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Abstract. One of the powerful features of mathematical morphology
lies in its strong algebraic structure, that finds equivalents in set theo-
retical terms, fuzzy sets theory and logics. Moreover this theory is able to
deal with global and structural information since several spatial relation-
ships can be expressed in terms of morphological operations. The aim
of this paper is to show that the framework of mathematical morphol-
ogy allows to represent in a unified way spatial relationships in various
settings: a purely quantitative one if objects are precisely defined, a semi-
quantitative one if objects are imprecise and represented as spatial fuzzy
sets, and a qualitative one, for reasoning in a logical framework about
space.

Keywords: mathematical morphology, spatial relationships, spatial rea-
soning.

1 Introduction

One of the powerful features of mathematical morphology lies in its strong alge-
braic structure, that finds equivalents in set theoretical terms, fuzzy sets theory
and logics. Moreover this theory is able to deal with local information, based
on the concept of structuring element, but also with more global and struc-
tural information since several spatial relationships can be expressed in terms
of morphological operations (mainly dilations). We consider here topological re-
lationships (which include part-whole relationships such as inclusion, exclusion,
adjacency, etc.) and metric relationships (distances and directional relative po-
sition), the interest of these relations being highlighted in very different types
of works (vision, GIS, cognitive psychology, artificial intelligence, etc.). The aim
of this paper is to show that the framework of mathematical morphology allows
to represent in a unified way spatial relationships in various settings: a purely
quantitative one if objects are precisely defined, a semi-quantitative one if ob-
jects are imprecise and represented as spatial fuzzy sets, and a qualitative one, for
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reasoning in a logical framework about space. The proposed framework, briefly
presented in Section 2, allows us to address three questions. We first consider the
problem of defining and computing spatial relationships between two objects, in
both the crisp and fuzzy cases (Section 3). Then in Section 4 we propose a way to
represent spatial knowledge in the spatial domain. Finally in Section 5 we show
that spatial relationships can be expressed in the framework of normal modal
logics, using morphological operations applied on logical formulas. This can be
useful for symbolic (purely qualitative) spatial reasoning. These threse types of
problems are further developed in [5].

2 Basic Morphological Operations, Fuzzy and Logical
Extensions

2.1 Classical Morphology

Let us first recall the definitions of dilation and erosion of a set X by a structuring
element B in a space S (e.g. R", or ZZ" for discrete spaces like images), denoted
respectively by Dp(X) and Ep(X) [23]:

Dp(X)={z €S |B,NX # 0}, (1)

Ep(X) ={r €S| B, C X}, (2)

where B, denotes the translation of B at point x. In these equations, B defines
a neighborhood that is considered at each point. It can also be seen as a relation-
ship between points. ;jFrom these two fundamental operations, a lot of others
can be built [23].

2.2 Fuzzy Mathematical Morphology

Several definitions of mathematical morphology on fuzzy sets with fuzzy struc-
turing elements have been proposed in the literature (see e.g. [3, 24, 11]). Here
we use the approach using t-norms and t-conorms as fuzzy intersection and fuzzy
union. However, what follows applies as well if other definitions are used. Erosion
and dilation of a fuzzy set p by a fuzzy structuring element v, both defined in
a space S, are respectively defined as:

B, (p)(z) = ;ggT [c(v(y — ), u(y)], (3)
Dy (p)(z) = fggt[V(y — ), u(y)l, (4)

where ¢ is a t-norm, ¢ a fuzzy complementation, and 7T is the t-conorm associ-
ated to t with respect to c¢. These definitions guarantee that most properties of
morphological operators are preserved [3, 21].
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2.3 Morpho-logics

Now, we express morphological operations in a symbolic framework, using logical
formulas. Let us consider a language generated by a finite set of propositional
symbols and the usual connectives. Kripke’s semantics is used. The set of all
worlds is denoted by 2. The set of worlds where a formula ¢ is satisfied is
Mod(p) ={w € 2| w = ¢}.

The underlying idea for constructing morphological operations on logical for-
mulas is to consider set interpretations of formulas and worlds. Since in classical
propositional logics, the set of formulas is isomorphic to 2%, up to the logi-
cal equivalence, we can identify ¢ with Mod(y), and then apply set-theoretic
morphological operations. We recall that Mod(¢ V ) = Mod(p) U Mod(v)),
Mod(p A1) = Mod() N Mod(v), and Mod() € Mod(v) iff ¢ .

Using these equivalences, dilation and erosion of a formula ¢ are defined
as [7]:

Mod(Di(p)) = {w € 2| B(w) N Mod(y) # 0}, (5)

Mod(Ep(p)) = {w € 2| B(w) = ¢}, (6)

where B(w) | ¢ means V' € B(w),w’ = ¢.

The structuring element B represents a relationship between worlds and de-
fines a “neighborhood” of worlds. It can be for instance defined as a ball of
a distance between worlds [18]. The condition for dilation expresses that the set
of worlds in relation to w should be consistent with ¢, i.e.: Jw’ € B(w), v’ = .
The condition for erosion is stronger and expresses that ¢ should be satisfied in
all worlds in relation to w.

Now we consider the framework of normal modal logics [10] and use an ac-
cessibility relation as relation between worlds. We define an accessibility relation
from any structuring element B (or the converse) as: R(w,w’) iff v’ € B(w). Let
us now consider the two modal operators O and < defined from the accessibility
relation as [10]:

Mw EOp iff Vo' € 2, R(w,w’) = M, E ¢, (7)

M,wE Cpiff ' € 2, R(w,w') and M,w’ | ¢, (8)
where M denotes a standard model related to R. Equation 7 can be rewritten
as:

w =Dy < Bw) ¢, (9)
which exactly corresponds to the definition of erosion of a formula, and Equa-
tion 8 can be rewritten as:

wkECp e Bw)N Mod(p) # 0, (10)

which exactly corresponds to a dilation. This shows that we can define modal
operators derived from an accessibility relation as erosion and dilation with
a structuring element:

D(pEEB(gO), (11)
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Oy = Dp(p). (12)

The modal logic constructed from erosion and dilation has a number of theorems
and rules of inference, detailed in [4, 6], which increase its reasoning power. All
these definitions and properties extend to the fuzzy case, if we consider fuzzy
formulas, for which Mod(yp) is a fuzzy set of 2. A fuzzy structuring element can
be interpreted as a fuzzy relation between worlds. Its usefulness will appear for
expressing intrinsically vague spatial relationships such as directional relative
position.

3 Computing Spatial Relationships from Mathematical
Morphology: Quantitative and Semi-quantitative
Setting

In this Section we consider the problem of defining and computing spatial re-
lationships between two objects. We consider the general case of a 3D space S,
where objects can have any shape and any topology, and consider both topo-
logical and metric relationships [17, 13]. We distinguish also between relation-
ships that are mathematically well defined (such as set relationships, adjacency,
distances) and relationships that are intrinsically vague, like relative directional
position, for which fuzzy definitions are appropriate. If the objects are imprecise,
as is often the case if they are extracted from images, then the semi-quantitative
framework of fuzzy sets proved to be useful for their representation, as spatial
fuzzy sets (i.e. fuzzy sets defined in the space §), and both types of relations have
then to be extended to the fuzzy case. Results can also be semi-quantitative, and
provided in the form of intervals or fuzzy numbers.

3.1 Set Relationships

Computing set relationships, like inclusion, intersection, etc. if the objects are
precisely defined does not call for specific developments. If the objects are im-
precise, stating if they intersect or not, or if one is included in the other, be-
comes a matter of degree. A degree of inclusion can be defined as an infimum of
a t-conorm (as for erosion). A degree of intersection p,¢ can be defined using
a supremum of a t-norm (as for fuzzy dilation) or using the fuzzy volume of the
t-norm in order to take more spatial information into account. The degree of
non-intersection is then simply defined by pi—jnt = 1 — 14t The interpretations
in terms of erosion and dilation allow to include set relationships in the same
mathematical morphology framework as the other relations.

3.2 Adjacency

Adjacency has a large interest in image processing and pattern recognition, since
it denotes an important relationship between image objects or regions. For any
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two subsets X and Y in the digital space ZZ", the adjacency of X and Y can be
expressed in terms of morphological dilation, as:

XNY =0 and Dp(X)NY #0, Dp(Y)NX #0, (13)

where B denotes the elementary structuring element associated to the chosen dig-
ital connectivity. This structuring element is usually symmetrical, which means
that the two conditions Dg(X)NY # 0 and Dp(Y) N X # () are equivalent, so
only one needs to be checked.

Adjacency between fuzzy sets can be defined by translating this expression
into fuzzy terms, by using fuzzy dilation. The binary concept becomes then
a degree of adjacency between fuzzy sets p and v:

tadi (s V) = t{ptmine (11, V), pint [DB (1), V], pint [Dp(V), 1]]- (14)

This definition represents a conjunctive combination of a degree of non-
intersection p—;,: between p and v and a degree of intersection i, between
one fuzzy set and the dilation of the other.

This definition is symmetrical, reduces to the binary definition if y, v and B
are binary, and is invariant with respect to geometrical transformations.

3.3 Distances

The importance of distances in image processing is well established. Their exten-
sions to fuzzy sets (e.g. [25]) can be useful for several aspects of image processing
under imprecision. Mathematical morphology allows to define distances between
fuzzy sets that combine spatial information and membership comparison. In
the binary case, there exist strong links between mathematical morphology (in
particular dilation) and distances (from a point to a set, and several distances
between two sets), and this can also be exploited in the fuzzy case. The ad-
vantage is that distances are then expressed in set theoretical terms, and are
therefore easier to extend with nice properties than usual analytical expressions.
Here we present the case of Hausdorff distance. The binary equation defining
the Hausdorff distance:

dp(X,Y) = max[sup d(z,Y), sup d(y, X )] (15)
zeX yey

can be expressed in morphological terms as:
dg(X,Y)=1inf{n,X CD"(Y)and Y C D"(X)}. (16)

A distance distribution, expressing the degree to which the distance between
w and g/ is less than n is obtained by translating this equation into fuzzy terms:

A, 1) (n) = ink TIDL (@), el @), inf T (1)), @], (17)

where ¢ is a complementation, ¢ a t-norm and 7" a t-conorm.
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A distance density, expressing the degree to which the distance is equal to n,
can be derived implicitly from this distance distribution. A direct definition of
a distance density can be obtained from:

dp(X,Y)=0& X =Y, (18)
and for n > 0
dp(X,Y) =
ns X CD(Y)and Y C D*(X) and (X ¢ D"} (Y)or Y ¢ D" 1(X)).
(19)

Translating these equations leads to a definition of the Hausdorff distance be-
tween two fuzzy sets p and p’ as a fuzzy number:

0r (p, 1')(0) = tlinf T{p(x), e(p'(2))], inf T{p'(2), c(u(2))]]; (20)
O (p, ') (n) = t[inf T[DY(1)(@), (i (x))], inf T[Dy (' )(x), c(u(x))],
T(sup tu(z), c(Dy~H (i) ()], sup t[u(), (D~ () ())))]- (21)

The obtained distance is positive (the support of this fuzzy number is included in
IR™). It is symmetrical with respect to u and p/. The separability property (i.e.
d(p,v) =0 < p=v) is not always satisfied. However, we have dg(u, 1/)(0) =1
implies = ' for T being the bounded sum (7'(a,b) = min(1,a + b)), while it
implies p and g’ crisp and equal for T = max. The triangular inequality is not
satisfied in general.

3.4 Directional Relative Position from Conditional Fuzzy Dilation

Relationships between objects can be partly described in terms of relative posi-
tion, like “to the left of”. Because of the inherent vagueness of such expressions,
they may find a better understanding in the framework of fuzzy sets, as fuzzy
relationships, even for crisp objects. A few works propose fuzzy approaches for
assessing the directional relative position between objects, which is an intrinsi-
cally vague relation [2, 15, 16, 19, 20].

The approach used here relies on a fuzzy dilation that provides a map (or
fuzzy landscape) where the membership value of each point represents the degree
of the satisfaction of the relation to the reference object. This approach has
interesting features: it works directly in the image space, without reducing the
objects to points or histograms, and it takes the object shape into account.

We consider a (possibly fuzzy) object R in the space S, and denote by pq (R)
the fuzzy subset of S such that points of areas which satisfy to a high degree
the relation “to be in the direction u, with respect to object R” have high
membership values, where u,, is a vector making an angle o with respect to
a reference axis. We express pq(R) as the fuzzy dilation of pug by v, where v
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is a fuzzy structuring element depending on «: puo(R) = D,(ugr) where ug is
the membership function of the reference object R. This definition applies both
to crisp and fuzzy objects and behaves well even in case of objects with highly
concave shape. In polar coordinates (but this extends to 3D as well), v is defined
by': v(p,0) = f(0 — «) and v(0,0) = 1, where 6 — « is defined modulo 7 and f
is a decreasing function, e.g. f(3) = max[0, cos 3] for 8 € [0, 7].

Once we have defined o (R), we can use it to define the degree to which
a given object A is in direction u, with respect to R. Let us denote by p4 the
membership function of the object A. The evaluation of relative position of A
with respect to R is given by a function of p1o(R)(x) and pa(x) for all z in S. The
histogram of p,(R) conditionally to pa is such a function. A summary of the
contained information could be more useful in practice, and an appropriate tool
for this is the fuzzy pattern matching approach [12]: the matching between two
possibility distributions is summarized by two numbers, a necessity degree N (a
pessimistic evaluation) and a possibility degree IT (an optimistic evaluation), as
often used in the fuzzy set community. The possibility corresponds to a degree of
intersection between the fuzzy sets A and po(R), while the necessity corresponds
to a degree of inclusion of A in p,(R). These operations can also be interpreted
in terms of fuzzy mathematical morphology, since I corresponds to a dilation,
while N corresponds to an erosion.

4 Spatial Representations of Spatial Relationships

Now we address a second type of problem, and given a reference object, we define
a spatial fuzzy set that represents the area of the space where some relationship
to this reference object is satisfied (to some degree). The advantage of these
representations is that they map all types of spatial knowledge in the same
space, which allows for their fusion and for spatial reasoning (this occurs typically
in model-based pattern recognition, where heterogeneous knowledge has to be
gathered to guide the recognition). This constitutes a new way to represent
spatial knowledge in the spatial domain [3].

For each piece of knowledge, we consider its “natural expression”, i.e. the
usual form in which it is given or available, and translate it into a spatial fuzzy
set in S having different semantics depending on the type of information (on
objects, spatial imprecision, relationships to other objects, etc.).

The numerical representation of membership values assumes that we can as-
sign numbers that represent degrees of satisfaction of a relationship for instance.
These numbers can be derived from prior knowledge or learned from examples,
but usually there remain some quite arbitrary choices. However, we have to
keep in mind that mostly the ranking is important, not the individual numerical
values.

! This definition of v is discontinuous at the origin. A continuous function could be
obtained by modeling the fact that the direction of a point or of an object closed to
the origin is imprecise.
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4.1 Set Relationships

Set relationships specify if areas where other objects can be localized are forbid-
den or possible. The corresponding region of interest has a binary membership
function (1 in authorized portions of the space, 0 elsewhere). This extends to
the fuzzy case as: fi...(x) = t[pom(x),1 — poou (z)], where ¢ is a t-norm, which
expresses a conjunction between inclusion constraint in the objects O™ and ex-
clusion constraint from the objects O°"*. The properties of t-norms guarantee
that good properties are satisfied.

4.2 Other Topological Relations

Other topological relations (adjacency, etc.) can be treated in a similar way and
involve morphological operators. For instance, an object that is a non tangential
proper part of p has to be searched in E, (u).

4.3 Distances

Again, morphological expressions of distances, as detailed in Section 3, directly
lead to spatial representation of knowledge about distances. Let us assume that
we want to determine B, subject to satisfy some distance relationship with an
object A. According to the algebraic expressions of distances, dilation of A is an
adequate tool for this. For example, if knowledge expresses that d(A4, B) > n,
then B should be looked for in D"~!(A)¢. Or, if knowledge expresses that B
should lay between a distance n; and a distance no of A, i.e. the minimum
distance should be greater than n; and the maximum distance should be less
than ng, then the possible domain for B is reduced to D"™2(A) \ D™ ~1(A).

In cases where imprecision has to be taken into account, fuzzy dilations are
used, with the corresponding equivalences with fuzzy distances. The extension
to approximate distances calls for fuzzy structuring elements. We define them
through their membership function v on S, with a spherical symmetry, where
v only depends on the distance to the center of the structuring element and
corresponds to the knowledge expression, as a fuzzy interval for instance [14].
The increasingness of fuzzy dilation with respect to both the set to be dilated
and the structuring element guarantees that the obtained expressions have the
required properties.

4.4 Relative Directional Position

The definition of directional position between two sets described in Section 3
relies directly on a spatial representation of the degree of satisfaction of the
relation to the reference object. Therefore the first step of the proposed approach
directly provides the desired representation as the fuzzy set p,(A) in S.
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5 Symbolic Representations of Spatial Relationships

In this Section, we use the logical framework presented in Section 2. For spatial
reasoning, interpretations can represent spatial entities, like regions of the space.
Formulas then represent combinations of such entities, and define regions, ob-
jects, etc., which may be not connected. For instance, if a formula ¢ is a symbolic
representation of a region X of the space, it can be interpreted for instance as
“the object we are looking at is in X”. In an epistemic interpretation, it could
represent the belief of an agent that the object is in X. The interest of such
representations is also to deal with any kind of spatial entities, without referring
to points. If ¢ represents some knowledge or belief about a region X of the space,
then O¢p represents a restriction of X. If we are looking at an object in X, then
O is a necessary region for this object. Similarly, G¢ represents an extension
of X, and a possible region for the object.

5.1 Topological Relationships

Let us first consider topological relationships, and two formulas ¢ and 1 rep-
resenting two regions X and Y of the space. Note that all what follows holds
in both crisp and fuzzy cases. Simple topological relations such as inclusion, ex-
clusion, intersection do not call for more operators than the standard ones of
propositional logic. But other relations such that X is a tangential part of Y
can benefit from the morphological modal operators. Such a relationship can be
expressed as:

¢ — 1 and O A ) consistent. (22)

Indeed, if X is a tangential part of Y, it is included in Y but its dilation is not.
If we also want X to be a proper part, we have to add the condition:

= A 1) consistent. (23)

Let us now consider adjacency (or external connection). Saying that X is
adjacent to Y means that they do not intersect and as soon as one region is
dilated, it intersects the other. In symbolic terms, this relation can be expressed
as:

© A ¢ inconsistent and $p A 1) consistent and ¢ A O consistent. (24)

It could be interesting to link these types of representations with the ones
developed in the community of mereotopology, where such relations are de-
fined respectively from parthood and connection predicates [1, 22]. Interestingly
enough, erosion is defined from inclusion (i.e. a parthood relationship) and di-
lation from intersection (i.e. a connection relationship). Some axioms of these
domains could be expressed in terms of dilation. For instance from a parthood
postulate P(X,Y) between two spatial entities X and Y and from dilation,
tangential proper part could be defined as:

TPP(X,Y)= P(X,Y)A-P(Y,X) A=P(D(X),Y). (25)
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5.2 Distances

Again we use expressions of minimum and Hausdorff distances in terms of mor-
phological dilations. The translation into a logical formalism is straightforward.
Expressions like dpyin(X,Y) < n translate into:

O™ A1) consistent and O™ A ¢ consistent. (26)
Similarly for Hausdorff distance, we translate dg (X,Y) = n by:
(Ym < n, A =O™p consistent or p A =) consistent)
and (¢ — O"p and p — O"Y). (27)

The first condition corresponds to dy(X,Y) > n and the second one to

Let us consider an example of possible use of these representations for spatial
reasoning. If we are looking at an object represented by v in an area which is at
a distance in [ny, na| of a region represented by ¢, this corresponds to a minimum
distance greater than n; and to a Hausdorff distance less than no. Then we have
to check the following relation:

P — O™ p A O™, (28)

This expresses in a symbolic way an imprecise knowledge about distances repre-
sented as an interval. If we consider a fuzzy interval, this extends directly using
fuzzy dilation.

These expressions show how we can convert distance information, which is
usually defined in an analytical way, into algebraic expressions through math-
ematical morphology, and then into logical ones through morphological expres-
sions of modal operators.

5.3 Directional Relative Position

Here we rely again on the approach where the reference object is dilated with
a particular structuring element defined according to the direction of interest.
Let us denote by D? the dilation corresponding to a directional information
in the direction d, and by ¢ the associated modal operator. Expressing that
an object represented by 1 has to be in direction d with respect to a region
represented by ¢ amounts to check the following relation: 1) — &%, In the fuzzy
case, this relation can hold to some degree. This formulation directly inherits the
properties of directional relative position defined from dilation, such as invariance
with respect to geometrical transformations.

6 Conclusion

The spatial arrangement of objects in images provides important information for
recognition and interpretation tasks, in particular when the objects are embed-
ded in a complex environment like in medical or remote sensing images. Such
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information can be expressed in different ways varying from purely quantita-
tive and precise ones to purely qualitative and symbolic ones. We have shown
in this paper that mathematical morphology provides a unified and consistent
framework to express different types of spatial relationships and to answer dif-
ferent questions about them, with good properties. Due to the strong algebraic
structure of this framework, it applies to objects represented as sets, as fuzzy
sets, and as logical formulas as well. This establishes links between theories that
were so far disconnected. Applications of this work concern model-based pattern
recognition, spatial knowledge representation issues, and spatial reasoning. First
results have already been obtained using this framework in brain imaging [14]
and mobile robotics [9]. Ilustrations are also whown in [3, 5].
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