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ABSTRACT

This paper presents a novel shape-guided multi-region variational region growing framework for extract-
ing simultaneously thoracic and abdominal organs on 3D infants whole body MRI. Due to the inherent
low quality of these data, classical segmentation methods tend to fail at the multi-segmentation task. To
compensate for the low resolution and the lack of contrast and to enable the simultaneous segmentation
of multiple organs, we introduce a segmentation framework on a graph of supervoxels that combines
supervoxels intensity distribution weighted by gradient vector flow value and a shape prior per tissue.
The intensity-based homogeneity criteria and the shape prior, encoded using Legendre moments, are
added as energy terms in the functional to be optimized. The intensity-based energy is computed using
both local (voxel value) and global (neighboring regions mean values, adjacent voxels values and distance
to the neighboring regions) criteria. Inter-region conflict resolution is handled using a weighted Voronoi
decomposition method, the weights being determined using tissues densities. The energy terms of the
global energy equation are weighted using an information on growth direction and on gradient vector flow
value. This allows us to either guide the segmentation toward the image natural edges if it is consistent
with image and shape prior terms, or enforce the shape prior term otherwise. Results on 3D infants
MRI data are presented and compared to a set of manual segmentations. Both visual comparison and
quantitative measurements show good results.

1. INTRODUCTION

In order to assess the impact of radiofrequency waves on the human body, numerical dosimetry studies
on whole body 3D models are performed. One of the most reliable way to build these 3D models is by
constructing voxelized models based on 3D medical data segmentations which raises the need to develop
dedicated multi-organs segmentation methods.

The problem of the simultaneous segmentation of multiple abdominal organs is a challenge, addressed
only recently. In Wolz et al.,1 the authors used a hierarchical atlas registration method for generating
subject-specific priors, and graph-cuts are used to obtain the final segmentation of the liver, kidneys,
pancreas and spleen. Probabilistic atlases were used as a prior knowledge by Park et al.2 and Shimizu
et al.,3 while statistical models were used by Okada et al.4 Linguraru et al.5 combined statistical atlases
with a 4D directional graph to segment the liver, the spleen and both kidneys. Random forests were used
for organs localization on adults CT Liver data by Gauriau et al.6 and was further extended to multi-
organs localization in.7 However, the methods developed so far for abdominal multi-organs segmentation
are concentrated almost exclusively on CT data which are scarce and hard to obtain when dealing wih
newborn and infants.

While still difficult to obtain, 3D MRI images are more and more available. They however suffer from
strong artifacts such as low resolution and contrast, high noise, strong anisotropy, partial volume effect
and blurring effects due to the child movements.
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The aim of this paper is thus to develop a multi-organ segmentation method for newborn and infant
whole body 3D MRI data. We propose here to integrate multiple shape constraints into a new 3D multi-
region variational region growing (VRG) framework, extending the mono-region VRG described by Rose
et al.8 and Revol-Muller et al.,9 and taking advantage of a shape prior encoded with Legendre moments
as done in Dahdouh et al.10 or Foulonneau et al.11 Global and local information is used in the proposed
intensity-based energy. Regions conflict resolution is handled with a weighted Voronoi based approach
using tissues density as a prior. Results on 3D newborn MRI are presented in Section 3.

2. METHOD

With the aim of segmenting simultaneously multiple tissues, the idea to extend VRG8 into a multi-
region framework with multiple shape priors has emerged. However, due to the difficulty for classical
region growing methods to deal with noisy data, a straightforward extension of the VRG method to a
multi-region one was not efficient and we thus propose a multi-region algorithm, as detailed next.

2.1 Supervoxel graph construction

To deal with the high level of noise in our data as well as the partial volume effects, the 3D volume is
first decomposed in a set of supervoxels using the SLIC algorithm.12 The method proposed by Achanta
et al.12 uses a k-means clustering to generate superpixels, where distances from a cluster center to pixels
are only computed in a pre-defined vicinity.

In the remainder of the algorithm, all steps will be applied on the adjacency graph of supervoxels,
each node v being characterized by the supervoxel center spatial position, the average grey level value
of the voxels it contains and its adjacent nodes.

It has to be noted that although this information reduction step could make difficult the segmentation
of really small structures, the resolution of the MRI data we are dealing with does not allow the imaging
of such tissues. Thus, the proposed reduction step does not hamper the performances of the thereafter
presented method.

2.2 Shape guided multi-region variational region growing

The core of the method proposed here is the simultaneous evolution of a set of N regions to find the
optimal partition of the image in a set of N + 1 regions, the (N + 1)th one being the background.

Let Ω be a bounded and open subset of R3 and I : Ω → R an image.
Ωiin represents the segmented region i and is a subset of Ω, Φi represents the characteristic function of
the evolving region i and Φni , the characteristic function at iteration n.

The characteristic function is thus defined as:

Φi : Ω→ {0, 1}

x 7−→

{
1, if x ∈ Ωiin
0, otherwise

We first consider that, within the minimization procedure, a node can have different labels at a same
time and can thus belong to different regions simultaneously. However, from a region point of view, a
node can only have two different states: belonging to the inside region or not.

The label modification of a given candidate node v at iteration n+ 1 can thus be expressed as:

Φn+1
i (v) = 1− Φni (v) (1)

and Φn+1
i (x) = Φni (x) if x 6= v and x ∈ Ω.
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2.2.1 Image-based energy

Using the previously defined notions, we can then define the image-based energy as:

Eimage =
N∑
i=1

Jimage(Ω
i
in) (2) with Jimage(Ω

i
in) =

∫
Ωiin

kxdx (3)

kx being approximated as a region-independent descriptor. As in Revol-Muller et al.,9 we replace Ωiin
by the associated characteristic function Φni (x) defined on Ω and the previous equation can thus be
rewritten in the discrete case as:

J(Φni (x)) =
∑
x∈Ω

kx.Φ
n
i (x) (4)

While the classical Chan and Vese13 energy has been used in8 or,9 the low quality of data has led us
to develop a new image-based energy taking into account information on all the evolving regions at the
same time as well as information on adjacent nodes memberships. This energy can be defined as:

Jimage(Φ
n
i ) =

∑
x∈Ω

[|I(x)− µi|2 +
1

Najx

∑
y∈ajx

|I(y)− µi|2].Φni (x)

+
∑
x∈Ω

[
∑
r 6=i

λ(x, r)|I(x)− µr|2 +
1

2Najx

∑
y∈ajx

∑
r 6=i

λ(y, r)|I(y)− µr|2].(1− Φni (x))

with µi the mean gray level value of region i, computed at each iteration, and ajx the set of adjacent
nodes to x, of cardinality Najx .

Finally, λ(x, r) is a weighting function to take into account the spatial proximity of all the other
regions into the image, including the background:

λ(x, r) =

∑
p∈{1..N} d(x,Ωpin)− d(x,Ωrin)

(N − 1)
∑
p∈{1..N} d(x,Ωpin)

(5)

with d(x,Ωrin)) the minimal Euclidean distance between a node x and all the nodes of a given region p.

Results of the segmentation procedure using this energy into a multi-region VRG with no shape prior
are illustrated in Figure 1 (b) and (c) (Only one slice is displayed, but the whole process is applied in
3D). The use of this energy is compared to the classical Chan and Vese13 one. As we can see, the new
energy allows a more accurate segmentation of the different structures. However, when dealing with such
noisy data, it is not sufficent to achieve an accurate segmentation of the different organs.

An additional information based on a shape prior on each tissue is thus added, as described next.

2.2.2 Shape constraint

In order to constraint the evolving regions toward the final correct shape of the considered organ, a
shape prior per-region is used. While numerous methods have been proposed to constrain shape in a
level-set based segmentation energy functional10,11,14 , few authors have dealt with the problem of the
introduction of a shape prior in a region growing framework. In Rose et al.8 , Tchebichef moments are
used and made invariant to affine transformation using the 2D method described by Pey et al.15

Following the work of Foulonneau et al.,11 we decided here to use Legendre moments, and the method
proposed in this paper optimizes, within a multi-region VRG segmentation framework, a prior model
per region represented by the distance computed between the currently determined shape, represented
by its Legendre moments and a set of Legendre moments computed on the registered prior shape.

Proc. of SPIE Vol. 9413  941312-3



,
a

(a) (b) (c) (d)
Figure 1. Segmentation of brain, lungs, liver and kidneys for a 2 years old child. (a) One slice of the original MRI
volume. (b) Segmentation results with the Chan and Vese13 energy, no shape prior and no conflicts resolution.
(c) With the proposed energy, no shape prior and no conflicts resolution. (d) With the proposed energy, shape
priors and conflicts resolution scheme.

Shape encoding with Legendre moments.
Let I : [−1, 1]3 → R be a 3D binary image encoding a shape where spatial coordinates are normalized

in [−1, 1].

The (p+ q + r)th order 3D Legendre moments of the image are defined as:

Lpqr = λpqr

∫
[−1,1]3

Pp(x)Pq(y)Pr(z)I(x, y, z)dxdydz (6)

with λpqr = (2p+1)(2q+1)(2r+1)
8 , (p, q, r) ∈ N3 and Pi (i = p, q, r), the Legendre polynomial defined as:

Pi(x) =
i∑

k=0,i−k=even

(−1)
i−k
2

1

2i
(i+ k)!xk

( i−k2 )!( i+k2 )!k!
(7)

With η, a finite number of moments for each dimension, an estimate of I can be given by:

Ĩ(x, y, z) =

η∑
p=0

p∑
q=0

q∑
r=0

λp−q,q−r,rPp−q(x)Pq−r(y)Pr(z) (8)

The computation of the 3D Legendre moments are performed using the fast method proposed by Hosny.16

Since 3D Legendre moments are not invariant to affine transformations, a prior registration step is needed
before performing the moments decomposition. The shape prior and the growing region are thus meshed
and then registered using a registration method based on the one proposed by Guy et al.17 A global
transformation is first estimated using a principal component analysis decomposition on the normal
field of the mesh. An Iterative Closest Point18 algorithm is then used to perform local adjustments to
optimize the registration process. The registered prior is then rasterized and the Legendre moments are
computed.
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reference shape ref . The shape prior energy is thus defined as:

Jprior(Φ
n
i ) =

p,q,r<η∑
p,q,r

Hpqr(σ)2.(Lpqr(Ω
i
in))− Lrefpqr)2 (9)

with η the maximal Legendre moment order, σ a hyper-parameter and

Hpqr(σ) =
1√

2πσ2
exp−

(p+q+r)2

2σ2 (10)

the weighting matrix proposed by Revol-Muller et al.9

2.2.3 Global energy

The segmentation depending on both gray-level intensity values and the shape prior of each region in
the image, the variation of the global energy, defined as the weighted sum of all the above presented
energies, is formulated as:

∆J(Φni (v)) = (1 + τ(v))∆Jimage + β(1− τ(v))∆Jprior (11)

with β a hyper-parameter balancing the respective influences of the shape and intensity priors.

τ(v) is a weighting term used to guide the segmentation process toward image natural edges. It is
defined as the scalar product of the normalized growing direction at a node v and the normalized gradient
vector flow value at this same node.

2.2.4 Inter-region conflict resolution

As we have seen previously, the energy minimization procedure considers that a node can belong simulta-
neously to different regions. Since we want to obtain separate segmented regions in the final segmentation
procedure, an inter-region conflict resolution scheme has been added whenever a conflict appears.
A conflict between two regions arises when a node is claimed by more than one region. When a conflict
arises, the conflictual node cv as well as all the following conflictual nodes agglomerated in the following
iterations as a consequence of the agglomeration of cv are marked as conflictual. The region boundaries
rb before the addition of cv are saved. All the conflictual nodes claimed by the same set of regions are
agglomerated in a virtual region vr as shown in Figure 2. The number of virtual regions is equal to the
number of conflicts between sets of regions. When a virtual region vr stops growing, i.e. when its energy
stops decreasing, a Voronoi based decomposition procedure is applied to vr whose seeds are the nodes
of rb that led to the addition of the conflictual nodes as shown in Figure 3.

Starting from the boundaries rb of all the regions involved in a conflict, a Voronoi spatial decompo-
sition algorithm is propagated for each region using a different speed factor for each region. The final
Voronoi decomposition between all candidate regions determine the cv voxels final region membership.

2.2.5 Parameterization

Number of Legendre moments. Since we want the shape prior to guide the segmentation toward
a shape looking alike the shape prior but we also want to be able to capture anatomical variations, the
number of Legendre has been set to 30 for all the experiments performed in this paper. This number
has been found as a good tradeoff between global shape capture and computational time.

Introducing a shape constraint into the multi-region VRG framework.
An L2 distance is defined in order to compare the shape of the evolving region i with the corresponding
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Figure 2. Conflictual region composition.

Figure 3. Voronoi decomposition of a conflictual region using different regions velocities.

Seeds determination. In order to initiate the segmentation procedure, seeds have to be given for
each organ. A single point (which would correspond to a supervoxel structure) or a small region given
by the user is usually enough to obtain reliable results. For complicated structures, a rough skeleton of
the organ on one slice of the 3D volume can be given to improve the segmentation results.

Voronoi decomposition speed factor. The speed factor used here represents the hardness of a ma-
terial, i.e. its inherent capacity to be deformed under the pressure of neighboring structures, and is a
hyper-parameter given by the user. For medical images, a good speed factor can be obtained using the
magnitude ratio between organs density values. The magnitude ratio between young modulus could also
be used. Indeed, higher is the density, less deformable the organ is. It translates here by the fact that if
the segmentation procedure detects that a voxel could belong either to a bony structure or a soft tissues
one, then the probability that the soft tissue at this place is deformed when compared to the reference
tissue shape prior is higher than the probability that the bony structure is deformed when compared to
the reference bony shape prior. We thus consider that the priority should be given to the bony structure
for the final voxel membership value.
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priors improves greatly the organs segmentation.

3. RESULTS AND DISCUSSION

In order to assess the performances of the proposed method, six whole body 3D MRI data (T1 and T2
sequences) of infants from 5 months to 3 years and 1 months old have been segmented and compared
with manual segmentations performed by an expert. The tissues of the 5 years old child model from the
Virtual Family19 have been used as shape priors. Seven structures have been segmented: both left and
right lungs, the liver, both kidneys, the spleen and the brain (considered as a unique tissue and composed
of both white and grey matter). For each volume, a visual validation of the segmentation result was
performed as illustrated in Figure 1 (d). Manual segmentations being available for 5 of the volumes, a
comparison between manual and automatic segmentations has thus been carried out. Dice, sensitivity
and specificity mean values per tissue for all volumes are reported in Table 1.

Table 1. Quantitative results. Dice, sensitivity and specificity indices computed between automatic and manual
segmentations of the different tissues.

Tissue Dice index Sensitivity index Specificity index
Both lungs 0.85 0.9 0.99

Both kidneys 0.7 0.71 0.99
Liver 0.86 0.93 0.99

Spleen 0.78 0.8 0.99
Brain 0.89 0.82 0.99

As we can see, the proposed segmentation framework allows a good simultaneous segmentation of
several abdominal and thoracic structures as well as brain on low quality data. The lower sensitivity
index compared to specificity one shows a tendancy of the method to slighty underestimate the structures
size. This comes mainly from two points: the use of supervoxels in the segmentation scheme and the
smoothing performed by the use of adjacent supervoxels intensities in the image-based energy who tends
to have a blurring effect on actual contours positions. On data with a higher quality, we could imagine
to use directly voxels data and thus to limit this effect or add a post-processing step who would split
regions boundary supervoxels and then reapply the segmentation process on these voxels.

4. CONCLUSION

In order to segment simultaneously multiple organs on 3D MRI whole body volumes, a shape-guided
multi-regions VRG segmentation framework has been presented in this paper. This 3D segmentation
methods embeds local and global intensity criteria computation on the supervoxel graph and a shape
prior per tissue. Shape information is encoded with Legendre moments and a new image-based energy has
been presented. Inter-region conflict is handled using a Voronoi based method combining Voronoi space
decomposition and organs density priors. The initialization of the segmentation process is performed
semi-automatically by asking the user to determine a seed inside each considered organ. Tests on clinical
cases provided good results when compared visually and quantitatively with manual segmentation. To
evaluate the genericity of our method, it has also been applied successfully on adults abdominal CT
data. A straightforward improvement of the method would be the automatic determination of seeds. A
more complex improvement would be to deal with topological changes. Indeed, while one of the main
advantages of region growing methods is the ability to handle topological changes, the addition of a
shape prior strongly reduces this ability thus limiting the extension of the approach to structures such
as whole skeleton or arterial structures, except if the topology is also encoded in the shape prior.

A comparison of the segmentation results obtained with the segmentation algorithm without and
with the shape constraint is shown in Figure 1(c) and (d). As seen in these figures, using the shape
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