
Multi-organ Localization Combining

Global-to-Local Regression and Confidence Maps
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Abstract. We propose a method for fast, accurate and robust localiza-
tion of several organs in medical images. We generalize global-to-local
cascades of regression forests [1] to multiple organs. A first regressor en-
codes global relationships between organs. Subsequent regressors refine
the localization of each organ locally and independently for improved
accuracy. We introduce confidence maps, which incorporate information
about both the regression vote distribution and the organ shape through
probabilistic atlases. They are used within the cascade itself, to better
select the test voxels for the second set of regressors, and to provide richer
information than the classical bounding boxes thanks to the shape prior.
We demonstrate the robustness and accuracy of our approach through a
quantitative evaluation on a large database of 130 CT volumes.

1 Medical Motivation and Overview

With the ever growing size and complexity of 3D medical acquisitions, auto-
matic, robust and accurate anatomy localization is of prime interest. First, it
enables faster data navigation and visualization of target structures. Secondly,
organ localization is a key initialization step for tasks such as segmentation. It is,
overall, a crucial component to complex workflows such as treatment follow-up.

General object detection has been deeply studied in computer vision. However
algorithms proposed for natural 2D scenes are usually not efficient enough (ex-
haustive scanning of the image) or not even applicable (from 2D to 3D) to the
case of anatomical objects. Moreover, medical images often hold specific contex-
tual information, which entails to design specific methods. In the literature we
can mostly find three types of approaches for multi-organ localization: classifi-
cation, regression and atlas-based approaches. As shown in [2], regression-based
methods are computationally less expensive (about 25 times less) than atlas-
based ones, and then more adapted to clinical contexts. A good overview of the
different classification and regression approaches proposed so far can be found
in [3]. In this paper we focus on regression-based methods, as their speed and
accuracy [2] make them well adapted to clinical contexts. The idea of these ap-
proaches is to learn a regression function which relates a voxel and its associated
image features to a set of parameters that we want to predict (e.g. organ bound-
ing box). We say that a voxel votes for a set of parameters. The votes from
several voxels form a distribution from which we can infer the final result. In [2]
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the authors have developed a multivariate regression approach where the organs
bounding boxes positions are predicted from voxel locations. The authors of [1]
enriched this approach by performing a cascade of locally trained regressors. In
both works, bounding boxes give a very rough approximation of the target organs
(e.g. the liver). In [4] the authors increase the organs parameterization complex-
ity. They perform a joint anatomical landmarks detection and then align shape
models. This method gives very good and fast results on shapes such as the lungs
or the kidneys, but its application on organs like the stomach or the gallbladder
remains questionable, as specific landmarks may be difficult to define.

In these methods based on predictions, the authors often use the maximum,
the median or the mean of the votes as a final result [2,5]. The vote distributions
are not taken into account even though they hold precious information. In this
work we intend to make a deeper use of the vote distributions. Following the
idea of [6] we also propose to condition the image voxels membership to a global
shape prior represented by probabilistic atlases. In Sect. 2 we develop this idea
by introducing the concept of confidence maps that can be seen as weighted vote
distributions associated with shape priors, and propose a fast implementation to
compute them. Then we present our global-to-local prediction framework taking
benefit of these maps. In Sect. 3 we show different aspects of our contribution:
the benefit of performing a greedy parameter optimization and the evaluation
of our approach on a large database, thus demonstrating the interest of the
confidence maps as part of the localization framework and as a result in itself.

2 Methodology

Merging Shape Priors and Vote Distributions with Confidence Maps.
In the main works on organ localization with regression, the spatial vote distri-
butions are not fully exploited. However, as shown with the Hough forests [7],
vote aggregation can give more information than a single measure of the dis-
tribution. For this purpose we introduce the notion of confidence map, which
encodes the confidence in finding a target organ at a given location. It is built
through an aggregation process, making use of both the spatial distribution of
regression votes and of organ shape priors through probabilistic atlases.

Probabilistic Atlas. To compute a probabilistic atlas of an organ we first reg-
ister the binary masks of several samples of this organ. For this purpose let
{Mi}i∈[[1,N ]] be the set of N different cropped binary masks of the organ such
that ∀i Mi : Ω → IR (Ω being the image volume) and where Mr (r ∈ [[1, N ]]) is
a mask of reference chosen arbitrarily. We transform each mask with a transfor-
mation Ti (rigid and anisotropic scaling) in order to scale up the masks Mi to
the same size as Mr. The probabilistic atlas A is then computed as an average
of these masks, given by A(x) = 1

N

∑N
i=1 Mi ◦ Ti(x). Each value A(x) evaluates

the probability of a voxel x to belong to the organ (see Fig. 1a).

Confidence Map. Let us consider a regressor Rθ which, for a test voxel v and its
associated image features θ, can give a prediction of the bounding box position
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(a) (b) (c) (d) (e)

Fig. 1. Atlas of the liver (a), localization of the liver and the right kidney: images with
confidence map as overlay (images have been cropped) and predicted median box after
global step (b,d) and local step (c,e) (best viewed in color)

and scale of an organ with a confidence score α. We parameterize a bounding
box by b = (bmin, bmax) ∈ IR6 where bmin and bmax are its extremal vertices.
We denote Xb the set of voxels included in the bounding box with parameteriza-
tion b. We introduce {bk}k∈[[1,K]] an ensemble of K votes with confidence scores
{αk}k∈[[1,K]]. The confidence map C for a given organ is built by localizing and
scaling the organ’s probabilistic atlas A according to each vote k and by accumu-
lating the result in C with weight αk. The map C gives a confidence score about
the presence of the organ at a given location in the image. The pseudo-code is
given in Algo. 1. Some examples of confidence maps are given in Fig. 1(b-e). Fig-
ures 1(b,d) show that the maps capture the ambiguity of the vote distribution,
as we observe that some voxels were correctly voting for the box upper wall posi-
tion, an information that the median was not able to capture. The computation
of these maps may be expensive. Therefore we propose a fast implementation
which considerably reduces the computation time while not degrading signifi-
cantly the accuracy (see Sect. 3). The idea is to uniformly discretize the space
of predicted bounding boxes dimensions. As detailed in Algo. 2, considering we
have J discrete values, for each jth discretization value we convolve the volume
C′

j , where associated center of votes have been set to their confidence score, with
the probabilistic atlas Aj resized to the corresponding sample dimension. The
final map C is computed as the sum of each C′

j (we normalize by the maximum).
With a uniform discretization on 27 boxes dimensions (3 per spatial dimension,
which is good trade-off between speed and precision), the computation is about
30 times faster.

Localizing Organs with Regressors and Confidence Maps. Our approach
consists of two steps in a global-to-local fashion. A first regressor, aiming at
capturing the spatial relationships between organs, is learned using global infor-
mation: voxels of the whole image can vote for the positions of all the organs
simultaneously. Then, new regressors, dedicated to each organ, are learned using
more local information. The benefit of the cascade approach has been already
shown in [1]. Here we propose to introduce the use of confidence maps for refin-
ing the votes in the cascade of regressors. The selection of voxels which vote in
the local step may benefit of the information given by the confidence maps, that
is to say the vote distributions and the shape prior. Notice that this method
can be applied with any multi-variate regressor. We denote by o ∈ [[1, Norg]] the
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C ← 0;
for k ← 1 to K do

[bmin, bmax, α]← Rθ[v[k]];
Xb ← computeXb(bmin, bmax);
c← 1

2
(bmin + bmax);

d← norm(bmin,bmax) ;
At ← resizeToBoxDim(A,d) ;
foreach x ∈ Xb do

C[x]← C[x] + α
K
At(x− c);

Algo. 1. Confidence map computation

C ← 0, dmax ← 0, dmin ←max ;
for k ← 1 to K do

[bmin, bmax, α[k]]← Rθ [v[k]];

c ← 1
2
(bmin + bmax);

d[k]← norm(bmin ,bmax) ;
dmax ← max(dmax,d);
dmin ← min(dmin,d);

d̂ ← quantize(dmax,dmin,J) ;

foreach d̂j ∈ d̂ do

indices← getIndicesOfVotes(d̂j ,d);

C′ ← 0;
foreach ind ∈ indices do

C′[ind]← C′[ind] + α[ind] ;

Aj ← resizeToBoxDim(A,d̂j ) ;

C′ ← convolve(C′ ,Aj) ;

C ← C + C′ ;

Algo. 2. Fast confidence map com-
putation

indices of the Norg organs to localize, and we describe the two steps more pre-
cisely hereafter.

Global Step. In the first step, a random subset of Kg voxels {vk}k∈[[1,Kg]] of the
image I will vote for the bounding boxes parameters of organ o {bk,o}k∈[[1,Kg]].
Votes are performed according to long-range features computed from the image
(see Sect. 3 for specific application with regression forest as regressor). These
features are chosen to encapsulate global information from the image. Notice that
the regressor should be designed such that the relationships between the organs
are implicitly embedded during learning (by preserving correlation information
between organs positions). Then we compute the confidence map Co for each
organ o using Algo. 1 or 2 and given a probabilistic atlas Ao.

Local Step. The second step aims at improving the previous localization. We re-
localize each organ o individually by first computing the binary mask Bo built
from the map Co at a threshold tg (see Sect. 3). Then we select a random subset
of Kl voxels {vk}k∈[[1,Kl]] such that each voxel Bo(vk) = 1. Each voxel vk votes
for the parameters of organ o using a regressor specifically trained for this organ.
Contrarily to the previous step this predictor is now learned using short-range
features (see Sect. 3) and computed in the vicinity of the organ o thanks to the
confidence map so that we give more importance to local information. We then
use the votes to compute new and more accurate confidence maps C′

o for each
organ. Figures 1(c,d) show the benefit of this local step.

3 Experiments and Results

To validate our approach we propose to localize 6 abdominal organs: the liver,
the kidneys, the gallbladder, the spleen and the stomach from various types of
3D CT volumes and using a regression forest as a regressor.

Using the Multivariate Regression Forest as a Regressor. Regression
forests have been introduced in [8] and recently popularized in [2] for the pur-
pose of multi-organ localization. This method has proved to be very fast and
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quite accurate. As in [2] we use the random forest to regress the parameters b
of each organ. Random trees are learned from a subset of test voxels from the
training images. Each node of each tree contains a 1D feature and in each leaf the
distributions of the parameters to regress are stored (here multivariate Gaussian
distributions). We refer the reader to [2] for more details on the method. This
approach is well suited to rough localization. We are able to reinforce its robust-
ness and accuracy using our global-to-local approach with confidence maps. For
the first step of the algorithm we use long-range features computed from the
image after Gaussian smoothing. As in [1,2], a 1D feature corresponds to the
difference of mean intensities in two 3D patches of random sizes and locations in
a certain range. The statistical information stored in the leaf of the random for-
est regressor allows us to compute confidence scores for each vote. Notice that
in practice votes with low confidence scores are discarded. Here we point out
that the forest implicitly encodes the organs relationships, as each tree has been
built considering the entire set of parameters from all the organs. In the second
step we use one random regression forest per organ while using the same kind
of features in a more local range (see Sect. 3). Each of these regression forests is
learned from test voxels in the vicinity of the corresponding organ thanks to the
confidence maps built after the global step. Votes are thus explicitly restricted
to a certain neighborhood around each organ.

Database Description and Implementation. Our database is composed of
130 3D CT images coming from 112 patients with diverse medical conditions
(healthy and pathological subjects, no organ missing). It includes volumes with
varied fields of view, body shapes, resolution and use or not of contrast agents.
Slices and inter-slices resolution ranges from 0.5 to 1mm and from 0.5 to 3mm,
respectively. All the organs have been manually segmented in these 130 volumes.
The dataset has been split randomly into 50 and 80 volumes for training and
testing, respectively. Our method was implemented in C++ and running times
are given for a machine with four 2.3GHz cores and 8Go RAM.

Off-line Training. To reach the best performances and analyze each aspect of
the algorithm, we performed an extensive greedy optimization of the algorithm
parameters. Learning one tree with depth 12 takes about 2minutes. Before learn-
ing we decorrelate the data with a whitening transformation.

Greedy Parameters Optimization. For each parameter we performed a 3-fold
cross-validation on the training set. The accuracy of the algorithm is measured
as the mean distance of the predicted box to the ground truth bounding box.
We first initialized every parameter arbitrarily. Then we optimized each param-
eter one-by-one by grid-search and we replaced its value by the optimized one.
Concerning the training parameters we optimized the tree depth, the threshold
of the confidence map tg1 and the range of the features. We got the best perfor-
mances with tree depths of 14 and 12 for the global and local steps respectively,
tg1 = 0.4 and the range of features Δg = [0, 70]3, Wg = [0, 70]3 and Δl = [0, 40]3,
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Wl = [0, 40]3 for global and local steps respectively (where Δ is the range of dis-
tances from the test voxel to the 3D patches and W is the range of sizes of the
3D patches, all sizes given in millimeters). Regarding the testing parameters, we
looked for the best number of votes (with Kg = 30000 and Kl = 10000) for the
final prediction and the best threshold tg2 of the confidence map after the global
step. Setting tg2 = 0.5 and keeping respectively 3% and 1% of the votes with
best confidence gave the best results.

Learning Phase. The best parameters found after the above optimization were
used for the final forests learning on the 50 training volumes. Atlases of each or-
gan were learned on the same dataset. As in [8] we perform bagging for learning
all the forests (uniform random draw with replacement). Node optimization was
performed with 30 feature tries as a good compromise between speed and accu-
racy. Hereafter, if not specified, we used 3 trees as it achieves a good compromise
between computation time and accuracy.

Evaluation of the Localization Approach. The first objective of our eval-
uation is to show that the confidence maps can be used as a localization result
itself, giving more consistent information than the bounding boxes alone. Confi-
dence maps are computed at a 5mm isotropic spacing. We give some examples of
localization results in Fig.2(a-d). An exhaustive visualization of the results can
be seen in the supplementary material1. The lines of Table 1 starting with
’MD’ give the mean distance of the thresholded maps contours (t = 0.5) to the
ground truth contours, using Algo. 1 and 2. The statistics of the results (median
and standard deviation) confirm that our method is robust to the variety of test
images. We also show that our fast implementation degrades the overall perfor-
mance very slightly. This allows us to think that our approach can be very useful
in various contexts such as segmentation initialization, added to the fact that it
runs in about 10 seconds which makes it adapted to clinical applications (code
optimization may still improve the computation time). Moreover the confidence
maps give much more information than a simple binary mask or contour. For that
reason we propose adapted evaluation measures taking into account the fuzziness
of the maps. If C denotes a confidence map and B a binary mask of the organ
ground truth, then the true positive values are defined as TP =

∑
x∈Ω B(x)C(x),

the false negative values as FN =
∑

x∈Ω B(x)(1 − C(x)) and the false positive
values as FP =

∑
x∈Ω(1−B(x))C(x). Following the definitions of the sensitiv-

ity S = TP/(TP + FN) and the precision P = TP/(TP + FP ), we are able
to compute the weighted versions of these measures. The corresponding results
are reported in Table 1. We notice lower performances for the stomach and the
gallbladder, which are challenging organs due to their shape variability. However
the figures show that they are still correctly detected.

The second objective of our evaluation comprises two experiments in which
we only change the way of selecting the test voxels {vk}k∈[[1,Kl]] for the second
local step: exp.1a: from the predicted boxes after the global step, exp.1b: from

1 http://perso.telecom-paristech.fr/~gauriau/files/MICCAI14_SupMat.pdf

http://perso.telecom-paristech.fr/~gauriau/files/MICCAI14_SupMat.pdf
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Table 1. Results with confidence maps (5mm isotropic spacing) with Algo.(1, 2) with
measures MD: mean distance (mm), S: weighted sensitivity (%), P: weighted precision
(%) (mean±standard deviation (median))

Liver L. Kidney R. Kidney Spleen Gallbladder Stomach All organs Time

A
lg

o
.1 MD 9.6 ± 3(9) 5.6 ± 3(5) 6.1 ± 3(6) 7.9 ± 4(7) 9.4 ± 6(7) 13.5 ± 6(12) 8.7 ± 3(8)

S 76.8 ± 5(77) 65.7 ± 8(68) 64.6 ± 8(66) 66.3 ± 11(69) 45.2 ± 19(48) 49.7 ± 9(51) 61.4 ± 15(65) 300s

P 78.8 ± 7(79) 85.2 ± 7(87) 85.1 ± 5(87) 80.8 ± 10(82) 52.4 ± 22(59) 68.3 ± 12(69) 75.1 ± 17(80)

A
lg

o
.2 MD 9.8 ± 3(9) 6.0 ± 4(5) 6.3 ± 3(6) 8.5 ± 4(7) 9.6 ± 4(7) 13.8 ± 6(13) 9.0 ± 3(8)

S 75.9 ± 6(77) 64.4 ± 9(66) 63.8 ± 9(66) 64.9 ± 11(67) 44.1 ± 19(46) 49.3 ± 9(50) 60.4 ± 15(64) 10s

P 78.2 ± 7(79) 84.5 ± 7(86) 85.0 ± 5(87) 80.2 ± 10(82) 52.1 ± 21(57) 67.4 ± 13(68) 74.6 ± 17(80)

(a) (b) (c) (d)
(e)

Fig. 2. 3D MIP of final confidence maps (a), some results with Algo.2 with overlaid
confidence maps on the images (b,c,d) and results of exp.1(a,b) (e)

the confidence map using Algo. 2. Figure 2e shows that above 10, the number of
trees does not significantly improves the results. Then we keep this number of
trees for exp.1(a,b). In Table 2 we report the results of [1,2] and ours after global
step and exp.1(a,b). The performances after the global step show that a fine
optimization of the parameters helps reaching better results than in [2]. Exp.1a
shows the benefit of the cascade approach (additional iterations did not show
significant improvements of the results), compared to the single step one. Exp.1b
shows the difference between our method and the original cascade approach. The
improvement is specially significant for the liver. Moreover Fig. 2 shows that the
use of confidence maps tends to rather decrease the bias of the results with
an increasing number of trees. We also get similar results to those of [1] for
the kidneys, which shows that the cascade approach is scalable and that an
increasing number of organs does not degrade the average performance.

Table 2. Box walls mean distances per organ (mean distance (mm) ± standard devi-
ation (median)), per method and per experiment

Method Liver L. Kidney R. Kidney Spleen Gallbladder Stomach All organs Time(∼)

[2]* 15.7 ± 15 13.6 ± 13 16.1 ± 16 15.5 ± 15 18.0 ± 15 18.6 ± 16 16.3 4s**

[1]* - 7 ± 10(5) 7 ± 6(6) - - - - 3s**

Global 12.5 ± 4(12) 13.6 ± 7(13) 13.8 ± 5(12) 14.3 ± 6(14) 13.9 ± 6(12) 14.3 ± 6(14) 13.9 ± 6(13) 1s

L
o
c
a
l

Exp.1a 11.8 ± 4(11) 6.9 ± 6(5) 7.2 ± 3(7) 9.6 ± 7(8) 9.8 ± 5(9) 13.6 ± 5(13) 9.8 ± 6(9) 3s

Exp.1b 10.5 ± 4(10) 6.8 ± 6(5) 7.3 ± 3(7) 9.6 ± 6(8) 10.0 ± 5(8) 13.5 ± 5(13) 9.6 ± 5(8) 4s

* results are given for other datasets than ours ** times are given for different machines than ours



344 R. Gauriau et al.

4 Conclusion

In this article we proposed a fast, robust and accurate method for the localization
of multiple organs. We extended the idea of cascade of regressors while introduc-
ing the concept of confidence map, which models the vote distributions with the
addition of shape prior. We showed that the confidence map, with a proposed
fast implementation, can enhance the consistency and accuracy of multi-organ
localization with a limited additional computational cost. It is a generic tool with
promising potential, which can be used with any type of regressor and which is
adaptable to different modalities (e.g. CT, MRI). Moreover its fuzziness property
may be useful in many types of clinical applications, such as segmentation (for
initialization) or visualization (to target the objects of interest for 3D rendering)
for instance. Therefore the perspectives are numerous. We also showed that an
extensive optimization of the regression parameters significantly improves the
localization results. Finally, the consistency and accuracy of our method may
still be improved with the use of multiple probabilistic atlases per organ and the
regression of the rotation parameters.

Acknowledgments. Work supported in part by an ANRT grant (008512012).
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