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Abstract. Image interpretation is a dynamic research domain involving
not only the detection of objects in a scene but also the semantic descrip-
tion considering context information in the whole scene. Image interpre-
tation problem can be formalized as an abductive reasoning problem, i.e.
an inference to the best explanation using a background knowledge. In
this work, we present a framework using a tableau method for generating
and selecting potential explanations of the given image when the back-
ground knowledge is encoded using a description that is able to handle
spatial relations.

1 Introduction

High-level semantics extraction from an image is an important research area in
artificial intelligence. Many related fields like image annotation, activity recog-
nition and decision-support systems take advantage of semantic content. Scene
understanding, which translates low level signal information into meaningful
semantic information, belongs to one of the fundamental abilities of human
beings. In this work, beyond a single object understanding based on low level
features such as colors and forms, we focus on a complex description which relies
on context information like spatial relations as well as prior knowledge on the
application domain. Our aim is to extract high-level semantic information from
a given image and translate it at a linguistic level. Concretely, we are interested
in the interpretation of cerebral images with tumors. The high-level information
corresponds to the presence of diverse types of pathologies as well as descrip-
tions of brain structures and spatial relations among them in a brain image. For
instance, according to different levels of anatomical prior knowledge on brain
pathology, two possible descriptions of the image in Figure 1 could be:

– an abnormal structure is present in the brain,
– a peripheral non-enhanced tumor is present in the right hemisphere1.

1 We use the classical “left is right” convention for display. The “right” structure is
on the left side in Figure 1 (i.e. on the right side of the brain).
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Fig. 1. A slice of a pathological brain
volume (MRI acquisition), where some
structures are annotated.

Fig. 2. A general schema of image
interpretation task in this work.

In the context of this this work, the decision process is modeled as an abduc-
tive reasoning [1] using Description Logics. Abductive reasoning is a backward-
chaining inference, consisting in generating hypotheses and finding the “best”
explanation of a given observation. New knowledge should be added in order to
positively entail the observation. Image interpretation can be expressed as an
abductive reasoning mechanism. Figure 2 shows the major components of our
framework. The main components encompass an observation of a given image,
a prior knowledge base of the application domain and the reasoning service for
the purpose of image interpretation. The given image is translated into symbolic
representations in terms of logical formulas by segmentation and recognition
of objects using image processing tools. The recognized structures are repre-
sented as individuals of concepts, and spatial relationships are computed and
represented as role individuals. The future work will involve concrete domains.
Concrete domains [6], considered as a real world model (e.g. image space) linked
with abstract terminologies, is as well a useful part which benefits from comple-
mentary information of abstract level of knowledge in the image representation.
Hypotheses are formulated with the help of the reasoning process taking both the
observation and the background knowledge into account. The relations between
the hypothesis and the reasoning are in two directions. One is backward-chaining
for generating potential hypotheses. The other is forward-chaining reasoning to
select satisfiable and preferred explanations.

To achieve our goal, we need to answer the following questions:

– How to model the prior knowledge and formalize an appropriate representa-
tion in a given application domain? (Section 2)

– How to generate hypotheses to explain the observed scene? (Section 3 and 4)
– How to define a criterion to choose the “best” explanation in our case?
(Section 3 and 4)

2 Background and Related Work

Description Logics (DLs) are a family of knowledge representation formalisms [4].
We use ALCHIR+ including inverse roles, symmetric roles and transitive role
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axioms [11] in this paper. The role axioms are represented in a restricted form
such as r ≡ s− (inverse roles) and r ◦ r � r (transitive role axioms). A more
complete overview of Description Logics can be found in [4].

The knowledge base used in our framework is built with three blocks: termi-
nologies (TBox), role axioms (RBox) and assertions (ABox) (K = {T ,R,A}).
An example of a knowledge base referring to brain anatomy is as follows, where
LV l and LV r denote left and right lateral ventricles, and left and right cau-
date nuclei are denoted by CNl and CNr. The general knowledge is represented
in the TBox, which describes basic axioms of the background knowledge. The
ABox represents the assertions, involving the facts in the observation (such as
information extracted from an image). The complete knowledge base is given as
follows:

TBox = {Hemisphere � ∃isPartOf.Brain

BrainStructure � ∃isPartOf.Brain

BrainDisease � ∃isPartOf.Brain � ¬BrainStructure

Tumor � BrainDisease

LV l � BrainStructure � ∃(rightOf � closeTo).CNl

LV r � BrainStructure � ∃(leftOf � closeTo).CNr

CNl � BrainStructure

CNr � BrainStructure

PeripheralHemisphere � Hemisphere

CentralHemisphere � Hemisphere � ¬PeripheralHemisphere

PeripheralTumor � Tumor � ∃isPartOf.PeripheralHemisphere � ∃farFrom.(LV l � LV r)

SmallDeformingTumor � Tumor � ∃closeTo.(CNl � CNr)}

RBox = {rightOf ≡ leftOf
−

above ≡ below
−

closeTo ≡ closeTo
−

farFrom ≡ farFrom
−

isPartOf ◦ isPartOf � isPartOf

hasPart ◦ hasPart � hasPart

isPartOf ≡ hasPart
−}

ABox = {a : CNl

b : unknown

c : Brain

〈a, b〉 : leftOf, closeTo

〈b, c〉 : isPartOf}

This knowledge base example demonstrates a practical way to represent brain
anatomy. For instance, LV l � BrainStructure � ∃(rightOf � closeTo).CNl
expresses that the left lateral ventricle belongs to the brain structure which
is on the right of and close to the left caudate nucleus. In the RBox, inverse
relations (rightOf ≡ leftOf−) and transitive relations (hasPart ◦ hasPart �
hasPart) are used to represent spatial relation properties. In the ABox, a, b, c
are individuals corresponding to observed objects in the image. a : CNl is a
concept assertion and 〈b, c〉 : isPartOf is a role assertion, expressing that b is a
part of c.

High level image interpretation is important in image analysis, for various
tasks such as image annotation [17], event detection [14] and diagnostic prob-
lems [2,3]. Image interpretation combines image processing with artificial intel-
ligence techniques to derive reasonable semantics.

Image interpretation task was regarded as an abduction problem in [2,9,15].
In [15], DL-safe rules were proposed to map high level concepts and occurrence
objects in the scene and their relationships. The rules ensure the expressivity
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and preserve the decidability of the reasoning. However, only the concept defined
in the rules can be inferred using this formalism. In [2], the image interpretation
was formulated as a concept abduction problem. The DL is EL. The knowledge
base is processed using formal concept analysis and the abductive reasoning
utilizes morphological operators. In [9], a probabilistic model is integrated into
the abductive reasoning in order to facilitate the preference selection.

The tableau method was first adapted in Description Logics formalisms for
a market matchmaking problem [7]. Colucci et al. modeled this problem as a
concept abduction in the DL ALN [7], where the observations are the demand
and the supply is treated as the explanation for the meet of the request. The
tableau method has also been studied by Halland et al. in [10] for a TBox
abduction problem. For a TBox abduction problem, a TBox axiom in the form
φ = C � D is an explanation enforcing the entailment of the observation, which
is also in the form of a TBox subsumption form. Similar to the tableau method for
the concept abduction, if the disjunction of two concepts A1 and ¬A2 can create
a clash of the tableau, then A2 � A1 is considered as a potential explanation.

Klarman et al. [13] present a tableau method for ABox abduction in ALC.
This method integrates first-order logic reasoning techniques. First, the back-
ground knowledge and the observation are transformed into first-order syntax.
Then, a tableau in the context of the first-order logic is built and solutions are
selected in the open branches. The results are transformed into Description Logic
from the first-order logic in the end. In [8], Du et al. introduced a tractable app-
roach to ABox abduction, called the query abduction problem. However, the
potential hypotheses are restricted to atomic concepts and roles in the TBox.

Another ingredient in abductive reasoning is the selection of the “best” expla-
nation. As a set of syntactical candidates generated using the tableau method,
the selection relies on explicit restrictions for choosing the “best” explanation.
Restrictions concern filtering out inappropriate hypotheses, for instance, incon-
sistent hypotheses (H1 such that K∪H1 |= ⊥) and independent hypotheses (H1

entails the observation independently without background knowledge, such that
H1 |= O). These types of hypotheses need to be removed. In addition, mini-
mality criteria are required to select the “best” among the filtered candidates.
Though the desired candidates are selected, the solutions can be infinite. There-
fore, defining minimality criteria is an important manner to find a preference
among all the potential hypotheses. Bienvenu discussed a set of basic minimal-
ity criteria for abductive reasoning in DLs in [5] such as semantic minimality
and cardinal minimality.

3 Abductive Reasoning Using Tableau Method

In this section, we will introduce how abduction is applied to image interpre-
tation from two aspects (generation of hypotheses and selection of a preferred
explanation).

Definition 1 (Concept Abduction). Let L be a DL, K = {T ,A} be a knowl-
edge base in L, C,D two concepts in L and suppose that they are satisfiable with
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respect to K. The logical formalism of abduction in DLs is represented as fol-
lows: given an observation concept O, a hypothesis is a concept H such that
K |= H � O.

As all observed objects in the ABox can be formulated by an appropriate
concept, our problem is modeled as a concept abduction. K |= H � O. H is
an explanation of the given observation O if H is subsumed by O w.r.t. K. The
subsumption problem can be converted into a test of satisfiability which requires
to prove that H � ¬O is unsatisfiable. According to the strategy proposed by
Aliseda [1], a potential hypothesis H is the concept which makes the tableau of
H � ¬O closed as a consequence.

In the forward-chaining inference such as deduction, the corresponding
axioms of the TBox are integrated in the tableau method using the normal-
ization process [4]. The more general concept (in the right of a subsumption
relation) can be obtained if the more specific concept is satisfied (in the left side
of a subsumption relation). In Colucci’s method, the authors employ this replace-
ment strategy. In other words, the more specific concept cannot be inferred from
the more general concept. For instance, a concept D can be inferred by getting
a concept C with the axiom C � D in a deductive way since a model of the
concept C is also a model of D. However, this is not suitable for a backward-
chaining inference, which intends to find a concept C as a hypothesis for D.
A possible solution is to add the internalized concept (see Definition 2) in the
tableau.

Definition 2 (Internalized concept [4]). Let T be a TBox and a set of
axioms formulated as Ci � Di. The internalized concept of the TBox is defined
as follows:

CT ≡ �(Ci�Di∈T )(¬Ci � Di)

For example, the internalized concept of the axiom LV l � BrainStructure �
∃(rightOf � closeTo).CNl is ¬LV l � (BrainStructure � ∃(rightOf �
closeTo).CNl).

If Ci � Di, then � � ¬Ci�Di and CT ≡ �. As a consequence, all interpreta-
tions of the TBox T are equivalent to interpretations of the internalized concept
CT . Therefore, every interpretation element belongs to CI

T and C ≡ C � CT is
proved.

We reformulate the subsumption checking in terms of satisfiability: the con-
cept H � ¬O is not satisfiable w.r.t. T , where H is an explanation, O is an
observation, T is a TBox. This problem can be reduced by testing the satisfia-
bility of a concept H�¬O �CT , where CT is the internalized concept of T . The
concept H that causes unsatisfiability of H � ¬O � CT is a potential hypothesis,
i.e. the tableau built from this concept is closed. We follow this strategy and
propose an extension of the work by Colucci et al. in [7].

Each interpretation element in the tableau has now four label functions: T(x),
F(x), T(〈x, y〉), F(〈x, y〉), where x, y are interpretation elements in ΔI . They
are defined as follows:
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Let K = 〈T ,R,A〉 be a knowledge base, x, y interpretation elements, C,D
two concepts and r, s two roles in the given DL, we have:

– T(x) represents a set of concepts such that x is one possible interpretation
element: C ∈ T(x) iff x ∈ CI .

– F(x) represents a set of concepts such that x is not one possible interpretation
element: D ∈ F(x) iff x /∈ DI .

– T(〈x, y〉) represents a set of roles between x and y: r ∈ T(〈x, y〉) iff 〈x, y〉 ∈
rI .

– F(〈x, y〉) represents a set of unsatisfiable roles between x and y: s ∈ F(〈x, y〉)
iff 〈x, y〉 /∈ sI .

In the initialization step, the root node of the tableau is initialized with the
concept CT � ¬O. As CT � ¬O belongs to T(1), we add its negation to F(1).
This technique avoids adding the negation before selecting concepts to generate
contradictions in the tableau. We can prove the equivalence between C ∈ T(x)
and ¬C ∈ F(x). Suppose that for x ∈ ΔI , x is an interpretation element of a
concept C, and x is also an interpretation individual of the concept ¬C. As a
consequence, x is an interpretation of the concept C � ¬C ≡ ⊥. There is no
such interpretation. Thus, if x ∈ CI , then x /∈ (¬C)I , and conversely, x ∈ CI is
proved when x /∈ (¬C)I .

We assume that the concepts are expressed in a negation normal form (NNF).
For a concept C ∈ ALC, ¬C in the NNF is denoted by C. The expansion rules
used in our work are:

1. Conjunction
T) if C � D ∈ T(x), we add C and D in T(x).
F) if C � D ∈ F(x), we add C and D in F(x).

2. Disjunction
T) if C �D ∈ T(x), the branch is divided into two (T(x1),T(x2)). T(x1) =

T(x) ∪ {C} and T(x2) = T(x) ∪ {D}
F) if C � D ∈ F(x), the branch is divided into two (F(x1),F(x2)). F(x1) =

F(x) ∪ {C} and F(x2) = F(x) ∪ {D}
3. Existential restriction

T) if ∃r.C ∈ T(x) and there does not exist a y such that r ∈ T(〈x, y〉) and
C ∈ T(y), we create a new interpretation element y and then add r in
T(〈x, y〉), and C in T(y).

F) if ∀r.C ∈ F(x) and there does not exist a y such that r ∈ T(〈x, y〉) and
C ∈ F(y), we create a new interpretation element y and then add r in
T(〈x, y〉), and C in F(y).

4. Universal restriction
T) if ∀r.C ∈ T(x) and for all y such that r ∈ T(〈x, y〉) and C /∈ T(y), we

add C in T(y).
F) if ∃r.C ∈ F(x) and for all y such that r ∈ T(〈x, y〉) and C /∈ F(y), we

add C in F(y).
5. Replacement of axioms in T

T) if A ∈ T(x) and A ≡ C ∈ T , we add C in T(x).
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T) if ¬A ∈ T(x) and A ≡ C ∈ T , we add C in T(x).
F) if ¬A ∈ F(x) and A ≡ C ∈ T , we add C in F(x).
F) if A ∈ F(x) and A ≡ C ∈ T , we add C in F(x).

6. r−-rule
T) if r ∈ T(〈x, y〉), then r− ∈ T(〈y, x〉).
F) if r ∈ F(〈x, y〉), then r− ∈ F(〈y, x〉).

7. ∀rtrans-rule
T) if ∀r.C ∈ T(x) and r is a transitive role, then for all y such that r ∈

T(〈x, y〉), ∀r.C ∈ T(y).
F) if ∃r.C ∈ F(x) and r is a transitive role, then for all y such that r ∈

T(〈x, y〉), ∃r.C ∈ F(y).
8. r�-rule

T) if r � s ∈ T(〈x, y〉), we add r and s in T(〈x, y〉).
F) if r � s ∈ F(〈x, y〉), we add r and s in F(〈x, y〉).

The contradiction is classified into two types: homogeneous clash and het-
erogeneous clash.

Definition 3 (Clash [7]). A clash in a branch can be divided into two cate-
gories:
1. A branch is defined as a homogeneous clash if:

– ⊥ ∈ T(x) or � ∈ F(x).
– {A,¬A} ∈ T(x) or {A,¬A} ∈ F(x).

2. A branch is defined as a heterogeneous clash if:
– {A or ¬A} ∈ T(x) ∩ F(x).

We illustrate this procedure on the brain MR image with a tumor (Figure 1)
using the knowledge base described in Section 2. In this example, the observation
is a concept for an unknown object considering the background knowledge: O ≡
∃(leftOf− � closeTo−).CNl � ∃isPartOf.Brain2.

LV l � BrainStructure � ∃(rightOf � closeTo).CNl

SmallDeformingTumor � Tumor � ∃closeTo.(CNl � CNr).

By applying expansion rules, the construction process of the tableau is shown
in Figure 3. We explain only the first part of the development of the tableau
procedure. The hypotheses are generated from open branches. In this example,
we have two sets of concepts for the expanded part:

H1 = {LV l, SmallDeformingTumor}
H2 = {LV l, ∀closeTo.¬CNr, ∀closeTo.CNl}.

The concepts in these two sets are basic elements to build a hypothesis H. We
assume that the second part of the tableau is closed. Therefore, a hypothesis H
is a conjunction of one concept from each set Hi. To avoid redundancy, we take
the minimum hitting set in order to construct hypotheses from the candidate
sets.
2 We use image processing tools to recognize some known structures and to compute
their spatial relationships. The description in logical formalism is given manually.
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T(1) = {}
F(1) = {(∃(leftOf− � closeTo−).CNl) � ∃isPartOf.Brain
�(LV l � (¬BrainStructure � ∀(rightOf � closeTo).¬CNl))

�(SmallDeformingTumor � (¬Tumor � ∀closeTo.¬(CNl � CNr)))}

T(1) = {}
F(1) = {(∃(leftOf− � closeTo−).CNl) � ∃isPartOf.Brain
(LV l � (¬BrainStructure � ∀(rightOf � closeTo).¬CNl))

(SmallDeformingTumor � (¬Tumor � ∀closeTo.¬(CNl � CNr)))}

T(1) = {}
F(1) = {..., ∃(leftOf− � closeTo−).CNl}

F(1) = {...,
LV l}

F(1) = {...,
SmallDeformingTumor}

�

F(1) = {...,¬Tumor
∀closeTo.¬(CNl � CNr)}

F(2) = {¬CNl � ¬CNr}
T(1, 2) = {closeTo, closeTo−}

F(2) = {...,¬CNl,CNl}
T(1, 2) = {

closeTo, closeTo−}

�

F(2) = {...,¬CNr,CNl}
T(1, 2) = {

closeTo, closeTo−}

�

F(1) = {...,
¬BrainStructure,

∀(rightOf � closeTo).¬CNl}

F(2) = {¬CNl}
T(1, 2) = {rightOf, closeTo,

leftOf−, closeTo−}

F(2) = {..., CNl}

�

T(1) = {}
F(1) = {..., ∃isPartOf.Brain}

F(1) = {...}

Fig. 3. The process of constructing the tableau by applying expansion rules.

Definition 4 (Hitting set). Let {S1, . . . , Sn} be a collection of sets. A hitting
set T is a subset T ⊆ ∪n

i=1Si such that T contains at least one element of each
set in the collection T ∩ Si �= ∅ (1 ≤ i ≤ n). The minimal hitting set is a hitting
set Tm if � hitting set T ′ such that T ′ ⊂ Tm.

The inconsistent hypotheses (K ∪ H |= ⊥) and irrelevant hypotheses (H |= O)
also need to be removed during the construction process. An exhaustive algo-
rithm (Algorithm 1) is elaborated from the minimal hitting set algorithm [16].

Algorithm 1. Exhaustive search algorithm of selecting hitting sets.
1: input: A collection of sets {S1, . . . , Sn}
2: output: A collection of hitting sets H
3: H = ∅
4: Root node initialization.
5: for i from 1 to n do
6: Create new children nodes for all concepts of Si in every leaf node
7: An intermediate hypothesis hypj is the conjunction of all the concepts in the same branch
8: Delete the branch j if hypj is inconsistent w.r.t. the TBox
9: end for
10: The conjunction of all concepts in each branch j represents a potential hypothesis Hj

11: return: H =
⋃

{Hj}

In order to choose a preferred solution among the hitting sets, two basic min-
imality criteria are used in our framework: subsumption criterion and cardinal
minimality.



364 Y. Yang et al.

Definition 5 (Subsumption criterion). For an abduction problem P =
〈T ,H,O〉, Hi is a �minimal explanation if there does not exist an explanation
Hj for P such that Hi � Hj.

Definition 6 (Cardinal minimality criterion). For an abduction problem
P = 〈T ,H,O〉, H is a set of concepts {C1, · · · , Cn} and H = C1 � · · · � Cn. Hi

is a ≤minimal explanation if there does not exist an explanation Hj for P such
that |Hi| ≤ |Hj |.
In our example, H1 = LV l and H2 = SmallDeformingTumor �
∀closeTo.¬CNr are equally preferred if we choose the subsumption criterion.
However, H1 = LV l is preferred if we consider the cardinal minimality criterion.

4 Conclusions and Perspectives

We have exploited Description Logics and an associated tableau method for
knowledge representation and reasoning in image interpretation. A first model
of background knowledge of brain anatomy including spatial information is pro-
posed. At this stage, we have adapted the tableau method for generating pre-
ferred hypotheses w.r.t. the TBox.

Several directions will be considered in the future. A first direction is to gen-
erate adaptive hypotheses iteratively. We have shown that the tableau method
produces a large amount of hypotheses, however, most of them are irrelevant
or unsatisfiable. In order to avoid getting these hypotheses, an iterative method
will be considered. Instead of adding all internalized concepts into the tableau,
only relevant axioms are added to corresponding branches that cause a closure.
This action can avoid generating unsatisfiable hypotheses. Since the observa-
tion is a conjunction of the concepts, the partial hypotheses in each branch
will be ordered according to the minimality criterion. The selection process for
the “best” explanation will be directly embedded into the tableau construction
process.

Concrete domains are necessary in image interpretation since they provide
an interface between abstract logical level and concrete image space, because
semantic truth models may not have corresponding regions in concrete domains.
For example, a concept CNl � ∃rightOf.CNr could be verified to be satisfiable
w.r.t. to a defined TBox. However, this concept may not have a model in the
image space. This aspect will also be studied in the future.

Fuzzy logic is also a useful ingredient in knowledge representation dealing
with imprecision and vague information. This aspect has been proved to be
important for spatial reasoning by combining fuzzy relations in the concrete
domains to Description Logics for image interpretation [12]. Another strategy to
integrate fuzzy set theory into knowledge representation is to add fuzzy values
to terminological and assertional knowledge at the logical level. This part of the
work will allow dealing directly with satisfaction degrees of spatial relations.
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