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Abstract. In this paper, we propose a patch-based deep learning app-
roach to segment pelvic vessels in 3D MRI images of pediatric patients.
For a given T2 weighted MRI volume, a set of 2D axial patches are
extracted using a limited number of user-selected landmarks. In order to
take into account the volumetric information, successive 2D axial patches
are combined together, producing a set of pseudo RGB color images.
These RGB images are then used as input for a convolutional neural
network (CNN), pre-trained on the ImageNet dataset, which results into
both segmentation and vessel labeling as veins or arteries. The pro-
posed method is evaluated on 35 MRI volumes of pediatric patients,
obtaining an average segmentation accuracy in terms of Average Sym-
metric Surface Distance of ASSD = 0.89 ± 0.07 mm and Dice Index of
DC = 0.79 ± 0.02.

1 Introduction

Surgical planning relies on the patient’s anatomy and is often based on medical
images acquired before the surgery. In particular, this is the case for pelvic
surgery where the standard procedure is still to visually analyze, slice by slice,
the images of the pelvic region. This operation can be quite difficult and tedious
due to the complexity and variability of the pelvic structures. Furthermore,
it is even more complicated in the case of children, since the anatomy varies
over time and it is specific to the age of the patient. Difficulties are emphasized
when dealing with pathological cases such as malformations or tumors. For these
reasons, it is very important and challenging, especially for children, to provide
surgeons with patient-specific 3D models, obtained from the segmentation of
anatomical images.
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In this paper, we propose a method to segment the pelvic vessels. Within
all pelvic structures, vessels are particularly important since they need to be
preserved during surgery in order to avoid potential functional damages to the
patient’s organs.

Most of the studies on vessels segmentation are dedicated to adult patients
and applied to contrast-enhanced imaging modalities, such as computed tomog-
raphy angiography (CTA) or magnetic resonance angiography (MRA) images,
as extensively described in [1,2]. These image modalities often rely on the injec-
tion of a contrast agent and on specific acquisition protocols, producing vessels-
enhanced images.

However, the use of contrast agents is not always recommended in clinical
practice, especially for pediatric patients [3]. For this reason, standard MRI
acquisitions are usually chosen for pediatric pelvis exams. The choice of MRI,
instead of other modalities such as CT, is also related to its non-irradiating
nature, which is very important in pediatrics, and to its good contrast resolution
of the soft tissues [4,5]. The use of standard MRI makes it difficult to apply the
methods developed for angiography images, since they are specifically designed
for strong vessels enhanced images. Moreover, for pediatric patients, there are
harder clinical constraints on the scan acquisition time than for adults, which
do not allow to considerably increase the images resolution. This, coupled with
a smaller size of the vessels walls for pediatric patients, produces images with
higher partial volume effects compared to adults. These partial volume effects
could locally create weak or missing boundaries, which makes it even more dif-
ficult to apply classical methods such as level-sets [6]. This shows why there is
a need for segmentation methods specifically conceived for pediatric imaging.

In the last years, deep learning methods and in particular convolutional neu-
ral networks (CNNs) have shown excellent performances in various medical imag-
ing tasks [7]. However, deep learning methods usually require a huge number
of manually annotated data, which is really difficult to obtain in the medical
field, and especially in pediatrics. To this end, recent studies [8–11] have relied
on transfer learning [12] from pre-trained networks on large datasets of natural
images (e.g. ImageNet [13]). However, these studies cannot be directly applied to
volumetric data, due to the nature of the training dataset (e.g. 2D color images
for ImageNet). Moreover, discarding the 3D nature of medical images would
result in a loss of useful information for the segmentation task. For this reason,
some studies [10,11] successfully proposed to generate 2D pseudo-color images
from volumetric gray-level images, aiming to incorporate 3D information.

In this paper, we propose a patch-based deep learning approach that is,
to the best of our knowledge, the first study on pelvic vessels segmentation
with pediatric MRI. Starting from a set of user-selected landmarks, a series
of patches containing the structures of interest is extracted. In this way, for
each patient, the user can focus on the analysis of the vascular structures of
surgical interest. Similarly to [11], the patches are generated by stacking the gray
levels information of successive slices (Sect. 2.1), forming pseudo-RGB images.
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This approach allows us to take into account the 3D information of the image
while using a CNN pre-trained on ImageNet (Sect. 2.2).

2 Vessels Segmentation and Labeling

The proposed method for the segmentation of the pelvic vessels consists of two
main steps: a semi-automatic extraction of a set of axial patches containing the
vascular structures of interest, followed by an automatic segmentation procedure
based on CNN and transfer learning. The pipeline of the proposed method is
depicted in Fig. 1.

Fig. 1. Pipeline of the proposed method. A set of 2D pseudo-RGB patches are extracted
from the MRI volume and from a set of user-selected landmarks. Patches are then
segmented through a modified version [11] of the VGG network [14], obtaining the 3D
segmentation of the vessels.

Preprocessing. First, histogram equalization of each MRI volume is performed.
Then, in order to reduce the noise, an anisotropic diffusion filter [15] is applied,
taking into account the tubular structure of the vessels.

2.1 Patches Extraction

The definition of patches relies on three steps. First, some landmarks along the
vessels are provided by the user. The only constraint is that these points should
belong to the vessels. In particular, in case of bifurcations, the user can select
landmarks on vessel branches in any order. The other two steps, detailed next,
consist in reconstructing the vascular tree from the landmarks, and in defining
patches centered on the vessels branches in each slice of the image volume.
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Vascular Tree Reconstruction. Let L = {ϕi = (xi, yi, zi) ∈ Ω, i ∈ {1...n}}
be the set of user-selected landmarks, where n = |L| is the number of land-
marks, Ω ⊆ R3 is the image domain, and L is ordered decreasingly in z
(∀i ∈ {1...n − 1}, zi+1 ≤ zi), hence in the cranio-caudal direction. The vascular
tree is reconstructed iteratively by choosing, at each step i, the best candidate
landmark ϕc = (xc, yc, zc) to be connected with ϕi, minimizing the following
objective function, which combines shape and appearance information:

f(ϕi, ϕc) = α||ϕi − ϕc||2 + βκ(ϕi, ϕc, ϕc−1) + γσ2
(ϕi,ϕc)

,

where ϕc−1 is the landmark already connected with ϕc, such that zc−1 > zc, κ
is the local curvature, estimated as 1

r where r is the radius of the circle passing
through the three points, σ2 is the variance of the image intensity in a cylinder
whose axis is the line joining ϕi and ϕc and whose circular basis has a fixed
radius rc, and α, β, γ are constant weight values. Minimizing f means that the
path should be formed by points as close as possible, forming a line as straight
as possible, and whose spatial context is homogeneous in terms of intensity.

For each iteration i, the candidates ϕc are chosen as the landmarks that have
zc > zi and that are already connected to at most one landmark. This candi-
dates selection allows us to take into account that, in the pelvis, the different
vessels branches are descending along the cranio-caudal direction. Furthermore,
we can also automatically handle bifurcation points while avoiding anatomically
incoherent connection (i.e. trifurcations). This procedure, repeated for each ϕi,
results in an approximate reconstruction of the vascular tree, as shown in Fig. 2.
The parameters for the reconstruction are experimentally set to α = 1, β = 200,
γ = 103, rc = 1 mm, producing a correct vascular tree reconstruction for all the
patients present in the dataset.

Pseudo-RGB Patch Extraction. Once the vascular tree is obtained, each
vessel branch is approximated by a spline. For every slice k, we first define
pk as the point where the spline intersects slice k. Then we extract a square
patch (N × N pixels) centered at pk. Every triple of successive patches (k − 1,
k and k + 1) is interpreted as a pseudo-RGB patch, that incorporates the 3D
information of successive patches. This procedure produces a set of pseudo-RGB
patches, containing the vascular structures, that will be used as input for the
segmentation method that follows.

2.2 Deep CNN for Patches Segmentation

In this section, we propose to use CNN to segment the patches into vessel and
non-vessel regions, and jointly classify the vessel regions into veins or arteries.
To this aim, a modified version of the VGG-16 network [14], pre-trained on the
ImageNet dataset [13] is employed.

The network is built by removing the final fully connected layers of the
pre-trained VGG-16 network, while preserving the 5 convolutional stages which
constitute the base network. Each of these stages consists of Convolutional layers



Segmentation of Pelvic Vessels in Pediatric MRI 101

(a) i = 1 (b) i = 2 (c) i = 3

(d) i = 4 (e) i = 5 (f) Final result

Fig. 2. Example of reconstruction of the vascular tree (fist five steps). In each image
each blue sphere is a generic landmark, the yellow sphere is the landmark ϕi analyzed
at step i and the green spheres are the candidate landmarks for connection ϕc. The
vessel paths are represented in red. (Color figure online)

and Rectified Linear Unit layers. Each convolutional stage is connected with the
following one by a Max Pooling layer. Starting from this base network, a modified
network is then added, similarly to [9,11], where a specialized convolutional layer
(3 × 3 kernel size) with 16 features maps is inserted after the last convolutional
layer of each stage. These specialized layers are resized to the original image size
and concatenated together. Finally, the feature maps in the concatenated layers
are linearly combined through a final convolutional layer (1× 1 kernel), in order
to produce the output segmented image.

As previously mentioned, the layers of the base network are already pre-
trained on the large ImageNet dataset of natural RGB images. For our applica-
tion, the entire network is then fine-tuned with a training set of manually seg-
mented patches. Each annotated patch consists of three labels, corresponding
to vein, artery and background pixels. The network is trained for 115 k itera-
tions, with a constant learning rate lr = 10−6, using a multinomial logistic loss
function. The loss function is minimized using a stochastic gradient descent with
momentum m = 0.95.

The analyzed patches, obtained as described in Sect. 2.1 and segmented using
the CNN previously described, are then restored to their original position in the
image domain Ω ∈ R3, thus providing a classification into veins, artery and
background of the whole image volume.
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3 Results

The image dataset used in this study is composed of 35 T2 weighted MRI vol-
umes, of patients between 1 and 18 years old. Images have different sizes and
resolutions (average voxel size 0.92 × 0.92 × 0.74 mm3).

All pelvic vessels of interest were manually segmented by medical experts
and labeled as veins or arteries. In particular, the following structures were
segmented: the abdominal aorta, the inferior vena cava, the iliac arteries and
the iliac veins.

On the tested cases, 12 landmarks were needed, in average, for the vessels
paths reconstruction (see Sect. 2.1), which required an interaction time of few
minutes for each patient. The only guideline for the user was to select the land-
marks inside the vessels lumen, which is easier to achieve by navigating through
the axial views. This type of interaction was found reasonable by medical experts,
and was considered as a good guarantee to obtain good results from the subse-
quent automatic steps. The patches dimensions were set to 31×31 pixels. Given
the resolution of the images and the thickness of the vessels, the patches largely
include the sections of the vessels.

The performance of the proposed method was evaluated using a 5-fold cross
validation, which corresponds to a training and test set of 28 and 7 patients
for each fold respectively. The segmentation accuracy was evaluated in terms
of Average Symmetric Surface Distance (ASSD [mm]) and Dice Index (DC)
between the proposed segmentation A and the corresponding manual segmenta-
tion B provided by a medical expert:

DC(A, B) =
2|A ∩ B|
|A| + |B| ,

ASSD = 1
|S(A)|+|S(B)|

�
�

sA∈S(A) min
sB∈S(B)

||sA − sB ||2 +
�

sB∈S(B) min
sA∈S(A)

||sA − sB ||2
�

,

where S(A) and S(B) are the sets of surface voxels of A and B, sA and sB are
points on S(A) and S(B) respectively. For each patient, these measures were
evaluated for both the global vascular segmentation (fusion of vein and artery)
and for veins and arteries separately. The average quantitative results for each
fold are reported in Table 1.

The results in terms of ASSD, taking into account the images resolution,
were considered satisfying by medical experts for surgical planning applications.
As expected, results for a single structure (i.e. either artery or vein) were less
accurate compared to the overall segmentation. This is mostly due to the addi-
tional classification task challenge. Nevertheless, the limited differences between
the Dice indices of the three columns in Table 1 indicate an overall good classi-
fication performance.
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Table 1. Quantitative evaluation of the segmentation results.

Arteries Veins Arteries & Veins

DC ASSD DC ASSD DC ASSD

Fold 1 0.77 1.45 0.78 1.04 0.80 0.88

Fold 2 0.71 1.38 0.72 2.21 0.79 0.96

Fold 3 0.74 1.33 0.72 1.42 0.78 0.84

Fold 4 0.74 1.31 0.78 1.46 0.81 0.80

Fold 5 0.71 1.58 0.72 1.30 0.76 0.95

Mean ± std 0.73 ± 0.02 1.41 ± 0.11 0.75 ± 0.03 1.49 ± 0.44 0.79 ± 0.02 0.89 ± 0.07

Some qualitative results are shown in Fig. 3. In order to correctly interpret
them, it is important to consider the anatomy of the vascular structures. The
veins, due to their non rigid internal musculature, tend to collapse more than
the arteries. This behavior usually leads to arteries that have a more circular
shape in the axial section than veins. As shown in Fig. 3(a) and (b), this feature
appears to be effectively incorporated in our method, providing an overall good
veins/arteries classification. Furthermore, we also noticed that most of the mis-
classification cases were locally confined to regions where this “shape feature”
was not expressed. An illustrative example is shown in Fig. 3(c), where a vein
with a strong circular shape is erroneously labeled as artery by our method.
However, as can be seen in the 3D model of Fig. 3(d), the overall classification
is very satisfying and was positively evaluated by medical experts.

(a) (b) (c) (d)

Fig. 3. Examples of segmentation results. In (a), (b) and (c) the results on some axial
sections are depicted. The red contours correspond to the arteries, and the blue ones
to the veins. The final 3D model obtained from the segmentation is depicted in (d)
with the same color conventions. The three patches in (a), (b) and (c) are shown in (d)
with three different colors. Some examples of misclassification are indicated by white
arrows. (Color figure online)
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Another qualitative result is shown in Fig. 4. It depicts the clinical relevance
of the pelvic vessels segmentation in a pediatric patient (8 years old) affected by
ovarian teratoma. As it is possible to see, the patient-specific 3D model eases the
analysis of the spatial relations between the tumor and the right iliac vessels,
which is essential for surgical planning.

(a) (b)

(c) (d)

Fig. 4. Example of 3D patient-specific pelvic model of a 8 years old patient, affected
by ovarian teratoma (green). The arteries (red) and veins (blue) are segmented with
the proposed method. The other pelvic structures (bones, colon, bladder, sacrum and
left ovary) are segmented either manually or using other dedicated methods [4]. (Color
figure online)

4 Conclusion

In this paper we presented, to the best of our knowledge, the first study on
pelvic vessels segmentation of pediatric MRI. We proposed a patch-based deep
learning approach using transfer learning.
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A main contribution of this paper was the design of a semi-automatic method
for the patches extraction, based on the structural information of the pelvic vas-
cular tree. This approach allows the user to focus, for each patient, on the vas-
cular structures of surgical interest, while avoiding potential unexpected results.
We also propose to use pseudo-RGB color patches, that incorporate the 3D infor-
mation of successive slices. The use of these patches makes it possible to exploit
a 2D CNN pre-trained on the ImageNet dataset, which drastically decreases the
number of images needed for training. This is fundamental for medical applica-
tions where the number of annotated images is limited. It is important to remark
that the same strategy, based on transfer learning, would have been difficult to
employ with 3D CNNs. In fact, even if efficient implementations of 3D CNNs
have been released [16], there is a lack of publicly available 3D CNN models
pre-trained on large datasets of 3D images.

As future work, we plan to post-process our results in order to improve the
vein/artery classification. This could be done by analyzing the spatial consistency
of the classes along the entire 3D model. Moreover, we also plan to investigate
other methodologies that take into account the 3D information using more than
three successive slices.

Finally, we plan to integrate this method into a complete framework for
surgical planning, that will include the semi-automatic segmentation and the
3D visualization of the entire pelvic region (i.e. vessels, nerve fibers, bones ...),
using the 3D Slicer software [17]. This will thus provide the surgeon with a
complete 3D digital model of the patient (see Fig. 4).
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4. Virźı, A., et al.: A new method based on template registration and deformable
models for pelvic bones semi-automatic segmentation in pediatric MRI. In: IEEE
14th International Symposium on Biomedical Imaging (ISBI), pp. 323–326 (2017)

5. Muller, C., et al.: Towards building 3D individual models from MRI segmentation
and tractography to enhance surgical planning for pediatric pelvic tumors and
malformations. In: Surgetica, Strasbourg, France, pp. 113–115 (2017)

6. Angelini, E., Jin, Y., Laine, A.: State of the art of level set methods in segmentation
and registration of medical imaging modalities. In: Handbook of Biomedical Image
Analysis - Registration Models, pp. 47–102. Kluwer Academic/Plenum Publishers,
Springer (2005)



106 A. Virz̀ı et al.

7. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image
Anal. 42, 60–88 (2017)

8. Bar, Y., Diamant, I., Wolf, L., Lieberman, S., Konen, E., Greenspan, H.: Chest
pathology detection using deep learning with non-medical training. In: IEEE 12th
International Symposium on Biomedical Imaging (ISBI), pp. 294–297 (2015)

9. Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image
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