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Abstract. We present a new method for the segmentation of multiple
organs (2D or 3D) which enables user inputs for smart contour editing.
By extending the work of [1] with user-provided hard constraints that
can be optimized globally or locally, we propose an efficient and user-
friendly solution that ensures consistent feedback to the user interactions.
We demonstrate the potential of our approach through a user study
with 10 medical imaging experts, aiming at the correction of 4 organ
segmentations in 10 CT volumes. We provide quantitative and qualitative
analysis of the users’ feedback.

1 Medical Motivation and Overview

Despite constant improvements of fully automatic segmentation approaches, per-
fect accuracy remains unreachable in many image processing scenarios, especially
when inter- and intra-patient variabilities are important. In a clinical context,
the possibility of incorporating user corrections is particularly valuable. From
a user point of view, the interactions should be: (i) simple, easy to perform,
(ii) fast (ideally with real-time feedback), (iii) intuitive (well-behaved algorithm
feedback). Designing efficient and user-friendly algorithms meeting these criteria
is particularly difficult.

Many works on interactive segmentation can be found in the literature. For in-
stance, the live wire technique [2] is a highly interactive approach, close to fully
manual 2D delineation. This approach can be extended to 3D and performed
in real-time [3], but it remains very time-consuming for the end user. Various
methods aim at optimizing globally an energy taking into account image infor-
mation and user-provided initializations (e.g. through strokes). This problem is
often tackled within discrete optimization frameworks [4,5,6,7,8]. The different
formulations found in the literature propose different properties in terms of ro-
bustness, speed and sensitivity to initialization. Image partitioning from user
inputs can also be formulated as a continuous variational problem [9] and in-
clude more global and contextual information. Globally optimizing an energy
that changes with each new user input can have counter-intuitive effects, as the
algorithm forgets previous results while not putting particular emphasis on the
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Fig. 1. Illustration of the framework principle on a toy example with two objects.

latest inputs. The non-convexity of some segmentation formulations can be ex-
ploited to derive sequential approaches [10,11]. After each user interaction, the
contour evolves towards a local minimum of the new energy, starting from its
previous location. With these methods, the impact of new inputs remains global.
Resulting contours may change at locations distant from the latest inputs. Few
methods were proposed for more local corrections [12,13] but they generally do
not guarantee shape consistency. Finally, very few works are dedicated to the
simultaneous segmentation of multiple objects [14], even less so in 3D [15].

In this work, we propose a framework for multi-organ interactive segmenta-
tion with: (i) simple interactions (point-wise mouse clicks), (ii) fast and on the
fly user interactions, (iii) intuitive results (good tradeoff between user input and
image information). We rely on the multiple template deformation framework
of [1] for its efficiency and robustness, with shape priors and non-overlapping
constraints. We extend it with user inputs expressed as hard optimization con-
straints (Sec.2). As an important refinement, we show how to handle user in-
teractions in a spatially local fashion. Our approach is evaluated through a user
study with 10 medical imaging experts, aiming at the correction of 4 organ seg-
mentations in 10 CT volumes (Sec.3). The qualitative and quantitative feedback
highlights the user-friendliness of our framework, which, we believe, is a decisive
criterion towards its suitability to clinical workflows.

2 Methodology

This work is based on the multiple template deformation framework of [1]. We
extend it with user constraints and propose a fast numerical optimization making
possible real-time user interactions. The approach is illustrated in Fig.1.

2.1 Multiple Implicit Template Deformation with User Constraints

We denote an image I : Ω → R where Ω ∈ R
d is the image domain (d = 3 in

this work). For each object indexed by n ∈ [[1, N ]] we associate an implicit shape
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template φn : Ωn → R where Ωn are the template referentials (φn is positive in-
side and negative outside the contour). In general the implicit shape template is
a distance function whose zero level corresponds to the contour. For each object
we define the transformations ψn : Ω → Ωn that map back the image domain to
the template domains. Each of these transformations is advantageously decom-
posed as ψn = Gn ◦ L, where Gn : Ω → Ωn corresponds to the pose of object
n (e.g. a similarity transformation) and L : Ω → Ω corresponds to the local
deformation common to the set of templates in the domain Ω.

The approach aims at finding the transformations Gn and L that best fit the
template onto the image while following image-driven forces (specific to each
object and defined by fn : Ω → R) and not deviating too much from the original
shape. To prevent the objects from overlapping, specific penalizations are added
on template pairs intersections (Eq.2) after pose transformation Gn [1]. The
corresponding energy equation is given below (Eq.1), where H is the Heaviside
function, λ is a constant balancing the shape prior and U is a reproducing kernel
Hilbert space defined by a Gaussian kernel. We use the same forces fn as in [1]
integrating both region intensities and edge information.

min
G1,..GN ,L

{
E(G1, ..,GN ,L) =

N∑
n=1

(∫
Ω

H(φn◦Gn◦L(x)).fn(x)dx
)
+

λ

2
‖L − Id‖2U

}

(1)

subject to

∀(i, j) ∈ [[1, N ]]2, i < j, Ci,j =

∫
Ω

H(φi◦Gi(x))H(φj ◦Gj(x))dx = 0,
(2)

∀n ∈ [[1, N ]], ∀qn ∈ [[1,Kn]], γqn φn ◦ Gn ◦ L(xqn) ≥ 0, γqn ∈ {−1, 1} (3)

We integrate user inputs into this framework as point-wise hard constraints
similarly to [16]. These correspond to very simple interactions (mouse clicks). To
modify the contour of object n, the user can add a point xqn outside (denoted
as γqn =1) or inside (γqn =−1) the object. Adding a point outside (respectively
inside) the object indicates that the template should be deformed to include
(respectively exclude) the point. These constraints can be expressed with regards
to the sign of the deformed implicit template φn, as formulated in Eq. 3. For
instance, for an outside point (γqn =1), the implicit template is constrained to
become positive, i.e. to include point xqn : γqnφn ◦ Gn ◦ L(xqn ) ≥ 0.

2.2 Numerical Optimization

To optimize the constrained problem of Eq. 1-3 we do not use the penalty method
as in [1], as it may suffer from instability due to ill-conditioning. Instead, we use
the augmented Lagrangian scheme presented in [17] to turn the problem into a
series of unconstrained minimizations:
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min
G1,...,GN ,L

⎧
⎪⎨

⎪⎩
Êk = E +

∑

1≤i≤N
i<j≤N

h(C(Gi,Gj), α
k
i,j , μk) +

∑

1≤n≤N
1≤qn≤Kn

h(γqnφn◦Gn◦L(xqn), α
′
qn , μ

′
k)

⎫
⎪⎬

⎪⎭

(4)

where we denote E = E(G1, ...,GN ,L) and Êk = Êk(G1, ...,GN ,L), αk
i,j and

α′
qn are the Lagrange multipliers, μk and μ′

k are the penalty parameters of the
constraints, and h is the function defined by:

h(c, α;μ) =

{
−αc+ μ

2 c
2 if c− α

μ ≥ 0,

−α2

2μ otherwise.
(5)

The unconstrained energy of Eq.4 can then be optimized following a gradient
descent. At each optimization step k, the Lagrange multipliers are fixed, the
energy is optimized and new Lagrange multipliers estimates can be obtained for
the optimization step k+1. As in [1], the parameters of the transformations Gn

and L are updated jointly and iteratively.

Efficient Implementation. Note that the gradients of the energy can be effi-
ciently computed as: (i) integrals over the volume can be turned into integrals
over surfaces, (ii) many terms are only needed near the zero level of the implicit
functions, (iii) a collision detection step can be added to prevent the systematic
computation of the non-overlapping constraints, (iv) if a constraint gets verified
then it is not optimized. For instance the automatic segmentation of 6 organs
in a typical abdominal CT takes about 30 seconds to converge in the absence of
user corrections (including localization). New user inputs add relatively localized
constraints taking minimal effort to satisfy, in general within a few seconds.

Convergence. The optimization procedure ensures the convergence towards a
local minimum of the (non-convex) energy, which is not guaranteed to be the
global minimum. In our applicative scope, this turns into an advantage. In com-
plex medical imaging tasks, the global minimum rarely corresponds to the exact
desired result. Intuitively, user constraints will quickly drive the segmentation
to the desired local minimum. Note also that contradictory constraints can be
easily detected and mitigated in practice.

2.3 Enhancing the Framework for Local Contours Editing

When correcting the contours of pre-segmented objects, a user may expect the
impact of his inputs to remain spatially local. A proper algorithm behavior would
take into account the user inputs while relying on the image information in a
ROI around the user input location. In such a case we suppose that the objects
are already correctly positioned in the image and that only local deformations
occur. Hence we propose a new formulation of the energy E of Eq.1:

E(L) =
N∑

n=1

{∫
Ω

(
Kσ∗

Kn∑
qn=1

δqn(x)

)
H(φn◦L(x)).fn(x)dx

}
+

λ

2
‖L − Id‖2U (6)
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where Kσ is a Gaussian kernel with fixed width (in practice 2-3cm) and δqn =
δ(x− xqn) (δ is the Dirac distribution). With this new energy, the image-driven
forces act in the neighborhood of the user inputs only. Note that the shape
contours remain consistent.

The numerical optimization with this new energy equation is similar to the
one presented in Sec.2.2, except that the pose transformations are not optimized
and the non-overlapping constraint term is reduced to the empty set.

2.4 Flexibility of the Framework

The method proposed is very flexible and can be adapted to different usages.
Any type of image-driven forces can be implemented. The algorithm can work
in automatic mode (given an initialization of the models, e.g. with regression
localization as in [1]) or with user inputs. The user constraints can be added
while the algorithm is running, which allows for live interactions1.

3 A Study for the Evaluation of the User Interactions

The idea behind our experiments is to reproduce a clinical context where the clin-
icians could use automatic segmentation results (given from the original frame-
work [1], possibly run off-line) and correct them with our method with local
corrections (energy of Eq.6) if needed.

Material. Our database is composed of 156 3D CT images coming from 130
patients with diverse medical conditions and from different clinical sites (which
implies different fields of view, resolution etc.). Slice and inter-slice resolutions
range from 0.5 to 1mm and from 0.5 to 3mm, respectively. The organs of interest
have been manually segmented on all the database. The database has been split
randomly into 50 and 106 volumes for training (localization part) and testing,
respectively. Our method was implemented in C++.

A Simple Interface. The interface is made as simple as possible. There is one
button to activate the corrections and one button to remove the last correction.
Once the correction button is pressed, the algorithm runs continuously and the
user can add point constraints in any orthogonal view and at any moment with-
out waiting. The right mouse button is used to select the organ to correct and
the left one is used to add a point constraint in the volume. A left click oustide
the selected object will attract the contour (inside constraint) while a left click
inside the object will move away the contour (outside constraint).

Protocol. To ensure clinical-like conditions we propose to use our framework
without user constraints to segment 4 abdominal organs (liver, kidneys and
spleen) on our database of 106 CT volumes. The volumes are sorted with regards

1 Demonstration video: http://perso.telecom-paristech.fr/~gauriau/

http://perso.telecom-paristech.fr/~gauriau/
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Fig. 2. Average mean distance
and dice results per image in
function of the correction time.

Fig. 3. Examples of results in two different vol-
umes, after automatic segmentation (1st and 3rd

lines) and after user constraints (2nd and 4th

lines) in the three orthogonal views.

Fig. 4. Feedback form results from the 10 experts.

to their Dice coefficient to the ground truth and we select 10 volumes uniformly
spread on this basis. We have then a sample of CT volumes representing the
variability of the automatic segmentation results that we could find in a clinical
context with an automatic method. Then 10 experts of the medical imaging
domain (among them two radiologists) were asked to correct the results of the
automatic segmentation in these volumes. Note that they were not asked for
extreme precision. None of them knew the interface and the algorithm before
using it. They only had few minutes to understand the tool before starting the
experiments. Note that the experiments were performed on different computers
with various configurations. During the experiments, each click was recorded and
intermediate segmentation results were saved. At the end of the experiments,
each user was asked to fill a form and give their feedback.
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Results of the User Study. On average the users spent 345 seconds per
volume (median: 228s). Figure 2 gives, for each organ, the average mean distance
and dice coefficient according to the ground truth in function of the correction
time. Note that the accuracy converges rather rapidly. After about 300 seconds
an average distance of 1.5mm is reached. Considering that there are 4 organs to
look at and correct, this remains reasonable in terms of time. The liver reaches
a mean distance of 2mm explained mainly by the user variability and tolerance
(e.g. sometimes the user includes or not part of the aorta and the inferior vena
cava). Figure 3 shows examples of results before and after corrections.We observe
that small corrections as well as important deformations can be handled by the
algorithm. Finally, Fig. 4 shows the results of the feedback survey. The users
seem satisfied with the final segmentation results. They confirm that the tool
is very easy to learn. They suggest that some effort should be spent on the
reactivity of our prototype, which is expected to be much improved with further
code optimization. They also highlighted one limit of this approach: as large
deformations are penalized (with the regularization term), large errors are more
difficult to correct.

4 Conclusion

In this article we presented a fast and robust multi-organ segmentation method
integrating user inputs in an intuitive manner. While benefiting from the origi-
nal template deformation framework of [1], the efficient numerical optimization
scheme with augmented Lagrangian results in a fast and stable algorithm allow-
ing live user interactions. We also proposed a new formulation of the energy to
take into account user inputs in a spatially local fashion. This extended frame-
work can be used to build a complete and coherent tool chain: organs can be
automatically segmented off-line (in about 30 sec.) and the clinicians can correct
these results if needed. Thanks to our study with 10 users, we showed that this
tool is easy to learn and results in fast, coherent and accurate corrections. Our
experiments gave us precious insight for possible improvements. First, our local
correction scheme could be made more adaptive, e.g. by adapting the width of
the kernel Kσ to the distance between the user input and the object contour.
Second, we are working on improving the performance of our software through
code optimization and parallelization, as reactivity is a crucial aspect of such
clinical tools. Finally, we saw that our approach may have difficulties with large
errors, requiring large deformations to be corrected. We are currently exploring
refinements better suited to such use cases.
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Lefèvre, Paolo Piro and Jean-Michel Rouet for their participation in the study.



62 R. Gauriau et al.

References

1. Gauriau, R., Ardon, R., Lesage, D., Bloch, I.: Multiple template deformation. ap-
plication to abdominal organ segmentation. In: ISBI, pp. 359–362 (2015)

2. Mortensen, E., Morse, B., Barrett, W., Udupa, J.: Adaptive boundary detection
using live-wire two-dimensional dynamic programming. In: IEEE Computers in
Cardiology, pp. 635–638 (1992)

3. Falcao, A.X., Udupa, J.K., Miyazawa, F.K.: An ultra-fast user-steered image seg-
mentation paradigm: live wire on the fly. IEEE TMI 19(1), 55–62 (2000)

4. Boykov, Y., Jolly, M.-P.: Interactive organ segmentation using graph cuts. In: Delp,
S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 276–
286. Springer, Heidelberg (2000)

5. Grady, L.: Random walks for image segmentation. IEEE PAMI 28(11), 1768–1783
(2006)

6. Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video
segmentation and matting. In: IEEE ICCV, pp. 1–8 (2007)

7. Criminisi, A., Sharp, T., Blake, A.: GeoS: Geodesic image segmentation. In:
Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302,
pp. 99–112. Springer, Heidelberg (2008)

8. Zhang, J., Zheng, J., Cai, J.: A diffusion approach to seeded image segmentation.
In: IEEE CVPR, pp. 2125–2132 (2010)

9. Zhao, Y., Zhu, S.C., Luo, S.: Co3 for ultra-fast and accurate interactive segmenta-
tion. In: International Conference on Multimedia, pp. 93–102. ACM (2010)

10. Cremers, D., Fluck, O., Rousson, M., Aharon, S.: A probabilistic level set formu-
lation for interactive organ segmentation. In: SPIE, vol. 6512 (2007)

11. Mory, B., Ardon, R., Yezzi, A.J., Thiran, J.: Non-euclidean image-adaptive radial
basis functions for 3D interactive segmentation. In: IEEE International Conference
on Computer Vision, pp. 787–794 (2009)

12. Grady, L., Funka-Lea, G.: An energy minimization approach to the data driven
editing of presegmented images/volumes. In: Larsen, R., Nielsen, M., Sporring, J.
(eds.) MICCAI 2006. LNCS, vol. 4191, pp. 888–895. Springer, Heidelberg (2006)

13. Harrison, A.P., Birkbeck, N., Sofka, M.: IntellEditS: Intelligent learning-based ed-
itor of segmentations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N.
(eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 235–242. Springer, Heidelberg
(2013)

14. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region
segmentation of objects in N-D images. In: IEEE ICCV, vol. 1, pp. 105–112 (2001)

15. Fleureau, J., Garreau, M., Boulmier, D., Leclercq, C., Hernandez, A.: 3D multi-
object segmentation of cardiac MSCT imaging by using a multi-agent approach.
In: IEEE Annual International Conference, pp. 6003–6006. EMBS (2009)

16. Mory, B., Somphone, O., Prevost, R., Ardon, R.: Real-time 3D image segmentation
by user-constrained template deformation. In: Ayache, N., Delingette, H., Golland,
P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 561–568. Springer,
Heidelberg (2012)

17. Nocedal, J., Wright, S.J.: Numerical optimization. Springer, New York (2006)


	Interactive Multi-organ Segmentation Based on Multiple Template Deformation
	1 Medical Motivation and Overview
	2 Methodology
	3 A Study for the Evaluation of the User Interactions
	4 Conclusion




