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Abstract. Within the general objective of conceiving a cognitive archi-
tecture for image interpretation able to generate outputs relevant to sev-
eral target user profiles, the paper elaborates on a set of operations that
should be provided by a cognitive space to guarantee the generation of
relevant descriptions. First, it attempts to define a working definition of
contrast operation. Then, revisiting well-known results in cognitive stud-
ies, it sketches a definition of similarity based on contrast, distinguished
from the metric defined on the conceptual space.
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1 Introduction

Similarity, for its fundamental role in human reasoning, occupies a central role in
cognitive science. In general, it is modeled as a function of a context-dependent
distance (e.g. [1]). On the other hand, most machine learning methods rely on
adequate metrics to perform comparisons between inputs; certain methods even
attempt to achieve (pseudo-)metric learning. This convergence towards geomet-
ric models is not without problems. First, there exist many empirical studies,
starting from the famous work of Tversky [2], that show that similarity in human
judgment does not satisfy fundamental metric axioms. Secondly, a good part of
reasoning operations performed by artificial devices still relies on symbolic means
(e.g. ontologies expressed in description logics), that do not have a direct geomet-
ric interpretation. Attempts to fill these gaps exist, for instance by enriching the
metric model of similarity with additional elements to align it with the empir-
ical results (e.g. [3]), or by approaching the logical structures used in artificial
reasoning via geometrical notions (e.g. [4]).

This work attempts to follow an alternative path. On the one hand, we con-
tinue along the tradition of works on psychological spaces, and precisely, we
build upon the theory of conceptual spaces [5,6], acknowledging a third cogni-
tive level, between symbolic and associationistic, where conceptual entities are
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geometric representations. In our general research project, we aim to introduce
conceptual spaces as a sort of middle-ware for image interpretation applications.
Here, assuming that conceptual spaces exist, we focus on operations required for
generating relevant descriptions, i.e. pertinent characterizations of a given input.
We sketch a technical solution satisfying properties of predication observed in
direct experiences. As a result of this proposal, we argue that the mismatches
between geometric and empirical properties of similarity might not be a con-
sequence of the space per se but of neglecting part of the mechanisms behind
description generation.

The paper unveils its arguments incrementally. We first give a brief overview
of the theory of conceptual spaces [5,6] and of a recent variation [7], focusing
on pertinent predication. We then sketch the infrastructure required for gen-
erating relevant descriptions starting from simple examples of predication, but
which are already problematic for semantic approaches relying on set theory.
From this base, we present an alternative definition of similarity, that predicts
results observed in empirical studies (asymmetry of similarity judgments, non
satisfaction of the triangle inequality, diagnosticity effect). A note on further
developments ends the paper.

2 Conceptual Spaces and Predication

2.1 Overview on Conceptual Spaces

According to Gärdenfors’ theory of conceptual spaces [5,6], the meaning of words
can be faithfully represented as convex regions in a high-dimensional geometric
space, in which dimensions correspond to cognitively primitive features. Tech-
nically, conceptual spaces are usually modeled as vector spaces (e.g. [8–10]). An
object of the conceptual space is characterized by several qualities or attributes:

(q1, q2, . . . , qn),∀i : qi ∈ Qi

where Qi are sets of possible values for each quality qi. Quality dimensions
correspond to the ways in which two stimuli can be considered to be similar or
different, usually according to an ordering relation of the stimulus. In general, the
Qi are modeled as concrete domains on R, R2, . . . , N,N2, etc. but proposals exist
to process nominal domains (e.g. [11,12]). So far, we used the term domain in
the mathematical sense. However, in works on conceptual spaces—in agreement
with the cognitive psychology literature—the term domain identifies a set of
integral dimensions, i.e. dimensions that cannot be separated perceptually (e.g.
for humans, the color dimensions hue-luminosity-saturation). A conceptual space
consists therefore of:

C = D1 × D2 × . . . × Dm

where each Di is a domain. As each Di consists of a set of qualities, the resulting
structure is hierarchical. According to its proponents, this infrastructure enables
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the distinction between objects, i.e. points of the space (used to represent exem-
plars and prototypes, i.e. exemplar-based and prototypical bodies of knowledge
[11]), and concepts, defined as regions of the space.

To guarantee betweenness among similar elements, natural properties corre-
spond to convex regions in a domain [5]. A concept is a combination of properties,
typically across multiple domains (linguistically, properties are usually expressed
as adjective-like attributes, while concepts as nouns or verbs). Prototypes emerge
as centroids of those convex regions (properties or concepts); at the same time,
the division of conceptual spaces in regions can be seen as the result of a competi-
tion between prototypes, that might be captured by Voronöı tessellations, useful
for categorization applications; technically, existing implementations exploit e.g.
region connection calculus (RCC) [8], or polytope structures [13].

Evidently, there is a strong affinity between the representation based on fea-
tures used in machine learning and the idea of conceptual spaces. For instance,
word embeddings techniques also represent the meaning of words as points on a
high-dimensional Euclidean space; however, conceptual spaces offer two advan-
tages: first, working with regions and not only with similarity, they provide an
intuitive way to process subsumption, overlap and typicality; second, dimensions
of conceptual spaces have (or should have) a direct relation to a domain, while
word embeddings dimensions are essentially meaningless.1

2.2 Predication and Relevance

The theory of conceptual spaces assumes a generally working association between
regions and linguistic marks. For this insistence on lexical meaning, the proposal
can be seen as an extension of the symbolic approach. A recent alternative
proposal [7] considers instead that predicates are the result of contrast operations
made on the fly between conceptual objects, following principles of relevance. In
essence, contrast is a “difference” operator (denoted with −) between the vectors
pointing to the exemplar (O) and to the prototype (P ):

C = O − P

Being the outcome C a vector, with (theoretically) the same dimensionality
of the conceptual space, it may be a conceptual object as well. However, this
vector should not be interpreted extensionally, but rather as a conceptual force
or modifier ; we will name these objects contrastors.

The proposal carries interesting innovations. First, whereas practically all
other works rely on a global distance, it does not necessarily require a holistic
perspective on all available dimensions. Second, it does not have to refer to
average lexical meanings emerging from usage, but it is computed contingently
with C and P grounded on the agent’s own experience.2 Third, working with
1 Jameel and Schockaert [14] show that a NLP architecture based on conceptual spaces

yields better results than word-embeddings and knowledge-graph embedding.
2 The negotiation of the specific symbols associated to C and P (anchoring), here

assumed as given, remains deferred at social level.
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contrast would allow to overlook the convexity constraint, requiring in principle
only access to the representational level of points. For these reasons, we take it
as a starting point for our investigation. In the following, we start working out
an implementation of contrast, missing in the original paper [7].

3 Experiments for the Specification of Contrast

3.1 First Example: “red dog”

In predicate logic, the expression “red dog” is usually written as an x such
that Red(x) ∧ Dog(x), that, in the set-theoretic semantics, refers to an entity
included both in the set of dogs and in the set of red entities. However, a red
dog is not red as would be a red face, nor as would be a red book; in the
usual labeling of colors it looks actually rather brown. Being red—semantically—
might depend on the type of object on which the predicate applies. Accepting
this, we suppose that the description of an object is constructed in at least two
steps: first, an association to the nearest prototype (categorization), and then
the extraction of the characteristic features by contrast. In this work, we bypass
the prototype association, assuming it as given (machine learning algorithms
have been proven successful in this respect). We focus only on the contrastive
component of predication. In our example, “this dog” exemplar contrasted with
the “dog” prototype should return a “red” contrastor.

For simplicity, we consider dogs as defined merely by their colors. We have
taken the RGB colors of 9 common furs of dogs from the Internet, and converted
them in HLS dimensions (hue, luminosity, saturation), in accordance with the
conceptual space literature. Other color spaces, such as CIELAB or CIELUV
can even better match visual perception, and first experiments confirm that the
proposed approach applies in these spaces as well. For the sake of the argument,
we continue with HLS. The statistical properties of the set are:3

mean: [ 0.10 0.52 0.46 ], std dev: [ 0.02 0.22 0.27 ]

Simplifying, we could take the mean as a prototype of color of a dog. This
computation is transparent or at least less sensible to frequency effects; we are
not averaging on actual populations of dogs, but on breeds. Figure 1 shows the
selected points and the centroid, including points from the HLS spectrum with
a plausible label association, e.g. “red” to (0, 0.5, 1).

Let us consider a dog exemplar that would go under the “red sable” label. As
a first step, we see contrast as vectorial difference of exemplar and prototype:4

[ 0.07 0.24 0.92 ] - [ 0.10 0.52 0.46 ] = [ -0.16 -0.28 0.45 ]

3 Hue is an angular dimension, so the calculation of mean and standard deviation
follows circular (also known as directional) statistics methods.

4 Given two angles a and b, we have computed a − b as the angle of the vectorial
difference of the two normalized vectors corresponding to the input angles, which is
equivalent to the circular mean of a and b + π.
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Fig. 1. Colors of dog furs and standard colors (with labels), on HLS dimensions. (Color
figure online)

As the contrastor aims to capture the distinctive characteristics of the subject
entity (e.g. this dog), with respect to a reference entity (e.g. the dog prototype),
it lies, as a vector, in the same space as the two conceptual objects. The operation
in itself however gives no evident clue on how to compare the outcome with, for
instance, a previously acquired contrastor.

Let us consider now a red book. Assuming that practically all colors are pos-
sible for a book cover, each quality dimension can be modeled under a uniform
distribution. When normalized, their standard deviation is 1/

√
12 ≈ 0.29.5 We

may then define an empirical principle of relevant dimension: the more the stan-
dard deviation along a normalized quality dimension approaches 0.29 the less we
expect that quality to be relevant to form the prototype. In the extreme case,
we should not take it to define the centroid. Applying roughly the principle on
the dog case, the only pertinent dimension for the prototype is hue.

Now, the standard mathematical tool for vectorial spaces requires that points
have a value for all coordinates. However, conceptual spaces have potentially
infinite dimensions, and points may have undefined dimensions. To enable the
possibility to operate with any point, we introduce a void value ∗ when a certain
dimension is not applicable.6

We want to identify a method to generate, from this representation, that
our dog is a red dog, and that our book is a red book. For the book, being
the prototypical book color void, the color characterization mirrors the color
specification given by the sensory module, i.e. there is no contextualizing effect

5 μ = 1/2, Var = E[(X − μ)2] =
∫ 1

0
(x − 1/2)2dx = 1/12.

6 In a similar spirit, Aisbett and Gibbon [15] introduce the idea of distinguishing point.
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due to the prototype.7 In formula, we have that:

(.., a, ..) − (.., ∗, ..) = (.., a, ..)

The color spectrum serves as a source of contrastors. In the case of dogs, we
expect instead a contextualizing effect. Assuming that contrastors have proto-
types as well, we require a method to compute to which category the contrastor
we computed falls upon, in order to enable a reuse of this category in different
contexts (e.g. red dog, red book, red face). In clustering algorithms (see e.g.
[16]) the comparison between two numeric points is done using distance mea-
sures (usually Euclidean, Manhattan or Chebychev), or functions such as cosine
similarity, Pearson correlation measure etc. In typicality-based clustering (e.g.
[17]), it relies on a typicality degree computed using a internal resemblance (with
other members of the cluster) and an external dissimilarity (with members of
other clusters).

Fig. 2. Hue, luminosity, saturation (HLS) color spectrum. (Color figure online)

For the aim of this paper, we do not need to decide a clustering algorithm (i.e.
a prototype formation mechanism), nor to settle upon how a contrastor should
be associated to its prototype (i.e. a categorization mechanism).8 In the fol-
lowing, we will denote the category/prototype association with the symbol ‘�’.
For instance, in our red dog example, we have: (0.07, 0.24, 0.92) − (0.10, ∗, ∗) =
(−0.16, 0.24, 0.92) � red. In effect, looking at the HLS spectrum (Fig. 2), the
contrastor calculated for our dog exemplar is still in the gravitation of red but
on the opposite side of brown and yellow.9

3.2 Second Example: “a above b”

Imagine we have two objects, a and b, one above the other. In predicate logic
their relationship might be written as above(a, b), that, from a logical point of

7 This contextualization can be interpreted as informational compression. When a pro-
totype cannot be formed for a quality (because e.g. exemplars exhibit a uniform dis-
tribution with respect to that dimension), the sensory input cannot be compressed.

8 As exemplars and contrastors are vectors of the same space, it is plausible to hypoth-
esize that they share similar prototyping/categorization mechanisms.

9 The fact that the contrastor is capturing magenta can be explained by an incomplete
parametrization of additional semantic aspects (concerning e.g. the actual conceptual
space on which contrast is applied).
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view, would be the inverse of below(b, a). From a natural language point of view,
however, considering a an apple and b a table, we observe it is much more natural
to say “the apple is on the table” rather than “the table is below the apple”.
We hypothesize therefore that contrast is at stake, selecting the relation most
pertinent to the situation.

Objects are extended: they occupy a certain space, that may be described as
a solid shape, with a center and a rotation angle, or, when captured in images,
by pixels. Intuitively, directional relations should be computed by this spatial
information. Applying the principle of contrast here, we should have that a
contrasted with b should return an “above” contrastor.

Simplifying, let us reduce objects to points. Considering their positions speci-
fied in e.g. a 2D space, we have that (ax, ay)−(bx, by) is actually a seen from b, or,
equivalently, as if the origin of the space has been moved to b. Defining the above
contrastor prototype as a vector (0, u), with u positive number, and similarly
below (0,−u), right (u, 0), left (−u, 0), it seems we might utilize the same prin-
ciple of the previous example. For instance, (2, 4) − (1.5, 2) = (−0.5, 2) � above
(and a bit of left), with u = 2. This interpretation brings two questions to the
foreground. First, objects are never points: if they are represented as such, it is
because they have been discretized at a certain granularity. Second, vectors have
an intrinsic metric unit, which, mathematically, is inherited by the contrastor
(when constructed through vector difference), but we expect e.g. above to be the
same relation when applied to macro or to micro-objects. Leaving the study of
such normalization mechanism to future research, we focus on the first problem.

Fig. 3. Computing directional relationships using morphological dilation [18].

We consider an existing method [18] used in image processing to compute
directional relative positions of visual entities (e.g. of biomedical images). The
method exploits mathematical morphology operators—namely fuzzy dilation—
to create an adequate fuzzy landscape (a fuzzy region) from a model of the
directional relationship, and the position and shape of a reference object. The
strength of the relation between the target and the reference is quantified via a
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normalized degree of intersection of the target object with the fuzzy landscape
region (please refer to [18] for technical details). We have reported in Fig. 3 an
example similar to the “the apple is on the table” case. The strength of b below
a results to be inferior to a above b, basically because the “below a” region, seen
through the “b” mask, contains gray pixels, while the opposite is not true.

Interpreting the previous operations at a higher level, we can draw interesting
observations. The method enables the comparison of two descriptions, but it
does not primarily make any reference to a contrast between two entities. The
strength of the directional relationship is computed via its realization in the
image space. The structuring element stands as a model of the region above
of a point element located at the origin; it corresponds to the reification of all
possible answers to the question “Is this point above the origin?” The dilation
operation contextualizes these answers using the reference b; it is as if the binary
relation above(a, b) is reduced to a unary form: above b(a). The subject entity
a is then taken into account in the computation of the degree of intersection:
how much a’s extension falls within the virtual entity above b. If we consider
multiple virtual entities as right of b etc. we are recreating a problem similar
to the categorization/prototype association, but where the categories have been
created on the fly and concern the image space around the reference. Rather
than performing a direct contrast between two objects (a − b � above), here it
seems we are exploiting the dual operation merge (a � b + above).10 In effect,
this mapping works also in the previous example, i.e. we are able to map this dog
− prototype dog � red to this dog � prototype dog + red.

This intuition sheds light on how � may operate. The right operand specifies
the final result (the category or the nearest prototype to which the contrastor is
associated); but to achieve it, several possible candidates, distributed over the
conceptual space, have to be adequately compared to the left operand. If the
left and right operands can be processed as points, cluster association methods
will do. If they are regions, we will need to assess the overlap over the candi-
date regions, using analytical (as the intersection degree) or also random (e.g.
Monte Carlo) methods. These candidate regions might need to be realized (i.e.
contextualized with a reference) when they are not directly available, which is
an operation computationally expensive. In future work, we will investigate how
to remap the merge operations to the left part of the contrast equation.

4 Similarity

In this section we build upon the previous analysis to define similarity. We
will start from presenting two reference models of similarity judgment presented
in cognitive science, widely used in many applications (particularly Tversky’s
model); we will then introduce our model of similarity as double contrast, and
evaluate it with empirical results reviewed in the literature.

10 This interpretation is still compatible with the contrast formula, as, in effect, we are
implicitly assuming that a has not a prototypical position.
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4.1 Similarity as Feature Matching

A rich tradition of psychological and cognitive studies on similarity starts from
working with sets of features associated with objects.11 In a well-known paper,
Tversky [2] argued that similarity cannot be modeled as a distance, because
many empirical experiences shows that similarity judgments does not satisfy
three geometric axioms:

– minimality : d(a, b) ≥ d(a, a) = 0; respondents identify another object similar
to the object more often than an object to itself;

– symmetry : d(a, b) = d(b, a); for instance, “Tel Aviv is like New York” is not
the same as “New York is like Tel Aviv”;

– triangle inequality : d(a, b) + d(b, c) ≥ d(a, c); for instance, Russia and Cuba
are (were) similar as political systems, Cuba and Jamaica are similar geo-
graphically, but Russia and Jamaica do not share anything.

Besides, Tversky [2] observes another relevant phenomenon:

– diagnosticity effect : the result of similarity judgment changes when the list
of possible alternative changes. For instance, participants are asked for the
country most similar to Austria to be decided amongst Hungary, Poland (at
those times both communist countries), and Sweden; most responses indicate
Sweden. If Norway is added to the list, however, responders turn to Hungary.

Given certain assumptions, Tversky proves that similarity can be expressed
with what he calls the contrast model (A is a set of features of a, B of b):

S(a, b) = θf(A ∩ B) − αf(A \ B) − βf(B \ A)

where S is the similarity scale, f a non-negative scale, and θ, α and β positive
parameters. If α > β, the model creates the asymmetry between subject a and
reference b, explaining the observed lack of symmetry in similarity judgments.
This account is also compatible with an observed imperfect complementarity of
similarity and dissimilarity (difference, in Tversky’s terms).

4.2 Similarity with Density Effects

Soon after Tversky’s proposal, Krumhansl [3] presented an alternative model to
explain the same phenomena, attempting to recover the geometrical hypothesis.
She starts from the problem of minimality axiom, observing that in experiments
problems increase when the subject point has many neighbors, i.e. when it is

11 It is worth observing that such collections are the result of a preliminary extraction
and compilation by some modeler. Approaches based on conceptual spaces, although
certain implementations may be in practice very similar to feature-based works (e.g.
by considering nominal dimensions), in principle insist on direct, perceptual grounds
of quality dimensions.
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more prototypical. She then considers similarity as a function both of an inter-
point distance, and of a spatial density of stimuli points:

d′(a, b) = d(a, b) + αδ(a) + βδ(b)

where δ is a density function. The similarity function is then suggested to be
a composition of this distance with a monotonically decreasing function. Like
Tversky, she suggests that the difference between similarity and dissimilarity in
empirical tests may be due to different factors α, β or to difference in density
between subject and referent points.

4.3 Similarity as Double Contrast

So far, we have not defined similarity in our account. For calculating contrast,
we have used distances inherent to the integral dimensions. These distances may
in effect be interpreted as quantities of how much two stimuli are dissimilar, but,
because these two stimuli should belong to the same domain (e.g. color, image
space), they cannot refer to (multi-dimensional) concepts. Similarity, instead,
operates at level of concepts. This is evident in metaphors, i.e. expressions like
“my love is as deep as the ocean”, “he is like a lion”. For this reason, we start
from sketching a general template for metaphor generation.

For simplicity, let us consider a sentence like “he is strong”. Following the
red dog example, this predicate should result from the operation:

this person − prototype person � strong, ...

Saying instead “he is like a lion”, we are performing a double operation: we are
matching one or more characteristic properties of that person with one or more
characteristic properties of the concept of lion.

this person − prototype person � X, ...

prototype lion − prototype animal � X, ...

However, whereas the contrastor category X is recognized as the same in the
contrasts, the two contrastors have plausibly different intensities. The asymmetry
between the subject and the referent can be seen as a consequence of the relative
intensities of the contrastors (cf. above vs below). We can generalize this idea:

Proposition 1 (Comparison Ground). A comparison ground between two
conceptual objects holds when the contrasts with their prototypes results into two
contrastors falling upon the same category, but possibly with different intensities.
The natural reference is the object whose contrastor has greater intensity.

The suspension dots in these equations are meant to show that in principle many
contrastors could be generated, related to different domains. For instance, lion’s
distinguishing features are being strong, living in the savannah, etc. Why we
match the strength dimension rather than the position? A descriptive criterion
may be because in common-sense there are few animals as strong as lions, but
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there are plausibly many other animals that live in the savannah. This criterion
is related to the empirical principle of relevance.

Tversky’s asymmetry examples, e.g. “Tel Aviv is like New York”, can be
interpreted following the metaphor’s template. This sentence means that one or
more distinctive characteristic of New York are used as modifiers for defining Tel
Aviv. To decide whether it is nightlife, cosmopolitanism or green areas we may
use the descriptive criterion to compute the distinctiveness of certain features.
Saying the opposite (“New York is like Tel Aviv”) would mean to activate Tel
Aviv’s more distinctive characteristics.

For the triangle inequality, suppose the concept of country is defined by
political and geographical dimensions. A sentence like “Cuba is similar to Rus-
sia”, without defining the dimensions of the comparison, follows a scheme similar
to the metaphor case, but in this case, the two objects belong to the same cate-
gory. The double contrast works in the Cuba–Russia case (for the matching on
the political dimension) and in the Jamaica–Cuba case (for the matching on the
geographical dimension), but it does not work in the Jamaica–Russia case, as it
is not able to find a common comparison ground.

To explain the diagnosticity effect, we hypothesize that respondents con-
struct a rough estimate of the group. Rather than a real prototype, we are
dealing here with a temporary construct, bringing to the foreground the relative
distinctive features of the given individuals. For the sake of the argument, let us
consider a simplified model of Tversky’s test (political index 1 means commu-
nist country; position approximates the position on a map of the centers of the
countries). Averaging these values, we can construct a sort of virtual prototype
of the group, with and without Norway:

political_index position (x, y)

Austria 0 1, 0

Hungary 1 2, 0

Poland 1 2, 1

Sweden 0 1, 4

Norway 0 0, 4

Group prototype without Norway 0.5 1.5, 1.25

Group prototype with Norway 0.4 1.2, 1.8

Following the double contrast formula, in order to decide which country in the
group is most similar to Austria, we have first to contrast the Austria object with
the virtual prototype, and then apply the same operation to the other countries
to form a compatible comparison ground. In the group without Norway, we need
to specify Austria’s political dimension, as the group is split perfectly in two; for
the spatial dimension, Austria is more central in the group, so geography is a bit
less pertinent dimension to describe the country. Sweden is selected as the most
similar country to Austria because the comparison ground lies on the political
index. In the group with Norway, it is more common not to be a communist
country (so the political dimension becomes a bit less pertinent), whereas the
center goes further North: the geographical dimension becomes more pertinent.
For this internal change, Hungary is selected as more similar to Austria.
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The search for a satisfactory comparison ground can also explain the experi-
ences in which the minimality axiom is not satisfied. The original tests were
about recognizing, given a Morse code, the most similar code in a list of codes,
including the input one [3]. According to our model, when the input is far from
the group prototype it is more difficult to find a reference with which to form a
comparison ground: the respondent will correctly identify the same element as
the best response to the task. When the input is near to the prototype, another
entity may be satisfactorily similar to stop the search.

Comparison. Although the models presented by Tversky [2] and Krumhansl
[3] might yield as well predictions aligned with these experiences, they require
the specification of adequate parameters and, more importantly, the manual
selection of features (potentially infinite). Consider two objects that are almost
the same, save for a detail that make them crucially different in pertinence to a
task: Tversky’s contrast model would lead to implausible results, as the weight of
common features would outnumber that of distinct features. On the other hand,
proposals as that of Krumhansl’s have the problem of defining a coherent global
distance amongst features. In principle, our proposal is not concerned by these
problems: we have not used any parameters; if the conceptual spaces have been
correctly constructed, they are grounded to perceptive spaces and respecting the
conceptual hierarchies; contrast and similarity are computed without relying on
global distances.

5 Conclusion and Further Developments

The paper presents a novel account of contrast and similarity operations to
be performed on conceptual spaces. Contrast relies on distances computed along
integral dimensions (belonging to independent cognitive domains), capturing dis-
similarities between entities on given scales of stimuli. Similarity judgments are
modeled instead as double contrasts forming a comparison ground, where the dis-
tinctive characteristics of a reference are used as contrastors. To our knowledge,
such sequential, multi-layered nature of similarity has not been hypothesized
before in the literature. The dimensions of psychological spaces, even in the
theory of conceptual spaces, are usually elicited via multi-dimensional scaling
(MDS) techniques applied on people’s similarity judgments, presupposing the
existence of underlying metrics to be captured by features expressed in a verbal
form. These approaches and similar dimensional reduction techniques used in
machine learning conflate two aspects of similarity, respectively of perceptual
and contrastively analogical nature, that our proposal attempts to distinguish.

Future work is required to complete our specification of contrast: additional
semantic parameters, the analytical relationship with merge, and a definition
operating on regions.12 Prototypes were processed here merely as points; how-
12 As the merge operation (+) seems to be captured by dilation, we are currently

investigating methods to capture contrast (−) considering the dual morphological
operator erosion: first experiments look promising.
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ever, the empirical principle of relevance presented here relies on standard devi-
ation, and for that, it works with a neighborhood of the mean, representative
of an underlying group or population. The principle was applied in a binary
fashion: either the prototype has no effect on the exemplar, or the prototype
counts at par with the exemplar. The next step would be to specify a graded
solution, taking into account some regional information of prototypes, captured
by standard deviation or other means. We expect the problem has points of
contact with the contrast on regions. Parallel to this work, we need to study the
interaction of possible definitions of contrast with dependent qualities, to take
into account semantically redundant information.

Finally, this work focused on the descriptive aspect of predicate generation,
but relevance is not only a matter of best description. At higher level, additional
factors play a role, as e.g. the rarity or the emotional response associated to the
situation to be described. Understanding how this interplay works will be crucial
for generating truly pertinent descriptions.
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