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Résumé :
Un problème bien connu dans le domaine de l’image

et de la vision par ordinateur est le fossé sémantique en-
tre les informations numériques extraites des images et
les concepts exprimés de manière symbolique. En raison
de la nature des images et de la difficulté d’en extraire
des caractéristiques pertinentes, le langage joue un rôle
important. D’une part, les descriptions linguistiques des
connaissances sur les images et les domaines peuvent être
traduites en modèles et algorithmes formels pour guider
la recherche d’images, la reconnaissance, la navigation et
l’interprétation. D’autre part, la génération automatique
de descriptions linguistiques des données est un domaine
de recherche qui, bien que récent, évolue rapidement.
Par exemple, la question de fournir, à partir de résultats
de traitement d’images, une description de haut niveau
dans le langage des experts du domaine n’a pas encore
été beaucoup abordée, et peut s’inspirer des méthodes
de résumé linguistique. L’objectif de cet article est de
fournir un aperçu de l’état de l’art dans ce domaine, en
montrant l’apport des ensembles flous.
Mots-clés :

Interprétation d’images, description du contenu des
images, ensembles flous, fossé sémantique.
Abstract:

A well-known problem in image and computer vision
is the semantic gap between the physical level of images,
that is features extracted by image processing, and sym-
bolic concepts. Due to the nature of images and the dif-
ficulty of extracting meaningful features from them, lan-
guage plays an important role. On the one hand, linguis-
tic descriptions of prior knowledge about the images and
the domains can be translated into formal models and al-
gorithms to guide image retrieval, recognition, naviga-
tion, understanding. On the other hand, automatic gen-
eration of linguistic descriptions of data is an increasing,
though recent, field of research that evolves rapidly. For
instance, the question of providing, from image process-
ing results, a high level description in the language of
the domain experts was not yet much addressed, and can
get inspiration from methods for linguistic summariza-
tion. The aim of this paper is to provide an overview of
the state of the art in this domain, demonstrating the use-
fulness of fuzzy sets.
Keywords:

Image understanding, description of image content,
fuzzy sets, semantic gap.

1 Introduction

A well-known problem in image and computer vi-
sion is the semantic gap between the physical level
of images, that is features extracted by image pro-
cessing, and symbols expressed in a language. On

the one hand, linguistic descriptions of prior knowl-
edge about the images and the domains can be trans-
lated into formal models and algorithms to guide im-
age understanding. On the other hand, automatic an-
notation, that is generation of linguistic descriptions
of image content, is an increasing, though recent,
field of research that evolves rapidly. We present in
this paper an overview of the state of the art in this
domain1, focusing on the use of fuzzy sets.

The meaning of image interpretation and under-
standing adopted here is as follows. The basic step is
to recognize (often after or together with a segmen-
tation step) individual objects or structures present
in an image. However, image understanding goes
some step further and aims at global scene recog-
nition, to obtain high-level descriptions of the ob-
jects in their context, including their spatial arrange-
ment. When images are not static but dynamic
such as in video processing, then further interpre-
tation steps may include recognition of movements
or changes, recognition of actions, gestures, emo-
tions... Image understanding includes also semantic
interpretation. Semantics is not present in the image
itself, but requires some prior knowledge (for exam-
ple expressed as formal models) to extract it. All
this should then lead to verbal or linguistic descrip-
tions of the image content. This definition includes,
but may cover a larger scope, the purely logical view
in [63], where the interpretation of an image is de-
fined as a logical model of three sets of axioms (im-
age, scene, depiction). Surprisingly enough, such
views relating image understanding and linguistic
models was developed in the 1960’s, then less ad-
dressed, and is now renewed. As early as 1968,
a survey of linguistic methods for picture process-
ing, defined as analysis and generation of pictures by
computers, with or without human interaction, was
proposed in [48]. In [22], a linguistic approach for
picture interpretation was proposed, as a pattern de-

1Note that we do not deal with the generation of (synthetic)
images based on linguistic descriptions in this paper.



scription language. In [62], image understanding is
defined as verbal descriptions of the image contents.
The need for a semantic layer for spatial language
was advocated again later in [7].

Importance of semantics related to images is ac-
knowledged in several domains, including recogni-
tion, image understanding, cognitive vision, image
retrieval, and image annotation. Although this ques-
tion has been recognized since the early works in
image understanding and computer vision, it was re-
newed in recent work on semantic image annotation
and retrieval, and in recent work linking vision and
language, as evidenced for instance by recent work-
shops on vision and language (for instance VL’16,
ICCV19-CLVL), as well as special issues on this
topic in journals such as Computer Vision and Im-
age Understanding. The need for semantics of object
representation and their epistemic justification was
also highlighted in the context of machine learning
in [74]. Several aspects related more generally to the
philosophy of pattern recognition can also be found
in a dedicated issue of Pattern Recognition Letters in
2015 [59]. One main problem is the semantic gap,
close to the symbol grounding problem. We show
that fuzzy methods provide useful tools to deal with
both ontological concepts (often provided as linguis-
tic terms) and concrete domains, and to establish
links between them. Two main directions can be
identified in connection with linguistic descriptions
of images: (i) using linguistic descriptions expressed
in a model to guide image interpretation, (ii) deriv-
ing linguistic descriptions of images based on image
features. Our focus is on methods relying on fuzzy
models (for representing vague knowledge, impre-
cision in images and in concepts, etc.), associated
with symbolic and structural models. The suitabil-
ity of fuzzy sets for representing image information
and knowledge is now well known and is not fur-
ther recalled here (see e.g. [13] for a review). Based
on these representations, the first direction, from lin-
guistic descriptions to image understanding, is re-
viewed in Section 2. This is related to spatial reason-
ing, where spatial information and knowledge have
to be modelled, combined, and then integrated in a
reasoning process to provide the final interpretation.
The second direction, from image analysis to image
content descriptions, in summarized in Section 3.

2 From linguistic descriptions to
image understanding

As mentioned in the introduction, to go beyond in-
dividual object recognition, image understanding re-
quires descriptions of the spatial organization of ob-
jects in images. In knowledge-based approaches, the
models should then include such structural knowl-
edge. Models have then to be combined with image
information, to finally lead to scene understanding.
These steps are summarized in this section, which is
to some extent taken from [13].

Representations of structural information. Let us
first summarize the main structural representations
on which the interpretation methods described next
rely. The main information contained in the images
consists of properties of the objects (not detailed in
this paper) and of relations between objects, both be-
ing used for pattern recognition and scene interpre-
tation purposes. Relations between objects are par-
ticularly important since they carry structural infor-
mation about the scene, by specifying the spatial ar-
rangement of objects. These relations highly support
structural recognition based on models, and global
interpretation of the image. These models can be of
iconic type, as an atlas, or of symbolic type, as lin-
guistic descriptions, conceptual or semantic graphs,
or ontologies.

Spatial relations are strongly involved in linguistic
descriptions of visual scenes. They constitute a very
important information to guide the recognition of
structures embedded in a complex environment, and
are more stable and less prone to variability (even in
pathological cases) than object characteristics such
as shape, size or appearence. Mathematical mod-
els of several spatial relations (adjacency, distances,
directional relations, symmetry, betweenness, paral-
lelism...) have been proposed in the framework of
fuzzy sets theory, strongly relying on mathematical
morphology operators (see [10] and the references
therein for a review). For instance, the semantic of
a relation such as close to, to the right of can be
modeled as a fuzzy structuring element, and the di-
lation of a reference object by this structuring ele-
ment provides the fuzzy region of space where the
corresponding relation is satisfied. More details on
fuzzy mathematical morphology can be found e.g.
in [12]. Other approaches are based on directions



(see e.g. [21] and the references therein).

These fuzzy representations can enrich ontologies
and contribute to reduce the semantic gap between
symbolic concepts, as expressed in the ontology, and
visual percepts, as extracted from the images [38].
Ontologies [36] have been extended to deal with
uncertainty and imprecision, using probabilistic or
fuzzy approaches, in particular using fuzzy descrip-
tion logics (e.g. [51, 71]). Several spatial ontolo-
gies have been proposed, in various domains, such
as in [7, 18, 26]. The ideas of linking ontologies
expressing fuzzy spatial relations with images were
used in particular in the segmentation and recogni-
tion methods described in [14, 23, 52, 76]: a con-
cept of the ontology is used for guiding the recog-
nition by expressing its semantic as a fuzzy set, for
instance in the image domain or in an attribute do-
main, which can therefore be directly linked to im-
age information. While the concepts and their use
can be defined in a general way, the fuzzy sets ex-
pressing the semantics may involve some parameters
depending on the context (for instance the notion of
“close to” has a different meaning when speaking of
brain structures in a medical image or of towns in a
satellite image). These parameters can be learned for
instance from annotated images [5] or for semantic
annotation [60].

Similarly, such spatial relations are useful attributes
in graphs and fuzzy graphs, and endow recognition
and mining methods based on similarity between
graphs with structural information [3, 20, 58], bene-
fiting from the huge literature on fuzzy comparison
tools (see e.g. [15]). Spatial relations can also be
embedded in conceptual graphs and their fuzzy ex-
tensions, as in [76]. Another example is the hierar-
chical model with fuzzy attributes proposed in [49]
for modeling objects (recognition is then based on
a fuzzy measure between the model and image pro-
cessing results).

Fusion. A lot of approaches for image processing
and understanding, whatever their level, involve fu-
sion steps. Information fusion becomes more and
more important due to the increasing number of
imaging techniques. The information to be com-
bined can be obtained from several images, or from
one image only, using for instance combination of
several relations between objects or several features
of the objects, or from images and a model, such as

an anatomical atlas or a conceptual graph, or knowl-
edge expressed in linguistic form or as ontologies.
The advantages of fuzzy sets rely in the variety of
combination operators, offering a lot of flexibility
in their choice [9], that can be adapted to any sit-
uation at hand, and which may deal with heteroge-
neous information [30, 80]. The fusion process can
be done at several levels of information representa-
tion, from pixel level to higher level. Local fusion
is often limited because spatial information is not
really taken into account, and working at intermedi-
ate or higher level (for instance combining several
spatial relations to guide the understanding process)
is more interesting and powerful. Examples can be
found in various domains [23, 47, 52, 56, 64, 76].

Scene understanding. A survey of knowledge-
based systems for image interpretation until 1997
can be found in [25]. Here we focus on more recent
approaches, and using fuzzy formalisms. Scene un-
derstanding using fuzzy approaches mostly belongs
to the domain of spatial reasoning, which can be de-
fined as the domain of spatial knowledge represen-
tation, in particular spatial relations between spa-
tial entities, and of reasoning on these entities and
relations. This field has been largely developed in
artificial intelligence, in particular using qualitative
representations based on logical formalisms [2]. In
image interpretation and computer vision it is much
less developed and is mainly based on quantitative
representations. Using fuzzy approaches can then
be seen as halfway between purely quantitative and
purely qualitative reasoning. A typical example in
this domain concerns model-based structure recog-
nition in images, where the model represents spatial
entities and relations between them. Two main com-
ponents of this domain are spatial knowledge repre-
sentation and reasoning. In particular spatial rela-
tions constitute an important part of the knowledge
we have to handle. Imprecision is often attached to
spatial reasoning in images, and can occur at differ-
ent levels, from knowledge to the type of question
we want to answer. The reasoning component in-
cludes fusion of heterogeneous spatial knowledge,
decision making, inference, recognition. Two types
of questions arise when reasoning with spatial re-
lations: (i) given two objects (possibly fuzzy), as-
sess the degree to which a relation is satisfied; (ii)
given one reference object, define the area of space
in which a relation to this reference is satisfied (to



some degree). It has been shown in [11] that the
association of three frameworks in a unified way,
namely mathematical morphology, fuzzy sets and
logics, allows on the one hand matching two impor-
tant requirements: expressiveness and completeness
with respect to the types of spatial information to be
represented [1], and on the other hand performing
successful reasoning tasks for image understanding.

A common computational representation of struc-
tural information to guide image interpretation con-
sists of a graph, where vertices represent objects
or image regions (possibly with attributes such as
shape, size, color or gray level), and edges carry the
structural information (spatial relations between ob-
jects, radiometric contrast between regions...). Al-
though this type of representation has become pop-
ular in the last 30 years [24], there are still a number
of open problems regarding their efficient use for in-
terpretation. One type of approach consists in deriv-
ing a graph from the image itself, based on a prelim-
inary segmentation of the image into homogeneous
regions, and to express the recognition as a graph
matching problem between the image graph and the
model graph, which, however, raises combinatorial
problems [16, 24]. In [43, 57] an initial labeling of
the image regions is performed, and spatial relations
are used to refine this labeling or to extract the ob-
jects of interest.

All these approaches assume a correct initial seg-
mentation of the images. However this is known
to be a very difficult problem in image processing,
for which no universally acceptable solution exists:
the segmentation is usually imperfect and no iso-
morphism exists between the graphs to be matched.
This leads naturally to the need to find an inexact
matching, for instance by allowing several image re-
gions to be assigned to one model vertex, or by re-
laxing the notion of morphism to the one of fuzzy
morphism [20, 58]. As an example, in [27], an over-
segmentation of the image is used, which is easier
to obtain. Fuzzy relations can then be used to get
the final labeling and interpretation [31]. A model
structure is then explicitly associated with a set of
regions and the recognition is expressed as a con-
straint satisfaction problem. Some methods rely on
fuzzy graph comparison and matching, using genetic
algorithm, estimation of distributions algorithms, or
graph kernels involving spatial relations. One of the
main issues in these methods is the design of an

appropriate objective function, guaranteeing that it
is optimal for the right solution, which is a diffi-
cult task. Still relying on a preliminary segmenta-
tion, some approaches have been proposed, for in-
stance using ontologies [38, 53], with fuzzy exten-
sions, besides other types of methods (grammatical
or probabilistic ones). Other approaches combin-
ing segmentation results and fuzzy models of shapes
and spatial relations were proposed, e.g. in [37] for
medical images, or in [75] for seismic images, us-
ing fuzzy rules. Fuzzy Region Connection Calcu-
lus (RCC) [68] can also be used to identify objects
based on their mereotopological relations, as done
in the crisp case (e.g. [39, 40]).

To overcome the difficulty of obtaining a relevant
segmentation, the segmentation and the recognition
can also be performed simultaneously. For instance,
the method proposed in [14, 23] consists in sequen-
tially segmenting and recognizing each object of in-
terest, in a pre-calculated order [32]. The objects
that are easier to segment are considered first and
taken as reference. Spatial relations to these refer-
ence objects encoded in the structural model, and
formalized as fuzzy sets, are used as constraints to
guide the segmentation and recognition of other ob-
jects. However the extraction of the first objects can
be difficult if it is not sufficiently constrained, and
due to the sequential nature of the process, the errors
are potentially propagated. Backtracking may then
be needed, as proposed in [32]. Similar approaches
have been used for mobile robot navigation in [33],
where linguistic descriptions of a scene, given by a
human observer, are translated into fuzzy spatial re-
gions. Another sequential approach was proposed
in [72] for vessel tracking in MRI. Starting from an
initial fuzzy classification, the authors apply fuzzy
rules, involving both image information and geomet-
rical characteristics, to track the vessels and handle
the bifurcations.

These approaches can be formalized also as onto-
logical reasoning [38], where both an ontology of
the domain can be enriched by fuzzy spatial rela-
tions. A first step consists in extracting information
from the domain ontology by querying it. The next
step consists in actually segmenting (and recogniz-
ing) the structure of interest.

To overcome the problems raised by sequential ap-
proaches, while avoiding the need of an initial seg-



mentation, another method, still relying on a struc-
tural model, but solving the problem in a global way,
was proposed in [52]. A solution is the assignment
of a region of space to each model object, that sat-
isfies the constraints expressed in the model. A so-
lution is obtained by reducing progressively the so-
lution domain for all objects by excluding assign-
ments that are inconsistent with the structural model.
Constraint networks [65] constitute an appropriate
framework both for the formalization of the prob-
lem and for the optimization. This approach was ex-
tended in [76] to fuzzy constraint satisfaction prob-
lems (extending [29]) do deal with more complex
relations, or involving an undetermined number of
objects, and applied to the interpretation of high res-
olution remote sensing images.

Besides recognition and segmentation, fuzzy spa-
tial relations and more generally fuzzy spatial in-
formation have proved useful for other interpreta-
tion tasks, such as multiple object tracking [78, 79],
graph kernels for machine learning [3], facial ex-
pression understanding [61], navigation in unknown
environments in robotics [17, 28, 34], among others.

3 From image analysis to image
content descriptions

Let us now consider the other way around, where the
objective is to start from image features to derive de-
scriptions of the image content in a way as close as
possible to natural language. Usually referred to as
image annotation, this task aims at identifying some
terms (called “tags”) that are associated with images
to describe their content. These tags are most of-
ten related to the recognition of one main object in
an image, or a few objects given as an unstructured
list. However, in more recent work, new approaches
emerged to provide descriptions as whole sentences,
i.e. automatic image captioning. This refers to the
typical “show and tell” approaches, that benefit from
recent advances in machine learning (convolutional
networks and deep learning), or use mostly cluster-
ing and probabilistic approaches [41, 66, 77]. Such
approaches are also used to model queries in image
retrieval (see e.g. the reviews in [35, 70]). As an
example using fuzzy models, let us cite [6] where
fuzzy multimedia ontologies were developed for se-
mantic image annotation. Tags were identified based
on consistency of candidate concepts, obtained from

SVM classification, and tested using fuzzy descrip-
tion logic reasoning.

Interesting methods using structural representations
such as graphs or grammars are worth to men-
tion [54, 73]. For instance in medical imaging, at-
tributed grammars are applied to results of image
processing (e.g. detection, skeletonization) to pro-
vide a syntactic description of results.

Although a large majority of approaches rely on
probabilistic models or learning methods, some
of them, in particular structural approaches using
graphs or grammars, could be enhanced by fuzzy
components to deal with imprecision, vagueness,
variability. Still a few fuzzy approaches have been
proposed, as described next.

One problem with neural networks is that it may
be difficult to understand which rules or reasoning
processes they have learned. This question was an-
swered in [45] where satellite image classification
was performed using fuzzy neural networks, produc-
ing also the fuzzy rules that are actually used by the
system, and that are understandable by domain ex-
perts, thus providing a description of the image and
of how this description was obtained.

Fuzzy sets learned from neural networks were used
in [42] in the domain of art image retrieval. The
linguistic variables describe “fuzzy aesthetic seman-
tics”, in terms of action, relaxation, joy, fear, etc.,
associated with degrees of satisfaction. Using also
a neural network, associated with a fuzzy classifier
and an expert system reasoning on low level fea-
tures, the work in [55] leads to descriptions of facial
expressions.

Fuzzy rules were also exploited to generate simple
linguistic descriptions of image content [4]. This
approach was used for various applications, such as
circular structures on Mars, traffic, human gait, med-
ical images... In [8], a clustering and compression
method was proposed to provide a small number of
fuzzy rules having a linguistic meaning, which con-
stitute fuzzy models that provide linguistic descrip-
tions of low-level features in images. Applications
in matching were developed.

At a more structural level, image descriptions in-
volve spatial relations. For instance, in [19], lin-
guistic features describing regions were obtained by



fuzzy segmentation, fuzzy spatial relations and lo-
cations. From a set of predefined linguistic terms,
a brief and accurate description of the whole im-
age is then generated. In [46, 69], previous work by
the authors on computation of relative direction was
used to derive linguistic descriptions of relative po-
sitions in images, associated with a qualitative valid-
ity of the description. A typical example of result is
“the building is perfectly to the right of the reference
object; the description is satisfactory”. Conversely,
conceptual descriptions, in natural language, of vi-
sual scenes can be used to create an image matching
these descriptions (an example can be found in [50]).

Another source of inspiration may come from work
on summarization. For instance, in [67] the sum-
marization of image databases was based on low-
level features and fuzzy labels. While summariza-
tion was not much addressed until now for images,
several works have emerged for time series and sig-
nals, see for instance the special issues on linguistic
description of time series in [44], with several papers
on automatic generation of linguistic descriptions of
data, mapping from non linguistic to linguistic ex-
pressions, linguistic summarization. Although some
ideas and methods could probably be exploited, the
problem when dealing with images is quite differ-
ent, and there is some work to do to really account
for the spatial nature of images and for structural in-
formation and knowledge.

One issue in all these approaches is the validation
of the obtained linguistic descriptions of the im-
ages. Most of the time, a simple comparison with
the description provided by a human is performed.
This assumes defining a common vocabulary and
language, which raises the issue of the level of the
description. For instance, describing a brain image
may take different forms depending on whether it
is intended for a wide public audience, for a pa-
tient or for an neurology expert, ranging thus from
“an abnormal structure is present in the brain”, to
“a peripheral non-enhanced tumor is present in the
right hemisphere”. Providing descriptions with the
required granularity can be formalized as an abduc-
tion process, where the interpretation is the best ex-
planation of the observation (i.e. the image, or seg-
mentation results), according to the available knowl-
edge, expressed in some logics. The example in [81]
exploits the two directions described in this paper.
Starting from a linguistic description of the expert

knowledge (here neuro-anatomy), a formal model is
built (an ontology) and a knowledge base is derived
in description logics, which will guide the image in-
terpretation. At the end of the interpretation process,
the result is expressed in the same logics, close to the
expert natural language.
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