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Abstract. Registration of CT and PET thoracic images has to cope
with deformations of the lungs during breathing. Possible tumors in the
lungs usually do not follow the same deformations, and this should be
taken into account in the registration procedure. We show in this paper
how to introduce tumor-based constraints into a non-linear registration
of thoracic CT and PET images. Tumors are segmented by means of a
semi-automatic procedure and they are used to guarantee relevant defor-
mations near the pathology. Results on synthetic and real data demon-
strate a significant improvement of the combination of anatomical and
functional images for diagnosis and for oncology applications.

1 Introduction

Computed Tomography (CT) and Positron Emission Tomography (PET), par-
ticularly dealing with thoracic and abdominal regions, furnish complementary
information about the anatomy and the metabolism of human body. Their com-
bination has a significant impact on improving medical decisions for diagnosis
and therapy [3] even with the combined PET/CT devices where registration
remains necessary to compensate patient respiration and heart beating. In par-
ticular, accuracy is fundamental when there is pathology.

Registration of these two modalities is a challenging application due to the
poor quality of the PET image and the large deformations involved in these
regions.

Most of the existing methods have as a limitation that regions placed inside
or near the main structures will be deformed more or less according to the
registration computed for the latter, depending on how local is the deformation.
A critical example of this situation occurs when a tumor is located inside the
lungs and there is a large volume difference between CT and PET images (due
to the breathing). In this case, the tumor can be registered according to the
transformation computed for the lungs, taking absurd shapes, such as shown
in Figure 1. Therefore, the aim of this paper is to avoid this undesired tumor
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misregistrations in order to preserve tumor geometry and, in particular, intensity
since it is critical for clinical studies, for instance based on SUV (Standardized
Uptake Value).

In Section 2, we summarize existing work related to this subject and we
provide an overview of the proposed approach. In Section 3, we describe the
segmentation of the targeted structures, i.e., the body, the lungs and the tumors.
The introduction of tumor-based constraints into the registration algorithm is
detailed in Section 4. Section 5 presents some results obtained on synthetic and
real data. Finally, conclusions and future works are discussed in Section 6.

Fig. 1. Axial and coronal slices in CT (first row) and in PET (second row). Result of
the non-linear registration without tumor-based constraints (third row). The absence
of these constraints leads to undesired and irrelevant deformations of the pathology.
On the images of the first and third columns, the cursor is positioned on the tumor
localization in PET data, while in the second and fourth columns, it is positioned
on the tumor localization in CT data. This example shows an erroneous positioning
of the tumor and illustrates the importance of tumor segmentation and the use of
tumor-specific constraints.

2 Related Work and Overview of the Proposed Approach

Some approaches have already been developed for registration of multimodality
images in pathological cases (pulmonary nodules, cancer), such as in [5]. However
these approaches compute a rigid (or affine) registration for all the structures
and they do not take into account the local nature of the deformations.

Rohlfing and Maurer [9] have developed a method of non-rigid registration
based on B-spline Free-Form Deformations as in [1], but they have added some
incompressibility constraints (using the properties of the Jacobian) which only
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guarantee the preservation of the volume of the structures but not their shape.
Loeckx et al. [10] have added a local rigidity constraint and they have obtained
very promising results.

A different approach, that we consider closer to physical reality of human
body, is based on the combination of rigid and non-rigid deformations, as sug-
gested by Little et al. [7] and Huesman et al. [6]. These methods are based on the
use of point interpolation techniques, together with a weighting of the deforma-
tion according to a distance function. Castellanos et al. [8] developed a slightly
different methodology, in which local non-rigid warpings are used to guarantee
the continuity of the transformation.

The advantage of the approach by Little is that it takes into account rigid
structures and the deformations applied to the image are continuous and smooth.
The method we propose is inspired by this one and adapted to develop a regis-
tration algorithm for the thoracic region in the presence of pathologies.

The data consist of 3D CT and PET images of pathological cases, exhibit-
ing tumors in the lungs. We assume that the tumor is rigid and thus a linear
transformation is sufficient to cope with its movements between CT and PET
images. This hypothesis is relevant and in accordance with the clinicians’ point
of view, since tumors are often a compact mass of pathological tissue. In order
to guarantee a good registration of both normal and pathological structures, the
first step consists of a segmentation of all structures which are visible in both
modalities. Then we define two groups of landmarks in both images, which cor-
respond to homologous points, and will guide the deformation of the PET image
towards the CT image. The positions of the landmarks are therefore adapted to
anatomical shapes. This is an important feature and one of the originalities of
our method. The deformation at each point is computed using an interpolation
procedure based on the landmarks, on the specific type of deformation of each
landmark depending on the structure it belongs to, and weighted by a distance
function, which guarantees that the transformation will be continuous.

The proposed approach has two main advantages:

1. As the transformation near the tumor is reduced by using the distance
weight, even if we have some small errors in the tumor segmentation (of-
ten quite challenging, mainly in CT), we will obtain a consistent and robust
transformation.

2. In the considered application, one important fact is that the objects to reg-
ister are not the same in the two images. For instance, the volume of the
“anatomical” tumor in CT is not necessarily the same as the volume of the
“functional” tumor in PET because the two modalities highlight different
characteristics of the objects. The registration of these two views of the tu-
mor must preserve these local differences, which can be very useful because
we could discover a part of the anatomy that is touched by the pathology
and could not be seen in the CT image. This also advocates in favor of a
rigid local registration.
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3 Segmentation

The first stage of our method consists in segmenting the most relevant structures
that can be observed in both modalities. In this paper, we have segmented the
body contours and the lungs. The body is segmented using automatic thresh-
olding and mathematical morphology operators. Lung segmentation is achieved
using the procedure introduced in [2] based on a hierarchical method that uses
mathematical morphology guided by the previously segmented structures. These
structures will be the base for our algorithm as landmarks will lean on them.

Nevertheless, the most important objects to segment are the tumors. In a
first approach, tumors have been segmented by a semi-interactive segmentation
algorithm, using the coordinates furnished by a “click” of an expert inside the
pathology. More precisely, the interaction consists for the physician in defining
a seed-point in the tumor of interest (in both CT and PET images). Next, both
selected points are used as the input to a relaxation region growing algorithm
[4]. This semi-interactive approach has been chosen due to the complexity of a
fully automatic tumor segmentation method, mainly in CT images. In addition,
this very reduced interaction is well accepted by the users, and even required
because it is faster than any non-supervised method and it assures consistent
results.

The segmented tumors in CT and PET images are used in the following in
order to:

1. calculate the rigid transformation (translation) of the tumor from PET image
(source image) to CT image (target image);

2. calculate the distance map to the tumor in PET that will constrain the
deformation to be rigid inside the tumor and increasingly non-rigid away
from it.

Figure 2 shows some results of the body contour, lungs and tumor segmen-
tations.

Fig. 2. Segmentation results. First and third columns: original CT and PET images
(axial and coronal views). Second and fourth columns: results of the segmentation of
the body contour, the lungs and the tumor in both modalities.
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4 Combining Rigid and Non-linear Deformations Using a
Continuous Distance Function

Based on pairs of corresponding landmarks in both images, the transformation
is interpolated through the whole image using the approach in [7]. We introduce
the rigid structure constraint so that the non-rigid transformation is gradually
weighted down in the proximity of predefined rigid objects.

In this paper, we apply this theoretical framework to a particular 3D case
dealing with just one rigid structure (only one tumor is present in each image).

4.1 Point-Based Displacement Interpolation

The first step in a point-based interpolation algorithm concerns the selection of
the landmarks guiding the transformation. Thus, homologous structures in both
images are registered based on landmarks points defined on their surface. The
resulting deformation will be exact at these landmarks and smooth elsewhere,
which is achieved by interpolation.

Let us denote by ti the n landmarks on the source image that we want to
transform to new sites ui (the homologous landmarks) in the target image.

The deformation at each point t in the image is defined as:

f(t) = L(t) +
n∑

j=1

BT
j σ(t, tj) (1)

under the constraints
∀i, ui = f(ti). (2)

The first term, L(t), represents the linear transformation of every point t in the
source image. The second term represents the non-linear transformation which
is, for a point t, the sum of n terms, one for each landmark. Each term is the
product of the coefficients of a matrix B (that will be computed in order to
satisfy the constraints on the landmarks) with a function σ(t, tj), depending on
the distance between t and tj :

σ(t, tj) = |t − tj |. (3)

This form has favorable properties for image registration [11]. However, different
functions can be used as the one described in [7].

With the constraints given by Equation 2, we can calculate the coefficients B
of the non-linear term by expressing Equation 1 for t = ti. The transformation
can then be defined in a matricial way:

ΣB + L = U (4)

where U is the matrix of the landmarks ui in the target image (the constraints),
Σij = σ(ti, tj) (given by Equation 3), B is the matrix of the coefficients of the
non-linear term and L represents the application of the linear transformation to
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the landmarks in the source image, ti. In our specific case, this linear transfor-
mation L is the translation of the tumor (between PET and CT images) found
in the preprocessing.

From Equation 4, the matrix B is obtained as:

B = Σ−1(U − L). (5)

Once the coefficients of B are found, we can calculate the general interpola-
tion solution for every point in R

3 as shown in Equation 1.

4.2 Introducing Rigid Structures

In this section, we show how to introduce the constraint imposed by the rigid
structures in the images. As mentioned in Section 2, the tumor has not exactly
the same size nor the same shape in PET and CT images. However, we know
that they correspond to the same structure and we register them in a linear way
(translation defined by the difference of their centers of mass).

To add the influence of the rigid structure O, we have redefined the function
σ(t, tj) as σ′(t, tj) in the following way:

σ′(t, tj) = d(t, O)d(ti, O)σ(t, tj) (6)

where d(t, O) is a distance function from point t to object O. It is equal to zero
for t ∈ O (inside the rigid structure) and takes small values when t is near the
structure. This distance function is continuous over R

3 and it weights the func-
tion σ(t, tj) (see Equation 3). So the importance of the non-linear deformation
will be controlled by the distance to the rigid object in the following manner:

– d(t, O) makes σ′(t, tj) tend towards zero when the point for which we are
calculating the transformation is close to the rigid object;

– d(ti, O) makes σ′(t, tj) tend towards zero when the landmark tj is near the
rigid object. This means that the landmarks close to the rigid structure will
hardly contribute to the non-linear transformation computation.

Equation 4 is then rewritten by replacing Σ by Σ′, leading to a new matrix
B′. Finally, we can calculate the general interpolation solution for every point
in R

3 as in Equation 1.

5 Results

We present in this section some results that we have obtained on synthetic
images, on segmented images and, finally, on real images.

5.1 Synthetic Images

This first experiment on synthetic images aims at checking that the rigid struc-
tures are transformed rigidly, that the landmarks are correctly translated too
and, finally, that the transformation elsewhere is consistent and smooth.
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This simulation was designed to be similar to the effect we can find with
real images. The rigid structure is the “tumor” and it is just translated. The
frame of our synthetic images simulate the contour of the body and the internal
black square replace the lungs. As we are taking the PET image as the one to
be deformed (source image), we simulate an expansive transformation because
the lungs in PET are usually smaller than in CT images. This is due to the fact
that the CT image is often acquired in maximal inspiration of the patient. The
result in this case is shown in the second row of Figure 3.

Fig. 3. Results on synthetic images. First row: effects of shrinking a frame (in grey in
the figure) and translating the “tumor” (in white in the figure). Second row: effects of
expanding a frame and translating the “tumor”. Source images (with a grid) are shown
on the left, target images are in the middle and the results of the transformation on
the right. The landmarks are located on the internal and external edges of the frame
in grey (on the corners and in the middle of the sides). The total number of landmarks
is 16 in both examples.

In order to observe the transformation all over the image, we have plotted
a grid on it. To illustrate the effect of the transformation we have simulated
a compression and an expansion of a frame and a simple translation of the
“tumor”. It can be seen in Figure 3 that the results with our synthetic images are
satisfactory as the shape of the rigid structure (the “tumor”) is conserved and the
landmarks are translated correctly. The frame, on which the landmarks are put,
is deformed in a continuous and smooth way. If we do not apply the constraints
on the rigid structure we obtain an undesired transformation as illustrated in
Figure 4 (the tumor is expanded).
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Fig. 4. Result on a synthetic image without constraints on the rigid structure when
we apply an expansion to the frame using 16 landmarks. Source image (with a grid) is
shown on the left, target image is in the middle and the result of the transformation
on the right.

However, it must be noticed that the edges of the frame are not totally
straight after the transformation. In general, the more landmarks we have, the
better the result will be. The positions of the landmarks are important too. Here
we have chosen to spread them uniformly over the internal and external edges
of the frame.

The algorithm has also been tested on 3D synthetic images with similar
results. We only show here the results on bi-dimensional images for the sake of
simplicity.

5.2 Segmented Images

In order to appreciate more clearly the effect of the transformation, we have first
used the results of the segmentation to create the simplified real images. They
are not only useful to analyze the deformation but it is also easier to define the
landmarks on them.

Landmarks have to correspond to the same anatomical reality in both images.
Thus we have decided to place them (uniformly distributed) on the surfaces of
the lungs.

Figure 5 shows some results on the simplified images. A grid is superimposed
on the segmented PET image for better visualization. In these cases, we have
fixed the corners of the images to avoid undesired deformations. In Figure 6,
we can see the undesired effect produced if there is no landmark to retain the
borders of the image.

For any number of landmarks, the tumor is registered correctly with a rigid
transformation. Nevertheless, the quality of the result depends on the quantity
of landmarks and their positions. If the number of landmarks is too low, the
algorithm does not have enough constraints to find the desired transformation.

Here the results are obtained by applying the direct transformation in order
to better appreciate the influence of the deformation in every region of the image.
However it is clear that the final result should be based on the computation of
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Fig. 5. Results on simplified images. First column: segmented PET images with a
grid for visualization purpose (landmarks are also marked in white). Second column:
segmented CT images with the corresponding landmarks. Third column: results of the
registration of the simplified PET and CT images. In the first row 4 landmarks have
been used (fixed on the corners of the image). Then additional landmarks are chosen
on the walls of the lungs (uniformly distributed): 4 in the second line, 8 in the third
one and 12 in the last one. In all the images the cursor is centered on the tumor in the
CT image.
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Fig. 6. Result on the simplified images. This is the kind of result we obtain if we do
not fix the corners of the image. Here we have only 8 landmarks on the walls of the
lungs.

Fig. 7. Results on real images. The CT image and the original PET image are shown in
the first column. Second and third columns, from left to right and from top to bottom:
superimposition of the CT image with the deformed PET image with 0 (only global
translation), 4, 12 and 16 landmarks.

the inverse transformation at each point of the result image in order to avoid
unassigned points.

5.3 Real Images

Figure 7 shows the results on real images. As happened with the simplified
images, we have to fix the corners of the images to avoid misregistrations.
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As previously, the tumor is registered correctly with a rigid transformation
in all the cases. However, the accuracy of the registration depends on the num-
ber and the distribution of the landmarks. If the number of landmarks is not
sufficient there are errors. It can be seen that with an appropriate number of
landmarks the registration is very satisfactory. Figure 7 shows that with only 16
landmarks in CT and in PET, the results are good and the walls of the lungs
are perfectly superimposed. The results are considerably improved, compared to
those obtained with 4 or 12 landmarks.

This shows that the minimal number of landmarks does not need to be very
large if the landmarks are correctly distributed, i.e., if they are located on the
points that suffer the most important deformations.

6 Conclusion and Future Work

We have developed a CT/PET registration method adapted to pathological
cases. It consists in computing a deformation of the PET image guided by a
group of landmarks and with tumor-based constraints. Our algorithm avoids
undesired tumor misregistrations and it preserves tumor geometry and inten-
sity.

One of the originalities of our method is that the positions of the landmarks
are adapted to anatomical shapes. In addition to this, as the transformation near
the tumor is reduced by the distance weight, even if the tumor segmentation is
not perfect, the registration remains consistent and robust. Moreover, the tumor
in CT and PET has not necessarily the same size and shape, therefore the
registration of these two modalities is very useful because all the information of
the PET image is preserved. This is very important in order to know the true
extension of the pathology for diagnosis and for the treatment of the tumor with
radiotherapy, for example.

Future work will focus on the automatic selection of the landmarks in order
to furnish a consistent distribution on the surfaces of the structures and to
guarantee a satisfactory registration.

A comparison with other methods (as Loeckx’s one) will provide some con-
clusions on the limits of each method and their application fields.

Although validation is a common difficulty in registration [12], we plan an
evaluation phase in collaboration with clinicians.

Acknowledgments
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