
Xi and its non descendants are independent given PaS

i , i = 2, . . . , n. Therefore,
the factorization can be written as follows:

ρ(x) = ρ(x1, . . . , xn) =
n∏

i=1

ρ(xi | paS
i ). (1)

Furthermore, regarding the local generalized probability densities associated
with the probabilistic graphical model, these are precisely the ones appearing in
Equation 1.

A representation of the models of the characteristics described above as-
sumes that the local generalized probability densities depend on a finite set of
parameters θS ∈ ΘS , and as a result the previous equation can be rewritten as
follows:

ρ(x | θS) =
n∏

i=1

ρ(xi | paS
i ,θi) (2)

where θS = (θ1, . . . ,θn).
After having defined both components of the probabilistic graphical model,

the model itself will be represented by M = (S,θS).

2.2 EDAs in Discrete Domains

In the particular case where every variable Xi ∈ X is discrete, the probabilistic
graphical model is called Bayesian network [19]. If the variable Xi has ri possible
values, x1i , . . . , x

ri
i , the local distribution, p(xi | paj,S

i ,θi) is:

p(xi
k | paj,S

i ,θi) = θxk
i |paj

i
≡ θijk (3)

where pa1,S
i , . . . ,paqi,S

i denotes the values of PaS
i , that is the set of parents

of the variable Xi in the structure S; qi is the number of different possible
instantiations of the parent variables of Xi. Thus, qi =

∏
Xg∈Pai

rg. The local
parameters are given by θi = ((θijk)ri

k=1)qi

j=1). In other words, the parameter
θijk represents the conditional probability that variable Xi takes its kth value,
knowing that the set of its parent variables take its jth value. We assume that
every θijk is greater than zero.

All the EDAs are classified depending on the maximum number of depen-
dencies between variables that they accept (maximum number of parents that a
variable Xi can have in the probabilistic graphical model).

Without Interdependencies. The Univariate Marginal Distribution Algo-
rithm (UMDA) [20] is a representative example of this category, which can be



458 Endika Bengoetxea et al.

written as:

pl(x; θl) =
n∏

i=1

pl(xi; θ
j
i ) (4)

where θl =
{
θlijk

}
is recalculated every generation by its maximum likelihood

estimation, i.e. θ̂lijk =
N l−1

ijk

N l−1
ij

. N l
ijk is the number of cases on which the variable

Xi takes the value xk
i when its parents are on their jth combination of values

for the lth generation, and N l−1
ij =

∑
kN

l−1
ijk .

Pairwise Dependencies. An example of this second category is the greedy al-
gorithm called MIMIC (Mutual Information Maximization for Input Clustering)
[21]. The main idea in MIMIC is to describe the true mass joint probability as
closely as possible by using only one univariate marginal probability and n − 1
pairwise conditional probability functions.

Multiple Interdependencies. We will use EBNA (Estimation of Bayesian
Network Algorithm) [22] as an example of this category. The EBNA approach
was introduced for the first time in [23], where the authors use the Bayesian
Information Criterion (BIC) [24] as the score to evaluate the goodness of each
structure found during the search. Following this criterion, the corresponding
BIC score –BIC(S,D)– for a Bayesian network structure S constructed from a
database D and containing N cases can be proved to be as follows:

BIC(S,D) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
− logN

2

n∑
i=1

(ri − 1)qi (5)

where Nijk denotes the number of cases in D in which the variable Xi has the
value xk

i and Pai is instantiated as its jth value, and Nij =
∑ri

k=1Nijk.
Unfortunately, to obtain the best model all possible structures must be

searched through, which has been proved to be NP-hard [25]. Even if promis-
ing results have been obtained through global search techniques [26,27,28], their
computation cost makes them impractical for our problem. As the aim is to find
a model as good as possible –even if not the optimal– in a reasonable period of
time, a simpler algorithm is preferred. An example of the latter is the so called
Algorithm B [29], which is a greedy search heuristic that begins with an arc-less
structure and adds iteratively the arcs that produce maximum improvement ac-
cording to the BIC approximation –but other measures can also be applied. The
algorithm stops when adding another arc would not increase the score of the
structure.

Local search strategies are another way of obtaining good models. These
begin with a given structure, and every step the addition or deletion of an arc
that improves most the scoring measure is performed. Local search strategies
stop when no modification of the structure improves the scoring measure. The
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main drawback of local search strategies is their strong dependence on the initial
structure. Nevertheless, since it has been shown in [30] that local search strategies
perform quite well when the initial structure is reasonably good, the model of
the previous generation could be used as the initial structure.

The initial modelM0 in EBNA, is formed by its structure S0 which is an arc-
less DAG and the local probability distributions given by the n unidimensional
marginal probabilities p(Xi = xi) = 1

ri
, i = 1, . . . , n –that is, M0 assigns the

same probability to all individuals. The model of the first generation –M1– is
learned using Algorithm B, while the rest of the models are learned following a
local search strategy that received the model of the previous generation as the
initial structure.

Simulation in Bayesian Networks. In EDAs, the simulation of Bayesian net-
works is used merely as a tool to generate new individuals for the next population
based on the structure learned previously. The method used in this work is the
Probabilistic Logic Sampling (PLS) proposed in [31]. Following this method, the
instantiations are done one variable at a time in a forward way, that is, a variable
is not sampled until all its parents have already been so.

2.3 EDAs in Continuous Domains

In this section we introduce an example of the probabilistic graphical model
paradigm that assumes the joint density function to be a multivariate Gaussian
density.

The local density function for the ith variable is computed as the linear-
regression model

f(xi | paS
i ,θi) ≡ N (xi;mi +

∑
xj∈pai

bji(xj −mj), vi) (6)

where N (x;µ, σ2) is a univariate normal distribution with mean µ and variance
σ2.

Local parameters are given by θi = (mi, bi, vi), where bi = (b1i, . . . , bi−1i)t

is a column vector. Local parameters are as follows: mi is the unconditional
mean of Xi, vi is the conditional variance of Xi given Pai, and bji is a linear
coefficient that measures the strength of the relationship between Xj and Xi. A
probabilistic graphical model built from these local density functions is known as
a Gaussian network [32]. Gaussian networks are of interest in continuous EDAs
because the number of parameters needed to specify a multivariate Gaussian
density is smaller.

Next, an analogous classification of continuous EDAs as for the discrete do-
main is done, in which these continuous EDAs are also classified depending on
the number of dependencies they take into account.

Without Dependencies. In this case, the joint density function is assumed to
follow a n–dimensional normal distribution, and thus it is factorized as a product
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of n unidimensional and independent normal densities. Using the mathematical
notation X ≡ N (x; µ,

∑
), this assumption can be expressed as:

fN (x; µ,
∑

) =
n∏

i=1

fN (xi;µi, σi) =
n∏

i=1

1√
2πσi

e
− 1

2 (
xi−µi

σi
)2
. (7)

An example of continuous EDAs in this category is UMDAc [33].

Bivariate Dependencies. An example of this category is MIMICG
c [33], which

is basically an adaptation of the MIMIC algorithm [21] to the continuous domain.

Multiple Dependencies. Algorithms in this section are approaches of EDAs
for continuous domains in which there is no restriction in the learning of the
density function every generation. An example of this category is EGNABGe

(Estimation of Gaussian Network Algorithm) [33]. The method used to find the
Gaussian network structure is a Bayesian score+search. In EGNABGe a local
search is used to search for good structures.

Simulation of Gaussian Networks. A general approach for sampling from
multivariate normal distributions is known as the conditioning method, which
generates instances of X by sampling X1, then X2 conditionally to X1, and so
on. The simulation of a univariate normal distribution can be done with a simple
method based on the sum of 12 uniform variables.

3 Graph Matching as a Combinatorial Optimization
Problem with Constraints

3.1 Traditional Representation of Individuals

The choice of an adequate individual representation is a very important step
in any problem to be solved with heuristics that will determine the behavior
of the search. An individual represents a point in the search space that has to
be evaluated, and therefore is a solution. For a graph matching problem, each
solution represents a match between the nodes of a data graph G2 and those of
model graph G1.

A possible representation that has already been used either in GAs or discrete
EDAs [34] consists of individuals with |V2| variables, where each variable can take
any value between 1 and |V1|. More formally, the individual as well as the solution
it represents could be defined as follows: for 1 ≤ k ≤ |V1| and 1 ≤ i ≤ |V2|,Xi = k
means that the ith node of G2 is matched with the kth node of G1.

3.2 Representing a Matching as a Permutation

Permutation-based representations have been typically applied to problems such
as the Travelling Salesman Problem (TSP), but they can also be used for inexact
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graph matching. In this case the meaning of the individual is completely different,
as an individual does not show directly which node of G2 is matched with each
node of G1. In fact, what we obtain from each individual is the order in which
nodes will be analyzed and treated so as to compute the matching solution that
it is representing.

For the individuals to contain a permutation, the individuals will have the
same size as the traditional ones described in Section 3.1 (i.e. |V2| variables long).
However, the number of values that each variable can take will be |V2|, and not
|V1| as in that representation. In fact, it is important to note that a permutation
is a list of numbers in which all the values from 1 to n have to appear in an
individual of size n. In other words, our new representation of individuals needs
to satisfy a strong constraint in order to be considered as correct, that is, they
all have to contain every value from 1 to n, where n = |V2|.

More formally, for 1 ≤ k ≤ |V2| and 1 ≤ i ≤ |V2|, Xi = k means that the kth

node of G2 will be the ith node that is analyzed for its most appropriate match.
Now it is important to define a procedure to obtain the solution that each

permutation symbolizes. As this procedure will be done for each individual, it is
important that this translation is performed by a fast and simple algorithm. A
way of doing this is introduced next.

A solution for the inexact graph matching problem can be calculated by
comparing the nodes to each other and deciding which is more similar to which
using a similarity function  (i, j) defined to compute the similarity between
nodes i and j. The similarity measures used so far in the literature have been
applied to two nodes, one from each graph, and their aim was to help in the
computation of the fitness of a solution, that is, the final value of a fitness
function. However, the similarity measure  (i, j) proposed in this work is quite
different, as these two nodes to be evaluated are both in the data graph (i, j ∈ V2)
–see Section 4.3 for more details. With these new similarity values we will identify
for each particular node of G2 which other nodes in the data graph are most
similar to it, and try to group it with the best set of already matched nodes.

Given an individual x= (x1, . . . , x|V1|, x|V1|+1, . . . , x|V2|), the procedure to do
the translation is performed in two phases as follows:

1. The first |V1| values (x1, . . . , x|V1|) that directly represent nodes of V2 will
be matched to nodes 1, 2 . . . , |V1| (that is, the node x1 ∈ V2 is matched with
the node 1 ∈ V1, the node x2 ∈ V2 is matched with the node 2 ∈ V1, and so
on, until the node x|V1| ∈ V2 is matched with the node |V1| ∈ V1).

2. For each of the following values of the individual, (x|V1|+1, . . . , x|V2|), and
following their order of appearance in the individual, the most similar node
will be chosen from all the previous values in the individual by means of the
similarity measure  . For each of these nodes of G2, we assign the matched
node of G1 that is matched to the most similar node of G2.

The first phase is very important in the generation of the individual, as this
is also the one that ensures the correctness of the solution represented by the
permutation: all the values of V1 are assigned from the beginning, and as we
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assumed |V2| > |V1|, we conclude that all the nodes of G1 will have at least a
occurrence in the solution represented by any permutation.

Looking for correct individuals
As explained in Section 2.2, the simulation process is PLS [31]. But a simple

PLS algorithm will not take into account any restriction the individuals must
have for a particular problem. The interested reader can find a more exhaustive
review of this topic in [34], where the authors propose different methods to obtain
only correct individuals that satisfy the particular constraints of the problem.

3.3 Obtaining a Permutation with Continuous EDAs

Continuous EDAs provide the search with other types of EDA algorithms that
can be more suitable for some problems. But again, the main goal is to find a
representation of individuals and a procedure to obtain an univocal solution to
the matching from each of the possible permutations.

In this case we propose a strategy based on the previous section, trying to
translate the individual in the continuous domain to a correct permutation in
the discrete one, evaluating it as explained in Section 3.2. This procedure has to
be performed for each individual in order to be evaluated. Again, this process
has to be fast enough in order to reduce computation time.

With all these aspects in mind, individuals of the same size (n = |V2|) will be
defined, where each of the variables of the individual can take any value following
a Gaussian distribution. This new representation of individuals is a continuous
value in IRn that does not provide directly the solution it symbolizes: the values
for each of the variables only show the way to translate from the continuous
world to a permutation, and it does not contain similarity values between nodes
of both graphs. This new type of representation can also be regarded as a way
to focus the search from the continuous world, where the techniques that can be
applied to the estimation of densities are completely different.

In order to obtain a translation to a discrete permutation individual, we
propose to order the continuous values of the individual, and to set its corre-
sponding discrete values by assigning to each xi ∈ {1, . . . , |V2|} the respective
order in the continuous individual. The procedure described in this section is
further described in [35].

4 Experimental Results. The Human Brain Example

4.1 Overview of the Human Brain Example

The example chosen to test the performance of the different EDAs for permutat-
ion-based representations in inexact graph matching is a problem of recognition
of regions in 3D Magnetic Resonance Images (MRI) of the brain. The data
graph G2 = (V2, E2) is generated after over-segmenting an image and contains a
node for each segmented region (subset of a brain structure). The model graph
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G1 = (V1, E1) contains a node for each of the brain regions to be recognized.
The experiments carried out in this chapter are focused on this type of graphs,
but could similarly be adapted to any other inexact graph matching problem.

More specifically, the model graph was obtained from the main structures
of the the inner part of the brain (the brainstem). This example is a reduced
version of the brain images recognition problem in [1]. In our case the number
of nodes of G2 (number of structures of the image to be recognized) is 94, and
contains 2868 arcs. The model graph contains 13 nodes and 84 arcs.

4.2 Description of the Experiment

This section compares EDA algorithms each other and to a broadly known GA,
the GENITOR [36], which is a steady state type algorithm (ssGA).

Both EDAs and GENITOR were implemented in ANSI C++ language, and
the experiment was executed on a two processor Ultra 80 Sun computer under
Solaris version 7 with 1 GByte of RAM.

The initial population for all the algorithms was created using the same ran-
dom generation procedure based on a uniform distribution. The fitness function
used is described later in Section 4.4.

In the discrete case, all the algorithms were set to finish the search when a
maximum of 100 generations or when uniformity in the population was reached.
GENITOR, as it is a ssGA algorithm, only generates two individuals at each
iteration, but it was also programmed in order to generate the same number of
individuals as in discrete EDAs by allowing more iterations (201900 individuals).
In the continuous case, the ending criterion was to reach 301850 evaluations (i.e.
number of individuals generated).

In EDAs, the following parameters were used: a population of 2000 individ-
uals (N = 2000), from which a subset of the best 1000 are selected (Se = 1000)
to estimate the probability, and the elitist approach was chosen (that is, always
the best individual is included for the next population and 1999 individuals are
simulated). In GENITOR a population of 2000 individuals was also set, with a
mutation rate of pm = 1

|V2| and a crossover probability of pc = 1. The operators
used in GENITOR where CX [37] and EM [38].

4.3 Definition of the Similarity Function

Speaking about the similarity concept, we have used only a similarity measure
based on the grey level distribution, so that the function  returns a higher
value for two nodes when the grey level distribution over two segments of the
data image is more similar. In addition, no clustering process is performed, and
therefore the similarity measure  is kept constant during the generation of
individuals. These decisions have been made knowing the nature and properties
of an MRI image. More formally, the function  can be defined as the set of
functions that measure the correspondence between the two nodes of the data
graph G2:  = {ρu2

σ : V2 → [0, 1], u2 ∈ V2}.
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4.4 Definition of the Fitness Function

We have chosen a function proposed in [1] as an example. Following this function,
an individual x= (x1, . . . , x|V2|) will be evaluated as follows:

f(x; ρσ, ρµ, α) = α


 1

|V2||V1|
|V2|∑
i=1

|V1|∑
j=1

(
1 − |cij − ρui

1
σ (uj

2)|
)
+

(1 − α)


 1

|E2||E1|
∑

el
1=(ui

1,vi′
1 )∈E1

∑
ek
2=(uj

2,vj′
2 )∈E2

(
1 − |cijci′j′ − ρel

1
µ (ek2)|

)
 (8)

where

cij =
{

1 if Xi = j
0 otherwise,

α is a parameter used to adapt the weight of node and arc correspondences in
f . For each ui

1 ∈ V1, ρui
1

σ is a function from V2 into [0, 1] that measures the
correspondence between ui

1 and each node of V2. Similarly, for each e1 ∈ E1,
ρµ is the set of functions from E2 into [0, 1] that measure the correspondence
between the arcs of both graphs G1 and G2. The value of f associated for each
variable returns the goodness of the matching. Typically ρσ and ρµ are related
to the similarities between node and arc properties respectively.

Node properties are described as attributes on grey level and size, while edge
properties correspond to spatial relationships between nodes.

4.5 Experimental Results

Results such as the best individual obtained, the computation time, and the
number of evaluations to reach the final solution were recorded for each of the
experiments. The computation time obtained is the CPU time of the process for
each execution, and therefore it is not dependent on the load of the system. The
latter is given as a measure to illustrate the different computation complexity of
all the algorithms.

Each algorithm was executed 10 times. The non-parametric tests of Kruskal-
Wallis and Mann-Whitney were used to test the null hypothesis of the same
distribution densities for all –or some– of them. This task was done with the
statistical package S.P.S.S. release 9.00. The results for the tests applied to all
the algorithms are shown in Table 1. The study of particular algorithms gives
the following results:

– Between algorithms of similar complexity only:
• UMDA vs. UMDAc. Fitness value: p < 0.001; CPU time: p < 0.001;

Evaluations: p < 0.001.



Estimation of Distribution Algorithms 465

Table 1. Mean values of experimental results after 10 executions for each algorithm
of the inexact graph matching problem of the Human Brain example.

Best fitness value Execution time Number of evaluations
UMDA 0.718623 00:53:29 85958
UMDAc 0.745036 03:01:05 301850
MIMIC 0.702707 00:57:30 83179
MIMICc 0.747970 03:01:07 301850
EBNA 0.716723 01:50:39 85958
EGNA 0.746893 04:13:39 301850
ssGA 0.693575 07:31:26 201900

p < 0.001 p < 0.001 p < 0.001

• MIMIC vs. MIMICc. Fitness value: p < 0.001; CPU time: p < 0.001;
Evaluations: p < 0.001.

• EBNA vs. EGNA. Fitness value: p < 0.001; CPU time: p < 0.001; Eval-
uations: p < 0.001.

These results show that the differences between EDAs in the discrete and
continuous domains are significant in all the cases analyzed, meaning that
the behavior of selecting a discrete learning algorithm or its equivalent in
the continuous domain is very different. It is important to note that the
number of evaluations was expected to be different, as the ending criteria
for the discrete and continuous domains were also different. In all the cases,
continuous EDAs obtained a fitter individual, but the CPU time and number
of individuals created was also bigger.

– Between discrete algorithms only:
• Fitness value: p < 0.001. CPU time: p < 0.001. Evaluations: p < 0.001.

In this case significant results are also obtained in fitness value, CPU time,
and number of evaluations. The discrete algorithm that obtained the best
result was UMDA, closely followed by EBNA. The differences in the CPU
time are also according to the complexity of the learning algorithm they
apply. Finally, the results show that MIMIC required significantly less indi-
viduals to converge (to reach the uniformity in the population), whereas the
other two EDA algorithms require nearly the same number of evaluations to
converge. The genetic algorithm GENITOR is far behind the performance
of EDAs. The computation time is also a factor to consider: the fact that
GENITOR requires about 7 hours for each execution shows the complexity
of the graph matching problem.

– Between continuous algorithms only:
• Fitness value: p = 0.342. CPU time: p < 0.001. Evaluations: p = 1.000.

Differences between all the continuous EDAs appear to be not significant.
As expected, the CPU time required for each of them is according to the
complexity of the learning algorithm. On the other hand, the fact of having
the same number of evaluations is due to the same ending criterion. Speaking
about the differences in computation time between discrete and continuous
EDA algorithms, it is important to note that the latter ones require all the
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300000 individuals to be generated before they finish the search. The com-
putation time for the continuous algorithms is also longer than the discrete
equivalents as a result of several factors: firstly, due to the higher number
of evaluations they perform each execution, secondly because of the longer
individual-to-solution translation procedure that has to be done for each of
the individuals generated, and lastly, as a result of the longer time required
to learn the model in continuous spaces.

We can conclude from the results that generally speaking continuous algo-
rithms perform better than discrete ones, either when comparing all of them in
general or only with algorithms of equivalent complexity.

5 Conclusions and Further Work

This work describes the application of the EDA approach to graph matching.
Different individual representations have been shown in order to allow the use
of discrete and continuous representation and algorithms.

In an experiment with real data a comparison of the performance of this new
approach between the discrete and continuous domains has been done, and con-
tinuous EDAs have shown a better performance looking at the fittest individual
obtained, however a longer execution time and more evaluations were required.
Additionally, other fitness functions should be tested with this new approach.
Techniques such as [39,40] could also help to introduce better similarity measures
and therefore improve the results obtained considerably.

For the near future there are several tasks to be done. The most important
is to perform more experiments with more data images (more data graphs)
in order to evaluate the effectiveness of the proposed matching heuristic with
more examples. In addition, a deeper study on the influence of node and arc
correspondences requires also to be done. These new experiments are expected
to highlight the importance of the structural aspects (the edges) as appreciated
in our recent work.
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16. P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms. A New
Tool for Evolutionary Computation. Kluwer Academic Publishers, 2001.
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26. R. Etxeberria, P. Larrañaga, and J. M. Picaza. Analysis of the behaviour of the ge-
netic algorithms when searching Bayesian networks from data. Pattern Recognition
Letters, 18(11–13):1269–1273, 1997.
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Lozano, editors, Estimation of Distribution Algorithms. A new tool for Evolution-
ary Computation. Kluwer Academic Publishers, 2001.

36. D. Whitley and J. Kauth. GENITOR: A different genetic algorithm. In Proceedings
of the Rocky Mountain Conference on Artificial Intelligence, volume 2, pages 118–
130, 1988.



Estimation of Distribution Algorithms 469

37. J.M. Oliver, D.J. Smith, and J.R.C. Holland. A study of permutation crossover
operators on the TSP. In Lawrence Erlbaum, editor, Genetic Algorithms and their
applications: Proceedings of the Second International Conference, pages 224–230,
Hillsdale, New Jersey, 1987. Grefenstette, J.J. (Ed.).

38. W. Banzhaf. The molecular traveling salesman. Biological Cybernetics, 64:7–14,
1990.

39. I. Bloch. On fuzzy distances and their use in image processing under imprecision.
Pattern Recognition, 32:1873–1895, 1999.

40. I. Bloch. Fuzzy relative position between objects in image processing: a morpholog-
ical approach. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21(7):657–664, 1999.


	Introduction
	Estimation Distribution Algorithms
	Introduction
	EDAs in Discrete Domains
	EDAs in Continuous Domains

	Graph Matching as a Combinatorial Optimization Problem with Constraints
	Traditional Representation of Individuals
	Representing a Matching as a Permutation
	Obtaining a Permutation with Continuous EDAs

	Experimental Results. The Human Brain Example
	Overview of the Human Brain Example
	Description of the Experiment
	Definition of the Similarity Function
	Definition of the Fitness Function
	Experimental Results

	Conclusions and Further Work

