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Abstract. We propose a recursive Bayesian model for the delineation
of coronary arteries from 3D CT angiograms (cardiac CTA) and discuss
the use of discrete minimal path techniques as an efficient optimization
scheme for the propagation of model realizations on a discrete graph.
Design issues such as the definition of a suitable accumulative metric are
analyzed in the context of our probabilistic formulation.

Our approach jointly optimizes the vascular centerline and associated
radius on a 4D space+scale graph. It employs a simple heuristic scheme
to dynamically limit scale-space exploration for increased computational
performance. It incorporates prior knowledge on radius variations and
derives the local data likelihood from a multiscale, oriented gradient
flux-based feature. From minimal cost path techniques, it inherits prac-
tical properties such as computational efficiency and workflow versatility.
We quantitatively evaluated a two-point interactive implementation on
a large and varied cardiac CTA database. Additionally, results from the
Rotterdam Coronary Artery Algorithm Evaluation Framework are pro-
vided for comparison with existing techniques. The scores obtained are
excellent (97.5% average overlap with ground truth delineated by ex-
perts) and demonstrate the high potential of the method in terms of
robustness to anomalies and poor image quality.

1 Introduction

In many biomedical applications, the segmentation of vascular structures is an
important step towards diagnosis, treatment and surgery planning. Modern 3D
angiographic modalities produce increasingly large and detailed acquisitions.
This exacerbates the need for automated or semi-automated methods to reduce
the burden of manual delineation while increasing repeatability.

Among the rich literature on vascular segmentation [1], minimal path meth-
ods are particularly popular. They classically extract a vessel as a path between
two points on a regular lattice. The cost of a path is defined cumulatively by
a vessel-dedicated metric and optimized over the lattice by graph-based meth-
ods (e.g., Dijkstra-based and fast-marching algorithms for L1 and L2 metrics,
respectively). Recent works [2,3] have shown that the lattice is not necessarily
limited to the spatial positions of the vessel centerline and can be augmented
with dimensions such as the vessel radius. Key properties of minimal paths are
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their guarantee of global optimality, their computational efficiency and the con-
trol over boundary conditions. One can always find a path between two given
points or even search exhaustively, i.e., extract the paths from a single seed to
all the other points. Most drawbacks, such as so-called “shortcut” issues, come
from the practical difficulty of designing well-behaved cumulative metrics.

Another particularly active class of methods is the family of multi-hypotheses
tracking methods [4,5,6,7]. They increase the robustness of the local tracking
process by evolving several hypotheses in parallel. They differ on how hypotheses
are selected and evolved. Bayesian formulations such as particle filters [5] and
related schemes [6,7] have demonstrated their robustness and design versatility,
in particular in the integration of prior model-based knowledge. Unlike minimal
path techniques, they do not offer control over the exhaustiveness of the search,
but are designed to explore large search spaces in a sparse manner, focusing on
most promising areas. They are generally not dependent on the discretization of
the search space but can be computationally expensive.

In this paper, we introduce a recursive Bayesian model related to those un-
derlying multi-hypothesis probabilistic methods [5,6,7]. We discuss the use of
minimal path techniques as an efficient optimization scheme propagating model
realizations as paths on a discrete graph. We detail key design aspects such as the
definition of the data likelihood and the derivation of a cumulative metric from
the Bayesian formulation. Our approach was applied to the particularly chal-
lenging task of segmenting coronary arteries from 3D cardiac CTA. Qualitative
and quantitative evaluation is given on clinical data.

2 Geometric and Bayesian Models

A vascular segment is modeled as a discrete series of states Xt∈[0:T ] = {(pt, rt)},
composed of centerline points pt and associated radiuses rt (Fig. 1). Cross-
sections are assumed to be circular, a reasonable approximation for thin vessels
such as coronaries. Their local orientation is approximated by dt = pt−pt−1

|pt−pt−1| .
We are interested in X∗ = argmaxX P (X)P (Y |X), the maximum a posteriori

model realization given image observations Y = {Y j}. An observation Y j is
obtained as the response of a multiscale oriented feature, computed at location
pj , radius rj and direction dj (Sec. 4). The likelihood P (Y j |X = X i

[0:t]) depends
on whether an observation Y j is associated to the model realization X i

[0:t] or
not. A particularity of our model is to distinguish two distributions, Pv(Y j) and

Fig. 1. Geometric model and parameterization
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Pbg(Y j) for responses in vessels and in the background, respectively (similarly
to [8] for road tracking). Assuming conditionally independent observations given
a model realization, the joint likelihood of the observations is:

P (Y |X i
[0:t])=

∏

Y j∈Xi
[0:t]

Pv(Y j)
∏

Y j /∈Xi
[0:t]

Pbg(Y j) =
∏

Y j∈Xi
[0:t]

Pv(Y j)
Pbg(Y j)

∏

Y j ,∀j

Pbg(Y j)

where the (abusive) notation Y j ∈ X i
[0:t] indicates that Y j is associated to a cer-

tain state of X i
[0:t]. We note Y j = Y i

t if Y j is associated with the particular state
X i

t . Assuming a 1st order Markovian prior and omitting the terms independent
of the model realization, the recursive update of the a posteriori probability of
a model realization (also referred to as an hypothesis) is given by Bayes’ rule:

P (X i
[0:t]|Y i

[0:t]) ∝ P (X i
[0:t−1]|Y i

[0:t−1])P (X i
t |X i

t−1)
Pv(Y i

t )
Pbg(Y i

t )
(1)

This Bayesian model is similar to those used in recent works on vascular prob-
abilistic tracking [5,6,7]. The main difference is the integration of background
information in the likelihood expression, similarly to [8].

3 Graph Optimization for Hypothesis Propagation

The theoretical maximum a posteriori problem is generally intractable as the
search space grows exponentially with the length T of the model. In practice,
probabilistic multi-hypothesis methods adopt selection schemes to limit the num-
ber of hypotheses, e.g., stochastic resampling [5,7] or deterministic pruning [6].

As an alternative, we rely on the discretization of the search space, allowing
the use of an efficient and robust minimal path-like optimization scheme. Spatial
positions {pi

t} are discretized as the regular image grid and we use R different
radius values (see Sec. 4). Our approach thus explores a 4D space+radius graph,
where each node corresponds to a possible state Xk = (pi, rj). To value the edges
of the graph, we define our additive cost metric by noting that maximizing (1)
is equivalent to minimizing its negative logarithm:

C(X i
[0:t]) = C(X i

[0:t−1])−log(P (X i
t |X i

t−1))−log(Pv(Y i
t ))+log(Pbg(Y i

t ))−M (2)

where C(X i
[0:t]) = − log(P (X i

[0:t]|Y i
[0:t])) and M is a constant ensuring that

C(X i
[0:t]) remains positive or null1. This additive cost metric is directly suitable

for Dijkstra-like optimization. Our algorithm sorts the hypotheses in a min-heap
structure. When the heap root X i

t = (pi
t, r

i
t) is popped, we consider its neighbor

states, defined by the product set of the 26-neighboring positions {pi
t+1} of pi

t

and all possible scales. The cost of each neighbor is updated according to (2)
(details in Sec. 4). Propagation continues until the heap is empty (exploration

1 We set M = log(P min
bg ), with P min

bg = 10−6 in our implementation.
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of the entire grid) or when a given end position is popped (two-seed workflow).
The result path (points+radiuses) is simply backtracked from the end state.

Exploring the full 4D graph can be very costly in time and memory. To al-
leviate that cost, we propose to propagate only the H < R best hypotheses (of
different radiuses) first reaching each spatial position. H controls the local, dy-
namic radius selection scheme limiting scale-space exploration. For H = R, the
optimization would be globally optimal. With H = 1, only the locally best radius
is propagated. Using H > 1 increases robustness to scale-related ambiguities.

Our approach can be viewed as a generalization of [9]. We also derive edge
costs from an oriented, multiscale medialness feature, but our method uses the
feature response indirectly to value the likelihood terms, incorporates radiuses
in the optimization and controls the coherence of their variations through the
prior term (Sec. 4). From its space+scale minimal path approach, our method is
closely related to [3]. Where our Bayesian model yields an edge-based L1 metric,
authors in [3] prefer L2 optimization, arguably less sensitive to discretization. We
believe however that our metric is less parameter-dependent than the node-based
potentials proposed in [3]. More importantly, our algorithm does not explore
the 4D graph entirely and rather focuses on most promising radiuses, yielding
considerable memory and time gains in practice. For H < R, our optimization
scheme is heuristic and does not guarantee the extraction of the global maximum,
but it is computationally efficient, based on a sound theoretical framework and
particularly robust, as confirmed by the validation results from Sec. 5.

4 Implementation Details

Our implementation relies on an interactive workflow with user-provided start
and end points. The heap is initialized with the set of seed states X i

0 = (p0, r
i),

i.e. all possible radiuses ri for the start position p0. To cover the typical ra-
dius range of coronary arteries, we use R=16 radius values from rmin=0.3 to
rmax=5.1mm with a fixed step of 0.3mm.

The prior term P (X i
t |X i

t−1) in (2) constrains radius variations:

P (X i
t |X i

t−1) = P (ri
t|ri

t−1) =

{
(σ−

√
2π)N (ri

t|ri
t−1, σ

2−) if ri
t ≤ ri

t−1,
(σ+

√
2π)N (ri

t|ri
t−1, σ

2
+) if ri

t > ri
t−1.

(3)

where N (.|μ, σ2) is the Normal distribution of mean μ and variance σ2. We use
an asymmetric formulation to penalize widening models more than shrinking
models. We experimentally set σ−=0.4mm and σ+=0.2mm. These distributions
are kept unnormalized, as discussed at the end of the section.

Observations Y i
t are the responses of a multiscale oriented medialness feature:

Y i
t = MFlux(pi

t, r
i
t, d

i
t) =

2
N

N
2∑

k=1

min(〈∇I(xk), uk〉, 〈∇I(xπ
k ), uπ

k 〉) (4)

At cross-sectional contour points xk, MFlux[10] accumulates the projections of
the image gradient vectors ∇I(xk) on inward radial directions uk = pi

t−xk. The
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Fig. 2. Flux-based feature and likelihood distributions. (a) Detail of a dataset with
arteries running close to a heart chamber. (b) Response of the local cross-sectional
gradient flux (maximum over scales and directions for each voxel). (c) Response of
MFlux. (d) Examples of Pv and Pbg likelihood distributions.

sum of these projections corresponds to a measure of the local inward gradient
flux through the cross-section, which is maximal when the model cross-section
is well aligned with a vessel in the image. Instead of taking the sum, MFlux
retains the minimum contribution between diametrically opposed points xk and
xπ

k (see Fig. 1). This non-linear combination dramatically reduces false positive
step-edge responses caused by asymmetric flux contributions at locations such
as the surface of heart chambers (Fig. 2). MFlux enjoys a high discriminative
power over scales and positions while remaining computationally efficient. we
use N=8 cross-section points and precompute gradient vectors using Gaussian
derivatives with σg=0.3mm. Please refer to [10] for more in-depth discussion.

Observations are used to value the likelihood terms Pv(Y i
t ) and Pbg(Y i

t ) in
(2). The vessel likelihood Pv was learnt as the response histogram on 10 datasets
with ground truth segmentation (not included in the validation set of Sec. 5).
The background likelihood Pbg is dataset-dependent and is estimated through
feature responses at 106 randomly sampled parameters (p, r, d). It thus encodes
general information about the reliability of the data at hand, as it will vary as a
function of the image quality and noise. Pv and Pbg are generally well separated
thanks to the discriminative power of MFlux, as depicted in Fig. 2 (d).

We finally discuss the normalization of the distributions in (2), which can
be considered as an implicit parameterization of our metric. Although (2) is
defined up to an additive constant, the scaling of the distributions greatly influ-
ences how model realizations are compared. In particular, our algorithm deals
with hypotheses of different lengths competing for the same position. Instead of
classically normalizing each distribution so that it sums to unity, we scale them
so that their respective maximum is always 1. Consequently, an ideal model real-
ization will have a cumulative cost (log-probability) of 0 regardless of its length.
By limiting length-related penalization to its minimum, we effectively reduce the
risk of “shortcuts”, a classical issue of minimal path techniques.

5 Experiments and Validation

We first discuss some of the distinctive components of our approach. In general,
the background likelihood Pbg(Y i

t ) has a limited impact on the extracted result,
but it markedly decreases the extent of exploration needed to reach the end state
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Fig. 3. Effect of the background likelihood and scale prior terms. Left and middle:
search space explored to extract the red vessel. Highlighted in red: with background
likelihood Pbg (1.1×106 voxels visited). In dark: without Pbg (1.95×106 voxels). Right:
difficult case extracted without scale prior (top) and with scale prior (bottom).

Table 1. Summary of quantitative results (see text for details)

(a) Internal validation

Measure H=1 H=2 H=4
OV (avg.) 97.8% 99.1% 99.3%
AD (avg.) 0.375mm 0.365mm 0.365mm
AR (avg.) 0.195mm 0.192mm 0.191mm

(b) Results from the Rotterdam challenge [11]

Measure % / mm score
min. max. avg. min. max. avg.

OV 76.0% 100.0% 97.5% 39.7 100.0 81.5
AD 0.20mm 3.78mm 0.37mm 22.4 55.9 36.3

Fig. 4. Result samples (extracted centerlines and mask from local radius estimation).
(a) Full arterial tree extracted with one ostia seed and 9 distal seeds (in 57 sec. with
H = 4). (b) 3D and multi-planar reformation (MPR) views of a curvy, small secondary
vessel branching off the right coronary artery. (c) 3D and MPR views of a calcified left
coronary artery. (d) Low image quality and occluded right coronary artery.

(up to ∼50%, see Fig. 3). By penalizing hypotheses in non-vascular areas, it yields
significant speed gains. The scale prior P (ri

t|ri
t−1) improves the robustness of the

extraction in presence of local anomalies and/or low image quality (see Fig. 3,
right) while still allowing smooth scale adaptations (Fig. 4 (b)).

Our algorithm was first validated on 51 CTA datasets of varying image quality
and pathologies (Fig. 4). This database counts 858 coronary branches manually
delineated by experts, including radius estimation. Table 1(a) shows quantitative
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results for different values of H . OV is the average overlap with ground truth,
i.e., the portion of ground truth and extracted points coinciding within radius
distance. The version with H=1 already obtains a high overlap score of 97.8%,
improved up to 99.3% for H=4. These results demonstrate the high robustness of
our approach and the relevance of keeping several hypotheses per spatial location.
Increasing H over 4 did not bring significant improvement in our tests. AD, the
average distance of the result centerline to the ground truth, is slightly larger
than the typical intra-slice data resolution (0.33mm per voxel). This accuracy
result is coherent with the discrete nature of our algorithm. The average radius
estimation error AR of 0.191mm is satisfyingly subvoxelic.

We additionally submitted results (for H = 4) to the publicly open Rotterdam
Coronary Artery Algorithm Evaluation Framework [11]. In Table 1(b), we report
the average overlap OV and average distance AD results for 24 testing datasets
(96 vessels). Other statistics are left out due to space restrictions [12]. Scoring
in [0, 100] is defined as follows: 50 for a result of the order of the inter-observer
variability, 100 for a perfect result. The good performance of our method is con-
firmed, with 97.5% average overlap, exceeding inter-observer overlap (score of
81.5). The average distance AD is slightly larger than inter-observer variability
(score of 36.3 < 50). Our primary focus being robustness, we consider this accu-
racy level to be satisfactory for initial delineation before subsequent refinement.
This evaluation also allows the direct comparison with other existing methods.
For instance, our algorithm brings a noticeable robustness improvement (97.5%
versus 91.9% OV) over the method from [13] which implements a classical two-
seed minimal path technique based on image intensity and a Hessian-based ves-
selness feature. To date, the only publicly ranked method to outperform our
approach in terms of robustness is [14], an adaptation of [4] supplemented with
minimal paths, which obtained OV = 98.5%. It is worth noticing that this method
required more interaction, with the use of intermediate seed points, where we
strictly limited ourselves to the provided start and end points.

Finally, we emphasize the computational efficiency of our approach. The effort
required to extract a vessel depends on several factors, such as the image quality,
the length and complexity of the target path and overall vascular network. In
order to extract the longest vessel branch, the algorithm will basically explore
the entire network (see Fig. 3). Consequently, the entire arterial tree can be
extracted for the same computational effort as its longest branch, by specifying
one seed at the ostium and one distal point per branch (see Fig. 4). With our
C++ implementation, the average vessel branch is extracted in about one minute
for H = 4 (less than 15 sec. for H = 1) on a 2.16GHz Core Duo CPU.

6 Conclusion and Perspectives

In this paper, we have presented a new algorithm for the segmentation of coro-
nary arteries from 3D cardiac CTA data. Our approach relies on a recursive
Bayesian model, from which it inherits its robustness, and is optimized by mini-
mal path-like techniques, from which it inherits its computational efficiency and
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workflow flexibility. In particular, our algorithm improves on classical minimal
path techniques by providing a sound theoretical framework for the definition of
the cumulative cost metric, whose different components were carefully studied.
The high practical robustness of our technique was demonstrated through an
extensive quantitative validation on clinical data.

The very promising results obtained by our proof-of-concept implementation
open several high-potential perspectives. One lead is to exploit the reliability of
the approach to improve overall clinical workflow for coronary disease assessment
through fast, intuitive and reliable interactive tools to extend and correct cen-
terlines for the most difficult cases. Another lead is further automation for full
tree extraction. The main difficulty in this case is the design of robust stopping
criteria for the propagation. We finally highlight the generality of the approach.
Within the same framework, we are currently evaluating other vascular applica-
tions by adapting components such as the prior and likelihood distributions.
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