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ABSTRACT
This paper presents a contribution to a large problematic
in medicine and neuroscience which consists in integrat-
ing information extracted from medical images (MRI) into
a global framework (such as electronic patient records or
anatomo-functional databases). In this work, we focus on
(1) the construction of an anatomo-functional model based
on an Attributed Relational Hypergraph representation and
(2) the integration into this model of information extracted
from cerebral imaging scans, via several segmentation pro-
cedures. This model, including information on anatomical
structures and their spatial relations, is able to cope with
the complexity of anatomy and of MRI data.
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1 Introduction

This paper focuses on brain images and neurological
pathologies. Correlation of image-based information with
clinical data (e.g. anamnesis, neurological examination,
neuropsychological tests) and its functional interpretation
are essential for clinicians and neuroscientists. To assist
this task, we propose a methodology for modeling healthy
and pathological cerebral anatomy (Figure 1). The brain
model developed by our group consists of a Graph of Rep-
resentation of Anatomical and Functional data for Individ-
ual patients including Pathologies (GRAFIP). The generic
model includes both anatomical and functional knowledge.
The instantiation of the generic model for an individual
patient is based on anatomical information extracted from
standard brain MRI exams (including T1, T2 and FLAIR
protocols).

The brain model provides a descriptive framework
in which we can integrate pathology localization, type,
anatomical and functional positioning, segmentation re-
sults, description of the surrounding structures, and their
spatial relationships.

Other graph-based approaches have been proposed in
the literature, in particular for the cortex, among which a
model of sulco-gyral anatomy for the healthy human brain
[1], or a random graph approach for automatic labeling of
sulci [2]. These studies focus on the inter-individual vari-

Figure 1. Overview of the system integrating information
from pathological brain MRI into an anatomo-functional
model.

ability of the sulco-gyral anatomy and do not take into ac-
count pathology. To our knowledge, no graph-based model
including pathologies has been proposed so far.

The descriptive framework GRAFIP includes spatial
knowledge guiding segmentation. Other graph-based ap-
proaches for the segmentation process can be found e.g. in
[3, 4].

This paper is organized as follows. In Section 2,
we present our generic anatomo-functional brain model
and we show that the hypergraph structure is well suited
for the description of normal and pathological cerebral
knowledge. We introduce the GRAFIP descriptive frame-
work and motivate the necessity to follow a “pathology-
dependent” paradigm. In Section 3, we present our con-
tribution for encoding the proposed brain model, using
resources based on the XML language: (i) A GraphML
[5] file (an easy-to-use file format for graphs), that pro-
vides a comprehensive representation of cerebral data, (ii)
a XML Schema Description (XSD) file that describes our
data structure and knowledge representation. In Section 4
we illustrate on an example how the visualization of the
GRAFIP descriptive framework on the MRI data set offers
new perspectives to expert clinicians. Finally we discuss
future applications of the proposed framework.
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2 Modeling normal and pathological brain
anatomy with hypergraphs

The proposed modeling framework allows the integration
of generic anatomical and functional knowledge on normal
human brains as well as specific anatomical information
extracted from brain MRI exams, for a detailed descrip-
tion of the cerebral pathology and its impact on the brain
anatomy.

2.1 GRAFIP descriptive framework

The cerebral model developed in this project is a Graph
of Representation of Anatomical and Functional data for
an Individual patient including Pathologies (GRAFIP). The
proposed framework enables the modification of generic
anatomical knowledge to adapt the model to a specific clin-
ical case and includes pathological areas. Modification of
the generic model is performed via the integration of infor-
mation extracted via the segmentation of brain MRI exams.
A detailed description of the segmentation procedures for
tumors and normal brain structures falls outside the scope
of this paper. The tumor segmentation method is described
in [6] and the segmentation of normal cerebral structures
guided by anatomical knowledge is described in [7].

2.2 Model description: Attributed Relational
Hypergraph

The GRAFIP framework is based on an Attributed Rela-
tional Graph (ARG) representation. An ARG is a 4-uple���������
	��
���
���

graph where
�

is the set of vertices,
	

is the set of edges,
�

is the vertex interpreter and
�

is the
edge interpreter. Attribute values are assigned to vertices
and edges.

The GRAFIP has a hypergraph structure, where edges
between two vertices are replaced by hyperedges describ-
ing a relation between an arbitrary number of vertices.

In the GRAFIP framework, graph vertices repre-
sent cerebral structures. According to the pre-identified
needs from a group of collaborating clinicians, we selected
622 cerebral structures. The structural cerebral anatomy
is composed of two symmetric hemispheres, leading to a
duplication of the majority of brain structures into left and
right components (e.g. left thalamus and right thalamus). A
synthetic list of cerebral structures used in our anatomical
model is provided in Table 1.

Vertex attributes are defined as follows:

1. ID NODE An acronym to identify the vertex into the
graph (for instance: THr for the right thalamus). Each
acronym is unique.

2. Num NODE An internal vertex number.

3. NATURE NODE or Matter Concept This attribute
labels the vertex according to the main categories of

Table 1. List of Cerebral Structures used in the brain model

Structure Type # of Structures
Hindbrain 25
Midbrain 25
Internal structures 44
Ventricle 12
Frontal Lobe 92
Temporal Lobe 46
Parietal Lobe 52
Occipital Lobe 58
Limbic Lobe 64
Insula 28
White Matter 60
Miscellaneous 116

normal cerebral matter and taking account the patho-
logical tissues (Table 2).

Table 2. NATURE NODE

GRAY MATTER
WHITE MATTER
CSF
NERVE
VESSEL
PATHOLOGY

These types of matter can be further specified accord-
ing to anatomical characteristics. We detail here the
case of gray matter and white matter. CSF, nerve and
vessel are anatomically simpler and do not need fur-
ther categorization for our purpose. The case of patho-
logical tissues is left for future work.

� GRAY MATTER Inside the brain, the gray
matter is clustered into groups called nuclei. On
the periphery, the cortex is a multi-layered cover
of gray matter, on both hemispheres. Possible
values of the structure type are: ������� 	�� and��� ��� 	��� .

� WHITE MATTER The white matter fibers
are classified according to tract characteristics.
Association fibers connect different regions of
the cerebral cortex within the same cerebral
hemisphere and are involved in cognitive tasks
such as language. Commissural fibers cross
through the midline of the brain to connect
cortical regions in both left and right hemi-
spheres, thereby coordinating the activity of
the two cerebral hemispheres. Projection
fibers connect the cerebral cortex with subcor-
tical structures such as the thalamus and the
spinal cord. Possible values of the structure
type are: !  " ����#$!%�&#$� � ' #$( 	 �  ,
����)*)+#  , ,� ��!-� ' #$( 	 �  ,. ����/ 	 ���-#$� � ' #0( 	 �  .

4. MESH MeSH Identifier (for instance:
!&1325476820954;:<60634>=@?31A4 ?020B54 23:39 for the thalamus). MeSH
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is the National Library of Medicine’s controlled
vocabulary thesaurus [8]. It consists of sets of terms
naming descriptors in a hierarchical structure that
allows the exploration of the cerebral model at various
levels of specificity.

5. NAME and Synonymous according to the major
brain thesauruses and atlases (for instance: Middle
frontal gyrus is also known as F2 and intermediate
frontal gyrus).

6. Unpaired Attribute to identify several cerebral struc-
tures which do not duplicate into right and left com-
ponents (e.g. pineal body).

7. Structure SURFACE A semantic attribute describ-
ing a cerebral structure surface according to anatomi-
cal axes. Possible values are INFERIOR SURFACE,
SUPERIOR SURFACE, LATERAL SURFACE, ME-
DIAL SURFACE.

8. BA Each possible value corresponds to a Brodmann’s
area according to the cytoarchitectonic referential [9].

9. Domain Each possible value corresponds to a cog-
nitive sector according to anatomo-functional knowl-
edge.

10. Volume and surface are quantitative attributes de-
scribing cerebral structures and depending on inter-
subject variability and pathology impact.

Edges represent relations between vertices. Our
model includes major types of anatomical relations accord-
ing to the normal cerebral anatomy (at a large scale and at
a finer scale) as well as the pathological anatomy.

The anatomical relations are essentially descriptive
and correspond to a grouping of elements according to
the principal types of organization of the central nervous
system. A set of 651 relations was encoded to model
anatomical links between the various cerebral structures.
These relations are divided into taxonomical and spatial
relations, according to prior anatomical descriptions (see
Section 2.3).

Edge attributes are defined as follows:

1. Syntactic ATTRIBUTE EDGE This attribute labels
the edge according to the previously mentioned dis-
tinction between taxonomical and spatial relations.
The type SPATIAL RELATION is defined through
its possible values: UpOf, Down, InFrontOf, Behind,
Left, Right, IncludedIn, AdjacentTo, Along, Between.

2. References EDGE This attribute offers the possibil-
ity to mark the source knowledge (for instance: Neu-
ronames Brain Hierarchy [10]). It is based on ref-
erences from the literature (providing generic infor-
mation, and generally qualitative attributes values) or
segmentation results (providing more specific infor-
mation on the particular case under study).

2.3 Normal and pathological cerebral
anatomy and function

The brain has a complex and hierarchical organization,
characterized by a modular organization repeated across a
spatial scale. From this point of view, the majority of brain
thesauruses (Neuronames Brain Hierarchy (NBH) for in-
stance) [10] describe the cerebral anatomy and its structural
organization in a hierarchical way.

The thalamus for instance can be viewed as an indi-
vidual structure involved in both the sensory and the motor
systems or, at a more detailed scale, as a nuclear mass and a
set of subnuclei (Figure 2). In a graph representation, edges
can describe details of a particular cerebral structure.

Our anatomical model includes 596 taxonomical re-
lationships, based on the NBH [10].

Figure 2. Anatomy of the thalamus and its subdivision into
subnuclei (from [11]) and its graph description.

Spatial relationships complement the descriptive
graph, enabling anatomy-guided spatial navigation within
the data for automatic segmentation. Currently, our
anatomical model contains 55 spatial relationships: 33 be-
tween internal structures derived from [12] and 12 describ-
ing the macro-organization of the cortex derived from Du-
vernoy’s atlas [13]. Each cerebral structure involves spa-
tial relations with surrounding structures. For example, the
putamen is along the globus pallidus (Figure 3). Hyper-
graphs are particulary interesting when dealing with com-
plex spatial relations involving more than two structures.
For instance, the posterior limb of the internal capsule sep-
arates the putamen from the thalamus (Figure 3).

The whole human brain functional architecture is
strongly conditioned by the anatomical relationships be-
tween brain regions. Brain functions are dependent on the
interactions between specialized regions of the cortex that
process information within local and global networks. For
example, the arcuate fasciculus is well-known in aphasia
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Figure 3. Spatial organization of internal cerebral struc-
tures (from [14]). The putamen (PU) is along the globus
pallidus (GP) (edge of cardinality 2). The posterior limb
of internal capsule (PIC) separates the putamen from the
thalamus (TH) (hyperedge linking three nodes).

(deficiency of the language).
Hypergraphs are also interesting for the description

of the anatomo-functional brain organization. A hyperdege
can be used to link a set of anatomical vertices involved into
a cognitive function according to a cognitive model (as for
the language for instance [15], Figure 4). If a lesion im-
pacts one of the vertices shown in this figure, a functional
impairment hypothesis can then be made.

Figure 4. Hyperedge linking the vertices (PLANTl) Wer-
nicke’s Area, (OPIFGl) Broca’s Area, (PRGl) Motor cortex
and (SLFASl) Arcuate fascicle according to the Wernicke-
Geschwind model of language “Repeating a spoken word”
[15].

The proposed cerebral graph model needs to adapt to
different types of pathologies and the modifications they
may induce. Figure 5 illustrates a thalamic lesion after a
stroke and a cerebral subcortical tumor modifying the loca-
tion of internal structures.

These different neurological cases illustrate the need
for a “pathology-dependent” paradigm:

� Lesion pathology: Cerebral structures and tissues are
impacted and functional impairment is suspected. Le-

(a) (b)

Figure 5. (a) Lesion impacting the thalamus. (b) A tumor
localized in the temporal lobe, modifying the location of
the thalamus.

sional volume and surface must be measured (e.g. ra-
tio:

���������	��

���	����
�������������������������
����
).

� Tumoral pathology: Cerebral structures and tissues
are not impacted and consequently no functional im-
pairment is suspected. However the presence of a
brain tumor modifies the local cerebral organization
and the characteristics of the surrounding structures.
These structures should therefore be characterized by
their potential degrees of deformation and infiltration,
and new spatial coordinates are necessary. Volume
measurements are thus of prime importance.

The paradigm proposed in our approach is to encode
in the graph model the pathological impact based on MRI
segmentation results, using two procedures (Figure 6): (i)
adding a vertex pathology linked with the surrounding cere-
bral structures, and (ii) updating the affected vertex and
edge attributes.

Figure 6. Pathological graph according to information ex-
tracted from the image. A vertex Pathology is added and
linked to the concerned cerebral structures. Attribute val-
ues of corresponding vertices and edges are updated.
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3 Encoding the Anatomo-Functional Brain
Model

3.1 Hypergraph encoding in XML Format

Implementation of the GRAFIP anatomical model involves
a GraphML [5] file based on the XML standard. This file
structure is a comprehensive and easy-to-use file format for
graphs, based on the XML standard. The GraphML syntax
is defined by the GraphML Schema [16]. We used this file
structure to encode our anatomo-functional cerebral model,
stored into an XML file.

3.2 Extensions of the GraphML format

GraphML is designed to be easily extensible. To handle
more complex data structures one has to define, by an XML
Schema, new attributes or new elements. The Schema
which defines such extensions is the eXtended Schema De-
scription (XSD) language.

We need to extend the GraphML schema for two rea-
sons: (i) as mentioned earlier, the high complexity of the
brain anatomy requires elaborated node attributes, (ii) in-
teraction with the image segmentation module requires spe-
cific data structures.

We add elements and attributes in our schema into an
XSD file as follows:

� A GraphML element: nodeInternalInformation and
a set of associated attributes describing a vertex (Sec-
tion 2.2) (for instance the attribute: NATURE NODE
is added to the new element nodeInternalInforma-
tion).

� A set of attributes describing an edge (Section 2.2)
(for instance the attribute: Syntactic Attribute EDGE
is added to the standard Graphml element Edge).

� Additional constraints to attribute values (as defined
in vertex interpreter or edge interpreter of the ARG).
Restrictions are encoded in the attribute section (for
instance, GRAY MATTER is an authorized value for
the vertex attribute NATURE NODE, according to Ta-
ble 2).

We used this schema to encode 622 nodes and 651 re-
lations (Section 2.2) as illustrated in Figure 7 into an XML
file.

4 Data visualization

While the previous format is well adapted to knowledge
representation and manipulation of structural information,
other tasks such as visualization are easier to implement
using a different format. Therefore, we developed an in-
terface between the previous descriptive framework and a
Java library based on the Java Universal Network Graph

Figure 7. Encoding the cerebral structure Thalamus in the
XML file and the spatial relation UpOf between two ver-
tices (Thalamus and Caudate Nucleus) into an edge. Dif-
ferent attributes (Name, NATURE NODE) are associated to
the nodeInternalInformation element.

(JUNG) [17] framework for graph analysis and visualiza-
tion tools.

This allows storing, handling and displaying neuro-
logical MRI exams along with information extracted from
data segmentation and anatomical models. The aim is to
tool up medical experts with a user-friendly GUI for inter-
activity and visualization of the GRAFIP content.

The physician can interactively select a specific slice
within the MRI volume. Each corresponding 2D view will
be automatically changed. In addition to the usual function-
alities (e.g. zoom in/out), it is possible to visualize simulta-
neously the associated 3D segmented lesions or its intersec-
tion with the current slice by overlying its 3D information
onto the MRI images. A 3D viewer has also been devel-
oped and allows the user to navigate around the segmented
structures. The GRAFIP components can be viewed as a
single entity or as an overlay onto 2D MRI slices. For such
display, the GRAFIP graph nodes are locally attached to
specific MRI slices. Some functionalities for interacting
with the graph are also available.

An illustrative example is shown in Figure 8, where
information extracted from a clinical MRI brain exam with
a tumor is provided. A subset of structures and attributes
were extracted to illustrate the general scheme. We illus-
trate the following functionalities of the system: image vi-
sualization, visualization of the GRAFIP on the MRI data,
visualization of the information associated to a particular
anatomical structure (i.e. graph node).

5 Conclusion

The proposed GRAFIP framework includes original fea-
tures, combining generic knowledge representation, spe-
cific patient’s information extracted from medical images,
including pathologies, attributes of anatomical structures
and of the spatial relations they share. The developed cod-
ing methods allow for easy updating, manipulation and vi-
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Figure 8. Visualization of an image and a part of the asso-
ciated GRAFIP.

sualization.
From preliminaries experiments with medical experts

from several hospitals, it appears that the proposed frame-
work is well adapted to provide a quick and structured
overview of the image content, to focus on the region
around the pathology and understand its impact on the sur-
rounding structures and the brain functional organization.

Future work includes reasoning on the proposed
graph representation and matching of different graphs, that
will lead to powerful tools to assist therapeutic patient fol-
low up (for instance by comparing different objects by
means of graph matching algorithms), to perform diagno-
sis and surgery planning, to facilitate the comprehension of
cognitive functions and their neural basis, and to help in
education.
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