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Abstract. In this paper we present a novel approach for microcalcification de-
tection in Digital Breast Tomosynthesis (DBT) datasets. A reconstruction-
independent approach, working directly on the projected views, is proposed. 
Wavelet filter responses on the projections are thresholded and combined to ob-
tain candidate microcalcifications. For each candidate, we create a fuzzy  
contour through a multi-level thresholding process. We introduce a fuzzy set 
definition for the class microcalcification contour that allows the computation 
of fuzzy membership values for each candidate contour. Then, an aggregation 
operator is presented that combines information over the complete set of pro-
jected views, resulting in 3D fuzzy particles. A final decision is made taking 
into account information acquired over a range of successive processing steps. 
A clinical example is provided that illustrates our approach. DBT still being a 
new modality, a similar published approach is not available for comparison and 
limited clinical data currently prevents a clinical evaluation of the algorithm. .  

1   Introduction 

Breast cancer continues to be one of the leading causes of cancer mortality among 
women. Since the underlying causes for this disease remain unknown, early screening 
is the only means to reduce mortality among the affected population. X-ray mammog-
raphy is currently the primary method for detecting early breast cancers, reducing the 
mortality rate by about 30% for women 50 years and older [1]. However, about 30% 
of breast cancers are still missed by conventional screening mammography. One of 
the main reasons is the superimposition of tissue that obscures lesions in dense breasts 
[2]. Digital Breast Tomosynthesis (DBT) [3],[4], is a new three-dimensional (3D) 
limited-angle tomography breast imaging technique that will substantially overcome 
the superimposition problem for lesion detection. It then remains important to accu-
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rately detect and localize microcalcification clusters, which are one of the earliest 
signs of breast cancer visible in mammograms.  

The introduction of DBT brings a variety of new challenges and benefits. Several 
projected views from different acquisition angles will potentially reduce the number 
of false positives (FP) caused by summation artifacts as well as the number of false 
negatives (FN) caused by the masking effect of overlying tissue. At the same time, the 
dose per acquired image is significantly reduced in comparison to standard 2D mam-
mograms, to maintain a comparable total patient dose per scan. This has a major im-
pact on any processing in the projections, as the characteristics of these images 
change dramatically, and algorithms developed for 2D mammograms cannot be gen-
erally applied without modification. 

As DBT systems become available for clinical testing, different strategies for CAD 
on DBT data are emerging. Chan et al. have presented an approach applying CAD 
processing on reconstructed slices [6]. A method applying mass detection algorithms 
directly on the projected views was presented in [7]. Candidates are detected in each 
projected view separately and afterwards combined in 3D using the acquisition ge-
ometry. CAD processing for calcification detection in 3D DBT data has not been 
made public so far and therefore represents one of the original contributions of this 
paper. Since DBT is a relatively new modality, 3D reconstruction algorithms for its 
particular geometry are still not fully optimized. Hence, it is desirable to devise a 
CAD approach that is independent of the reconstruction algorithm used to generate 
tomosynthesis slices. 

Fuzzy processing has been widely accepted for use in microcalcification detection 
tasks [8], [9], [10].  In the present work, we propose an original method using fuzzy 
particles to account for ambiguities in shape and appearance of microcalcifications for 
the purpose of modeling and identification. The use of a fuzzy set description enables 
us to maintain the evidence, and the strength of the evidence, gathered from each 
DBT projection image for each potential finding without making hard decisions in 
isolation.  The final decision as to the presence or absence of calcification is then 
made in 3D through aggregation of all available information from all projections. 

Working directly on DBT projected views offers several advantages. The process-
ing time is reduced compared to the processing of reconstructed slices since they are 
generally much more numerous than the projected views. The processing is per-
formed on a data space independent of the reconstruction algorithm used to generate 
3D images. There are however some issues that need to be addressed. The DBT pro-
jected views have a lower Contrast to Noise Ratio (CNR) rendering the detection task 
in a single image more difficult when using approaches designed for conventional 2D 
mammograms.  It is crucial to delay the detection decision for each candidate particle 
until information from each view can be jointly considered.  With this as our motiva-
tion, we develop and present a fuzzy processing operator that aggregates the informa-
tion extracted from each projected view. 

Low-dose projected views contain ambiguities about the objects in the image, in-
cluding uncertainty about a candidate particle being a microcalcification, imprecision 
of its position and extent, as well as the incomplete nature of data in the individual 
projections. We use fuzzy logic to take these ambiguities into account and preserve 
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them up to a point in the processing where we have gathered sufficient information to 
make a decision that simultaneously utilizes all available information.  

The novel approach presented here consists of the following processing steps. We 
start by detecting candidate particles that potentially are microcalcifications. We then 
build a fuzzy contour for each candidate particle, based on several extracted attributes 
and multi-level segmentation. A partial defuzzification is applied, resulting in fuzzy 
particles better suited for the final aggregation operation. Once information from the 
entire set of projected views has been aggregated resulting in 3D fuzzy particles, their 
properties are extracted before the final step deciding whether those particles corre-
spond to microcalcifications or other structures. 

2   Candidate Particle Detection 

In the initial processing performed on the projected views we extract a map of candi-
date particles. A "Mexican Hat" wavelet kernel is used to compute the contrast be-
tween a structure located in the center of the wavelet and its surrounding neighbor-
hood. Convolving the original image with this kernel creates a band-pass image of 
sorts that emphasizes small structures in the image. Our implementation incorporates 
a multi-scale approach to account for the range in size of microcalcifications. The 
images resulting from the application of wavelets at different scales are combined 
using a "max" operator resulting in a local contrast image. This image is thresholded 
against local variance of background noise level. The connected components of this 
binary image are then labeled as candidates. 

This initial step is crucial to all further processing. Any particle missed by the ini-
tial detection cannot be recovered later on. A high sensitivity in this step is therefore 
of utmost importance. To achieve the desired sensitivity we accept an elevated num-
ber of false positives (FP), which we will be able to reduce at a later stage with the 
use of fuzzy particles and the aggregation of information from different projected 
views. 

3   2D Fuzzy Contours 

Once the candidate particles have been identified, we create fuzzy contours de-
scribing each candidate. Each fuzzy contour accounts for the ambiguities of the origi-
nal data. For each candidate particle, we compute a set of contour candidates using 
multi-level thresholding. This ordered set of contours is considered the universe of all 
possible contours describing a given particle. The prior knowledge about contours of 
microcalcifications [5] is transformed into a fuzzy set description. Finally, member-
ship values for each contour candidate are calculated. 

First, we extract a set of candidate contours for each candidate particle using multi-
level thresholding. This is achieved by applying a series of decreasing thresholds to 
the local contrast image and extracting the level-set. Each candidate particle is treated 
separately. This processing is applied until either one of the conditions given in Equa-
tions (1) and (2) is met 
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( ) maxACA ≤  (1) 

where A(C) is the area enclosed by the contour C and Amax is the maximum expected 
size for the area of a microcalcification 

 ( ) ( ) maxmax, GGCG ∆−≥ ρρ  (2) 

where G(ρ,C) is the pixel intensity under the contour C of particle ρ, G(ρ)max is the 
maximum pixel intensity of particle ρ, and ∆Gmax  is the intensity range expected 
within a single microcalcification. These two conditions limit the area and intensity 
range of the candidate particles being extracted to values consistent with actual mi-
crocalcifications. 
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Fig. 1. The function on the left shows a gray level profile of a candidate particle and the thresh-
olds applied. The corresponding extracted contours are shown on the right.  

For each candidate particle, we thus obtain a set of candidate contours {Ci}. In or-
der to create a fuzzy contour we compute, for each contour Ci, the membership value 
fc(Ci) to the microcalcification contour class. 

The fuzzy set corresponding to this class is defined based on prior knowledge 
about characteristics of microcalcifications, which is summarized by "microcalcifica-
tions are small and have a high contrast". This linguistic definition translates to a 
fuzzy set description using two attributes namely area and gradient shown in Fig. 2. 

area gradient

f1 f2

 

Fig. 2. The above functions correspond to fuzzy set representations of size (size is small) and 
image gradient under a contour (gradient is high) for particles in the mammography images 
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The functions depicted in Fig. 2 correspond to fuzzy set representations of size 
(size is small) and image gradient under a contour (gradient is high). The functions 
have been designed experimentally in prior work [9].  
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Fig. 3. Values for the fuzzy contour of a given candidate particle for area (left) and gradient 
under the contour (right) 

For each candidate contour Ci, we measure both area A and gradient g values  
(Fig. 3). We can derive the membership values farea(Ci) and fgradient(Ci) for each con-
tour based on small area and high gradient criteria as  

 ( ) ( )( ) ( ) ( )( )iigradientiiarea CgfCfCAfCf 21 ; ==  (3) 

The conjunction of membership values obtained for each contour based on small 
area and high gradient provides membership values fc(Ci) to the class microcalcifica-
tion contour [9], 

( ) ( ) ( )[ ]igradientiareaic CfCfCf ,∧=  (4) 

Application of this method for one particular candidate particle is shown in Fig. 4.  

Ci CiCi

farea fcfgrad

 

Fig. 4. Membership values for the fuzzy contour of the candidate particle described in Fig. 3 for 
different criteria: small area (left), large gradient under the contour (middle) using fuzzy sets in 
Fig. 2, and conjunction of both criteria representing the membership values to the class micro-
calcification contour (right) for a fuzzy contour corresponding to a single candidate particle 
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4   Partial Defuzzification 

We now build a fuzzy particle for each candidate particle, using the membership 
function to the microcalcification contour class of its respective fuzzy contour. This 
process will be called partial defuzzification, since it consists in defuzzifying some 
aspects of the fuzzy contours. To derive a very simple aggregation process in the 3D 
space of the particles detected on projected views, we transform the fuzzy contours 
into fuzzy particles in a two-step process. 

First, for each candidate contour Ci of a fuzzy contour with a membership func-
tion to the microcalcification contour class fc, a connected component Ci is created 
such as 

( ) ( ) ( )icii CfyxCCyx =∈∀ ,,, &&  (5) 

where iC&  denotes the connected component that includes all pixels on or delimited 

by the contour Ci.  
Then, for a projection image P, we generate a fuzzy particle map I such that the 

value of each pixel is determined by  

( ) ( ) ( )[ ]yxCyxIPyx i
i

,,, &∨=∈∀  (6) 

In summary, the aim of this partial defuzzification is to create a fuzzy particle 
map, where each pixel value corresponds to the possibility of that pixel belonging to 
a microcalcification. Since a single pixel may be enclosed by several different candi-
date contours, the membership values corresponding to each of these contours are 
combined in order to obtain the value for this pixel. The "max" operator is the small-
est T-conorm and it realizes the equivalent of a union operation on fuzzy sets. It is 
used here to combine the different membership values corresponding to a given 
point. 

5   Aggregation and Final Decision 

After performing separate fuzzy detections in each of the N projection images of the 
DBT acquisition, the next step consists in aggregating the fuzzy particles by taking 
into account the acquisition geometry. The goal is to find for each 3D voxel the cor-
responding information in all of the N fuzzy particle maps that were created. 

The aggregation of information gathered in the fuzzy particle maps for a given 
voxel is expressed as 

 ( ) ( )[ ]kkk

N

k
vvv yxIzyxI ,,,

1=
Ψ=  (7) 

where I(xv, yv, zv) is the voxel intensity at position (xv, yv, zv), I(xk, yk) is the pixel 
intensity at position (xk, yk) of the kth fuzzy particle map, corresponding to the  
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(xv,yv,zv)

(x1,y1) (xN,yN)(xN-1,yN-1)(x2,y2)

 

Fig. 5. Information aggregation strategy: For a given voxel (xv, yv, zv) the information from all 
corresponding pixels (xk, yk) is aggregated using the operator Ψ. The position of the pixel (xk, 
yk) corresponding to the projection of a given voxel (xv, yv, zv) is computed using a priori 
knowledge about the acquisition geometry. 

projection of position (xv, yv, zv), and Ψ is the aggregation operator. Fig. 5 illustrates 
this aggregation operation. 

Using the arithmetic mean as aggregation operator, equation (7) can be rewritten as 
follows: 

( ) ( )∑
=

+⋅+⋅=
N

k
kzykzkzxkzkvvv ysxsI

N
zyxI

1
,,,,,, ,

1
,, ξξ  (8) 

where ξx,z,k and ξy,z,k are the shift factors in x and y direction and sz,k is the scaling 
factor. These factors result from the acquisition geometry. 

Finally, a defuzzification is applied to the 3D fuzzy particles, taking into account 
information acquired during the different processing steps, to decide whether particles 
correspond to microcalcifications. For reasons of simplicity, a simple thresholding 
was implemented as defuzzification in this preliminary approach. 

6   Preliminary Results 

In this section we show the result of applying these methods to real DBT data.  Fig. 6 
shows a projected view and corresponding fuzzy particle map.  In Fig. 7 we see the 
results of aggregating in 3D before and after defuzzification (middle and right) along-
side a reconstruction slice (left) that was reconstructed for comparison using  
Algebraic Reconstruction Technique (ART). 

The validity of the proposed approach is illustrated in this example for a cluster of 
microcalcifications. Microcalcifications of different sizes, shapes and local contrast 
are detected. Since a clinical database providing ground truth at particle level is hard 
to come by, a visual sanity check today is the only means to verify our results. As 3D 
DBT datasets become increasingly numerous, a validation for detection of clusters of 
microcalcifications on a clinical database should be envisioned. 
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Fig. 6. Selected region of a DBT projected view (left) and the corresponding fuzzy particle map 
(right) (Tomographic projection data provided courtesy of Dr. D. Kopans, Massachusetts Gen-
eral Hospital, Boston, MA, USA.) 

   

Fig. 7. Selected region of a slice reconstructed with ART (left), the corresponding 3D fuzzy 
particles in the same slice (middle), and corresponding 3D particles resulting from defuzzifica-
tion of the 3D fuzzy particles by applying a threshold (right)  

7   Conclusion  

We have proposed a novel approach to detect microcalcifications in DBT datasets. 
Our approach exhibits numerous advantages. Working directly on the DBT projected 
views enables us to work independently of the reconstruction algorithm used to gen-
erate the 3D images. In addition, the processing time is expected to be significantly 
reduced compared to the application of similar operators on reconstructed slices, since 
they are generally much more numerous than the projected views, and the required 
3D processing is sparse. 

We have introduced a fuzzy description of the candidate particles to account for 
the ambiguities in the image data. Another key advantage of combining fuzzy tech-
niques with a detection applied directly on the projected views is that information 
about each potential microcalcification can be preserved until the aggregation step. A 
final defuzzification of the aggregated particles allows the reduction of false positives 
that were accepted at a high level during the initial detection step in the projected 
views. 
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The preliminary experiments presented in this paper are quite promising as far as a 
visual verification is concerned. Nevertheless, an investigation on a clinical database 
is needed for comparing detection results to state-of-the-art 2D detection algorithms. 
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