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Abstract. Interpretability of a neural network can be expressed as the
identification of patterns or features to which the network can be either
sensitive or indifferent. To this aim, a method inspired by DeepDream is
proposed, where the activation of a neuron is maximized by performing
gradient ascent on an input image. The method outputs curves that
show the evolution of features during the maximization. A controlled
experiment shows how it enables to assess the robustness to a given
feature, or by contrast its sensitivity. The method is illustrated on the
task of segmenting tumors in liver CT images.
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1 Introduction

Interpretability of deep neural networks is becoming more and more crucial as
deep learning algorithms perform critical tasks such as driving a car or assist-
ing a physician in establishing a diagnosis. In this work we are interested in
interpreting segmentation networks by appraising their sensitivity to high-level
features. Indeed, segmenting anatomical structures in medical images is one of
the tasks that hugely benefited from Convolutional Neural Networks (CNNs),
to the point that this framework is now state-of-the-art in most segmentation
tasks [5,6,8].

Research on interpretable Deep Learning has been very active for a few years
now. Thorough reviews [1,7] extensively describe the field, among which so-called
saliency methods are especially popular [4,14,16,17]. The understanding of
these methods has grown recently, with some works examining their limitations
[11,18]. More generally, saliency methods address the problem of feature attribu-
tion which, in the case of a segmentation network, boils down to pixel attribution
and is thus of limited value.

Another class of interpretability methods consists in visualizing patterns that
activate a particular neuron in the network. Most of them consist in maximizing
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the activation in the input space [13,17,19,20]. These visualizations are insight-
ful when the network is trained on natural images, as they generate natural
structures and appearances, but they are harder to interpret on medical images.

Fig. 1. Illustration of the method with a 2-dimensional classifier. Left: input space, ⊕
and � are resp. positive and negative samples; the classification function is the grey
line; the data is described by features f1 (green arrow) and f2 (orthogonal to f1).
Middle: features space; features are normalized w.r.t. the set of positive samples. Left
and middle: the path of steepest slope (or DeepDream path) is represented as a dotted
arrow. Right: projection of this path on f1 and f2 (DeepDream analysis). (Color figure
online)

The method in [10] is closer to our motivation, i.e. to analyze the influence
of human-understandable features on the output of a network. Using abstract
concepts defined by sets of example images is appealing, especially for complex
concepts that would be difficult to model. But this transfers the burden to the
creation of concept-labelled databases, which can be challenging in medical imag-
ing. On the other hand, image domain features such as radiomic features can be
used to directly evaluate relevant concepts in medical images when a segmenta-
tion mask is available, and seems therefore well suited to the interpretation of
segmentation networks.

We detail our method in Sect. 2, starting by giving an intuitive definition of
what the sensitivity and robustness to a feature might be for a network. Then we
describe our method based on activation maximization to highlight features that
the network is sensitive to (Sect. 2.2). We show in a controlled setting that the
method correctly assesses the robustness of a network to a specific feature. Other
experiments show how we can get insights about what a network has learned
using our method (Sect. 3).

2 Method

2.1 Overview

Segmentation networks achieve state-of-the-art performance on most segmenta-
tion tasks. They can extract complex features at multiple scales and successfully
perform challenging segmentation tasks where modeling approaches using hand-
crafted features would have failed. To interpret this complex decision function,
we want to determine how sensitive or robust a neural network is to a set of
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Fig. 2. Representation of an iteration as described in Sect. 2.2: the current image is
forwarded in a segmentation CNN. We retrieve the output map and the gradient w.r.t.
an arbitrary neuron activation from the output map. We compute the features from
the image and segmentation mask and update the image following the gradient for the
next iteration.

high-level features {fk}1≤k≤K , such as the size of the object, statistics on its
intensity distribution or its shape.

We consider that a network is sensitive to a feature fk if its alteration
impacts the network decision. Conversely, we say that the network is robust
- or indifferent - to a feature if it is not sensitive to it. However a feature of an
object cannot in general be modified without modifying others characteristics,
therefore such properties cannot be directly evaluated. Starting from a baseline
producing a negative response, we can find a minimal alteration that produces
a positive response by following the path of steepest slope in the input space
(the arrow in Fig. 1), using the network gradients. This procedure is similar to
activation maximization, also known as DeepDream [15]. If the features fk are
smooth functions, we can assume that the path of steepest slope in the input
space will favor features to which the network is the most sensitive.

In Fig. 1 we provide a schematic view of this process in two dimensions.
Intuitively, a network should be indifferent to a feature that is useless (here f2)
for characterizing an object, and sensitive to a feature that is essential (here f1).

2.2 Algorithm

Being given a trained binary segmentation network S of any architecture, we
compute the DeepDream analysis with an iterative algorithm, illustrated in
Fig. 2. It starts from an image X0 with no foreground (an image with no lesion
in the case of lesion segmentation for instance), and pick a neuron i we want to
maximize. At each iteration j and until convergence:

– We forward the image Xj through the network and retrieve the segmentation
mask Mj = S(Xj), as well the gradient of the neuron activation ∂i

∂X .
– We update the image for the next iteration Xj+1 = Xj + α ∂i

∂X .
– We compute features fk(Xj ,Mj).

The output is a plot of the curves j → fk(Xj ,Mj). These curves can be inter-
preted to assess the sensitivity of the network to those features.
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Fig. 3. Different steps of gradient ascent performed on a CT slice showing a healthy
liver, with a network trained to segment liver tumors from CT slices. The top row
shows the image being “DeepDreamed”, while the bottom row shows the output of the
network (high probabilities of a pixel being part of a tumor are white, low probabilities
are black). The red cross on the leftmost image shows the pixel maximized by gradient
ascent. We observe that a responding area appears during the procedure. (Color figure
online)

This procedure, derived from activation maximization also known as Deep-
Dream, has been shown to work on many classification network architectures
[13,17,19,20] and we found that it was easily applicable on several segmentation
architectures. Figure 3 shows how the image and segmentation mask respond to
the activation maximization.

Although any kind of features can be used, we chose to use radiomic features
as they are specifically designed to characterize segmented tissues in medical
images [2,9,21], and have shown to capture enough information for Computer-
Aided Diagnosis [3,9].

Our DeepDream analysis consists in computing a set of features fk(Xj ,Mj)
at each step j of the DeepDream path. As activation maximization produces
small changes in input but decisive changes in output, we expect the features
to be tweaked according to the sensitivity of the network to those features.
To interpret the evolution of feature values observed during the DeepDream
analysis, we normalize a particular feature with respect to the distribution of
this feature computed on the validation dataset used during training.

3 Experiments

We conduct three experiments to assess the potential of a DeepDream analysis to
interpret a segmentation network. We show that the sensitivity computed from
the DeepDream analysis is associated with the performance of the network, as
expected (Sect. 3.1). The second experiment shows how our method highlights
the difference of sensitivities between networks trained on different databases
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(Sect. 3.2). Finally we show what kind of insight we can get with our method by
applying it to the the real-world use case of liver tumor segmentation (Sect. 3.3).

Fig. 4. Controlled experiment. We trained 7 networks with different probabilities p of
marking the positively labeled zones. (a) DeepDream of the network for p = 100%.
(b) Evolution of the characteristic feature during the gradient ascent process. (c) Dice
score on the unmarked test set and characteristic feature at the end of the gradient
ascent process for the 7 networks. Networks that performed poorly on the unmarked
test set and thus relied on the marking showed a high characteristic feature in their
dream.

For all experiments we use basic contracting-expanding architectures with
3 × 3 convolutions, max-pooling or up-convolution every 2 convolution layers
and number of filters doubling at each level, trained with an Adam optimizer
until convergence.

3.1 DeepDream Sensitivity and Segmentation Performance

In order to get a setting where the actual sensitivity to a feature is known, we ran
the following experiment: For cat and dog classes from the COCO database [12],
each image is augmented with a marking with a probability p. We chose a syn-
thetic texture made of 135◦ line segments of random positions and intensities
as the marking. Then, for different values of p, we train several networks Gp to
segment cats and dogs on this training dataset.

A simple, intuitive way to assess the robustness of a network with respect
to the marking is then to compute its score on a test dataset with no marking.
Given the score of G0 as the baseline, a similar score indicates that a network is
robust to the marking.

We assess the presence of the marking in any DeepDream generated as
described in Sect. 2.2 by computing the maximum response of the convolution of
the dream with a 135◦ line segment. We call this feature the characteristic fea-
ture of the marking. Starting from the same realization of white noise, we then
compute the characteristic feature at each optimization step, for all networks
Gp. Results are illustrated in Fig. 4.

Networks reaching a Dice score close to the baseline (p ≤ 20%) did not see
the characteristic feature evolve during DeepDream, in contrast to those which
relied on the marking (p ≥ 90%). This shows that we are able to correctly assess
the sensitivity of a network to a particular feature by analyzing its DeepDreams.
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Fig. 5. DeepDream analysis of 3 networks trained on different datasets. (a) Root mean
squared intensity along the DeepDream Path. (b) Maximum diameter of the dreamed
tumor. (c) Elongation (1 means round, and 0 means elongated in the standard definition
of elgontation in radiomics.)

3.2 Sensitivity to Intensity and Shape Features

In the LiTS database1, tumors appear as hypointense areas in the liver
parenchyma. In this experiment we compare a network trained on real tumors
to a network trained on synthetic tumors, to test how our method highlights the
differences of two networks trained on seemingly similar tasks.

We generate synthetic tumors by lowering the intensities in random areas of
healthy livers. The DeepDream analysis shows that the network trained on real
tumors is more sensitive to low intensities in the liver (Fig. 5a) than the network
trained on synthetic tumors. This indicates that the synthetic network focuses
on other features than the intensity.

To determine if the DeepDream analysis is also able to assess the sensitiv-
ity to shape features, we train a network to segment only synthetic elongated
tumors, as opposed to the overall round shape of real tumors, as observed in
clinical environments. We observe that the network trained on elongated tumors
is indeed more sensitive to elongation (Fig. 5c).

3.3 Analysis of a Tumor Segmentation Network

To illustrate how one can use DeepDream analysis with radiomic features, we
analyze a network trained to segment liver tumors in CT scans. We visualize
the evolution of 6 relevant radiomic features, normalized so that 0 is the mean
value of the feature computed on the validation dataset, and 1 is one standard
deviation above the mean (Fig. 6).

The values of intensity and sphericity quickly evolve towards the normal
range, indicating that the network is sensitive to both features. By contrast, the
Grey-Level Co-occurrence Matrix (GLCM) Contrast, a texture feature that mea-
sures intensity disparity among neighboring pixels, as well as the entropy of the
intensities distribution, stay below the normal range, indicating that the network
is robust to heterogeneity. This is coherent with our intuition that the network
should react to flat hypointense areas in the liver, without significant texture

1 https://competitions.codalab.org/competitions/17094.

https://competitions.codalab.org/competitions/17094
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Fig. 6. Evolution of features along the DeepDream path of a liver tumors segmentation
network, starting from a healthy liver. Images and masks are shown in Fig. 3.

information. However we also notice that the value of the Large Dependence
Emphasis feature goes rapidly and strongly out of normal range, suggesting a
lack of robustness to this feature.

4 Conclusion

In this paper, we proposed a new approach to interpret segmentation networks.
We generate and analyze fake positive objects using a gradient ascent method.
This provides insights on the sensitivity and robustness of the trained network
to specific high-level features.

Future work will focus on formulating theoretically grounded definitions of
sensitivity and robustness and on providing theoretical guarantees that Deep-
Dream primarily modifies the most sensitive features. Other state-of-the-art
segmentation architectures (such as U-Nets, DeepLab or PSPNet) will also be
tested, as well as multiclass segmentation networks.
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